Welcome to mirror list, hosted at ThFree Co, Russian Federation.

ExecuteKernelU8S8.cc « src - github.com/marian-nmt/FBGEMM.git - Unnamed repository; edit this file 'description' to name the repository.
summaryrefslogtreecommitdiff
blob: e091a8787a98b0bde0b6726b87893e28e78ec47b (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
/*
 * Copyright (c) Facebook, Inc. and its affiliates.
 * All rights reserved.
 * This source code is licensed under the BSD-style license found in the
 * LICENSE file in the root directory of this source tree.
 */
#include "ExecuteKernelU8S8.h"
#include <cpuinfo.h>
#include <chrono>


#ifdef FBGEMM_MEASURE_TIME_BREAKDOWN
double kernel_time = 0.0;
double postprocessing_time = 0.0;
#endif

namespace fbgemm2 {

template <typename packingAMatrix, typename cT, typename processOutputType>
ExecuteKernel<
    packingAMatrix,
    PackBMatrix<int8_t, typename packingAMatrix::accType>,
    cT,
    processOutputType>::
    ExecuteKernel(
        PackMatrix<packingAMatrix, uint8_t, typename packingAMatrix::accType>&
            packA,
        PackMatrix<
            PackBMatrix<int8_t, typename packingAMatrix::accType>,
            int8_t,
            typename packingAMatrix::accType>& packB,
        int32_t kBlock,
        cT* matC,
        int32_t* C_buffer,
        int32_t ldc,
        const processOutputType& outputProcess)
    : packedA_(packA),
      packedB_(packB),
      kBlock_(kBlock),
      matC_(matC),
      C_buffer_(C_buffer),
      ldc_(ldc),
      outputProcess_(outputProcess) {
  if (cpuinfo_has_x86_avx512f()) {
    mbSize_ = PackingTraits<
        int8_t,
        typename packingAMatrix::accType,
        inst_set_t::avx512>::MCB;
    nbSize_ = PackingTraits<
        int8_t,
        typename packingAMatrix::accType,
        inst_set_t::avx512>::NCB;
  } else if (cpuinfo_has_x86_avx2()) {
    mbSize_ = PackingTraits<
        int8_t,
        typename packingAMatrix::accType,
        inst_set_t::avx2>::MCB;
    nbSize_ = PackingTraits<
        int8_t,
        typename packingAMatrix::accType,
        inst_set_t::avx2>::NCB;
  } else {
    assert(0 && "unsupported architecure");
  }
  C_tile_ = new int32_t[mbSize_ * nbSize_];
}

template <typename packingAMatrix, typename cT, typename processOutputType>
void ExecuteKernel<
    packingAMatrix,
    PackBMatrix<int8_t, typename packingAMatrix::accType>,
    cT,
    processOutputType>::execute(int kBlock) {
  // packedA_.printPackedMatrix("packedA from kernel");
  // packedB_.printPackedMatrix("packedB from kernel");

  int32_t bColBlocks = packedB_.blockCols();

  int8_t* bBuf;
  int8_t* bBuf_pf;

  uint8_t* aBuf = packedA_.getBuf(0);

  int32_t packed_rows_A = packedA_.numPackedRows();
  int32_t row_start_A = packedA_.packedRowStart();

  bool lastKBlock = packedB_.isThisLastKBlock(kBlock);
  bool accum = kBlock > 0;

  typename BaseType::jit_micro_kernel_fp fn;

  if (cpuinfo_initialize()) {
    if (cpuinfo_has_x86_avx512f()) {
      fn = BaseType::template getOrCreate<inst_set_t::avx512>(
          accum,
          packed_rows_A,
          packedB_.blockColSize(),
          packedA_.numPackedCols(),
          nbSize_);
    } else if (cpuinfo_has_x86_avx2()) {
      fn = BaseType::template getOrCreate<inst_set_t::avx2>(
          accum,
          packed_rows_A,
          packedB_.blockColSize(),
          packedA_.numPackedCols(),
          nbSize_);
    } else {
      // TODO: Have default slower path
      assert(0 && "unsupported architecture");
      return;
    }
  } else {
    throw std::runtime_error("Failed to initialize cpuinfo!");
  }

#ifdef FBGEMM_MEASURE_TIME_BREAKDOWN
  std::chrono::time_point<std::chrono::high_resolution_clock> t_start, t_end;
  double dt;
  t_start = std::chrono::high_resolution_clock::now();
#endif

  for (int jb = 0; jb < bColBlocks; ++jb) {

    bBuf = packedB_.getBuf(jb, kBlock);
    // prefetch addr of the next packed block of B matrix
    bBuf_pf = packedB_.getBuf(jb == bColBlocks - 1 ? jb : jb + 1, kBlock);

    // Reuse the first rowblock of C_buffer_ unless when C_buffer_ is same as
    // matC_ (inplace output processing)
    int32_t* C_buffer_row_start = C_buffer_ +
        ((C_buffer_ == reinterpret_cast<int32_t*>(matC_)) ? row_start_A * ldc_
                                                          : 0);
    int32_t* C_buffer_start = C_buffer_row_start + jb * nbSize_;
    int32_t leadingDim = ldc_;
    if (packedB_.isThereColRemainder() && (jb == bColBlocks - 1)) {
      // In case we will access memory past C_buffer_, we use C_tile_ instead.
      C_buffer_start = C_tile_;
      leadingDim = nbSize_;
    }

    fn(aBuf,
       bBuf,
       bBuf_pf,
       C_buffer_start,
       packedA_.numPackedCols(),
       leadingDim);

#ifdef FBGEMM_MEASURE_TIME_BREAKDOWN
      t_end = std::chrono::high_resolution_clock::now();
      dt = std::chrono::duration_cast<std::chrono::nanoseconds>(t_end - t_start)
               .count();
      kernel_time += (dt);
      t_start = std::chrono::high_resolution_clock::now();
#endif

    // Output processing is done only once per rowblock
    if (lastKBlock && jb == bColBlocks - 1) {
      // When C_tile_ is used for the last column block, we need a separate
      // handling for the last column block.
      int32_t nSize =
          C_buffer_start == C_tile_ ? jb * nbSize_ : packedB_.numCols();
      if (nSize) {
        if (cpuinfo_has_x86_avx512f()) {
          // TODO: avx512 path
          // Currently use avx2 code
          outputProcess_.template f<inst_set_t::avx2>(
              matC_,
              C_buffer_row_start,
              {row_start_A, packed_rows_A, 0, nSize},
              ldc_,
              ldc_);
        } else if (cpuinfo_has_x86_avx2()) {
          outputProcess_.template f<inst_set_t::avx2>(
              matC_,
              C_buffer_row_start,
              {row_start_A, packed_rows_A, 0, nSize},
              ldc_,
              ldc_);
        } else {
          // TODO: Have default slower path
          assert(0 && "unsupported architecure");
        }
      }

      if (C_buffer_start == C_tile_) {
        if (cpuinfo_has_x86_avx512f()) {
          // TODO: avx512 path
          // Currently use avx2 code
          outputProcess_.template f<inst_set_t::avx2>(
              matC_,
              C_tile_,
              {row_start_A, packed_rows_A, jb * nbSize_, packedB_.lastBcol()},
              ldc_,
              leadingDim);
        } else if (cpuinfo_has_x86_avx2()) {
          outputProcess_.template f<inst_set_t::avx2>(
              matC_,
              C_tile_,
              {row_start_A, packed_rows_A, jb * nbSize_, packedB_.lastBcol()},
              ldc_,
              leadingDim);
        } else {
          // TODO: Have default slower path
          assert(0 && "unsupported architecure");
        }
      }
    } // output processing

#ifdef FBGEMM_MEASURE_TIME_BREAKDOWN
      t_end = std::chrono::high_resolution_clock::now();
      dt = std::chrono::duration_cast<std::chrono::nanoseconds>(t_end - t_start)
               .count();
      postprocessing_time += (dt);
      t_start = std::chrono::high_resolution_clock::now();
#endif

  } // for each j block
}
template class ExecuteKernel<
    PackAWithRowOffset<uint8_t, int32_t>,
    PackBMatrix<int8_t, int32_t>,
    uint8_t,
    ReQuantizeOutput<false /* FUSE_RELU*/>>;

template class ExecuteKernel<
    PackAWithRowOffset<uint8_t, int32_t>,
    PackBMatrix<int8_t, int32_t>,
    uint8_t,
    ReQuantizeOutput<true>>;

template class ExecuteKernel<
    PackAWithQuantRowOffset<uint8_t, int32_t>,
    PackBMatrix<int8_t, int32_t>,
    float,
    ReQuantizeForFloat<false>>;

template class ExecuteKernel<
    PackAWithQuantRowOffset<uint8_t, int32_t>,
    PackBMatrix<int8_t, int32_t>,
    float,
    ReQuantizeForFloat<true>>;

template class ExecuteKernel<
    PackAWithRowOffset<uint8_t, int32_t>,
    PackBMatrix<int8_t, int32_t>,
    float,
    ReQuantizeForFloat<false>>;

template class ExecuteKernel<
    PackAWithRowOffset<uint8_t, int32_t>,
    PackBMatrix<int8_t, int32_t>,
    float,
    ReQuantizeForFloat<true>>;

template class ExecuteKernel<
    PackAMatrix<uint8_t, int16_t>,
    PackBMatrix<int8_t, int16_t>,
    int32_t,
    memCopy<>>;

template class ExecuteKernel<
    PackAMatrix<uint8_t, int16_t>,
    PackBMatrix<int8_t, int16_t>,
    uint8_t,
    ReQuantizeOutput<false>>;

template class ExecuteKernel<
    PackAMatrix<uint8_t, int32_t>,
    PackBMatrix<int8_t, int32_t>,
    int32_t,
    memCopy<>>;

template class ExecuteKernel<
    PackAWithRowOffset<uint8_t, int16_t>,
    PackBMatrix<int8_t, int16_t>,
    uint8_t,
    DoSpmdmOnInpBuffer<
        ReQuantizeOutput<false>::outType,
        int32_t,
        ReQuantizeOutput<false>>>;

template class ExecuteKernel<
    PackAWithRowOffset<uint8_t, int16_t>,
    PackBMatrix<int8_t, int16_t>,
    uint8_t,
    DoSpmdmOnInpBuffer<
        ReQuantizeOutput<true>::outType,
        int32_t,
        ReQuantizeOutput<true>>>;

template class ExecuteKernel<
    PackAWithRowOffset<uint8_t, int16_t>,
    PackBMatrix<int8_t, int16_t>,
    float,
    DoSpmdmOnInpBuffer<
        ReQuantizeForFloat<false>::outType,
        int32_t,
        ReQuantizeForFloat<false>>>;

template class ExecuteKernel<
    PackAWithRowOffset<uint8_t, int16_t>,
    PackBMatrix<int8_t, int16_t>,
    uint8_t,
    ReQuantizeOutput<false>>;

template class ExecuteKernel<
    PackAWithRowOffset<uint8_t, int16_t>,
    PackBMatrix<int8_t, int16_t>,
    uint8_t,
    ReQuantizeOutput<true>>;

template class ExecuteKernel<
    PackAWithRowOffset<uint8_t, int16_t>,
    PackBMatrix<int8_t, int16_t>,
    int32_t,
    memCopy<>>;

template class ExecuteKernel<
    PackAWithIm2Col<uint8_t, int16_t>,
    PackBMatrix<int8_t, int16_t>,
    int32_t,
    memCopy<>>;

template class ExecuteKernel<
    PackAWithIm2Col<uint8_t, int16_t, 3>,
    PackBMatrix<int8_t, int16_t>,
    int32_t,
    memCopy<>>;

template class ExecuteKernel<
    PackAWithRowOffset<uint8_t, int32_t>,
    PackBMatrix<int8_t, int32_t>,
    int32_t,
    memCopy<>>;

template class ExecuteKernel<
    PackAWithIm2Col<uint8_t, int32_t>,
    PackBMatrix<int8_t, int32_t>,
    int32_t,
    memCopy<>>;

template class ExecuteKernel<
    PackAWithIm2Col<uint8_t, int32_t, 3>,
    PackBMatrix<int8_t, int32_t>,
    int32_t,
    memCopy<>>;

template class ExecuteKernel<
    PackAWithQuantRowOffset<uint8_t, int32_t>,
    PackBMatrix<int8_t, int32_t>,
    int32_t,
    memCopy<>>;

template class ExecuteKernel<
    PackAWithRowOffset<uint8_t, int16_t>,
    PackBMatrix<int8_t, int16_t>,
    float,
    ReQuantizeForFloat<false>>;

template class ExecuteKernel<
    PackAMatrix<uint8_t, int16_t>,
    PackBMatrix<int8_t, int16_t>,
    int32_t,
    DoNothing<int32_t, int32_t>>;

} // namespace fbgemm2