Welcome to mirror list, hosted at ThFree Co, Russian Federation.

avx2_gemm.h - github.com/marian-nmt/intgemm.git - Unnamed repository; edit this file 'description' to name the repository.
summaryrefslogtreecommitdiff
blob: ed3f895fd635e6d2cfaaacb9a19bb6b758714300 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
#pragma once

#include "interleave.h"
#include "kernels.h"
#include "multiply.h"
#include "types.h"

#include <cstdint>
#include <stdint.h>

namespace intgemm {

namespace avx2 {

INTGEMM_AVX2 inline __m256i QuantizerGrab(const float *input, const __m256 quant_mult_reg) {
  return kernels::quantize(loadu_ps<__m256>(input), quant_mult_reg);
}

INTGEMM_SELECT_COL_B(INTGEMM_AVX2, __m256i)

class QuantizeTile16 {
  public:
    typedef __m256i Integer;

    INTGEMM_AVX2 explicit QuantizeTile16(float mult) : mult_(_mm256_set1_ps(mult)) {}

    INTGEMM_AVX2 Integer Consecutive(const float *input) {
      return Tile(input, input + 8);
    }

    INTGEMM_AVX2 Integer ForReshape(const float *input, Index cols) {
      // 8 rows in the first 128-bit register, 8 in the second register.
      return Tile(input, input + 8 * cols);
    }

  private:
    INTGEMM_AVX2 __m256i Tile(const float *input0, const float *input1) {
      __m256i g0 = QuantizerGrab(input0, mult_);
      __m256i g1 = QuantizerGrab(input1, mult_);
      __m256i packed = _mm256_packs_epi32(g0, g1);
      // Reorder the packed values because Intel does 0 1 2 3 8 9 10 11 4 5 6 7 12 13 14 15.
      // Technically this could be removed if the PrepareB did the same reordering internally.
      return _mm256_permute4x64_epi64(packed, 0xd8 /* 0, 2, 1, 3 */);
    }

    const __m256 mult_;
};

} // namespace


struct AVX2_16bit {
  typedef int16_t Integer;

  // Currently A is prepared by quantization but this could theoretically change.
  INTGEMM_AVX2 static inline void PrepareA(const float *input, int16_t *output, float quant_mult, Index rows, Index cols) {
    Quantize(input, output, quant_mult, rows * cols);
  }

  // Just quantize everything in order.
  INTGEMM_AVX2 static void Quantize(const float *input, int16_t *output, float quant_mult, Index size) {
    assert(size % 16 == 0);
    assert(reinterpret_cast<uintptr_t>(input) % 32 == 0);
    avx2::QuantizeTile16 q(quant_mult);
    const float *end = input + size;
    for (; input != end; input += 16, output += 16) {
      *reinterpret_cast<__m256i*>(output) = q.Consecutive(input);
    }
  }

  // Tile size for B; B must be a multiple of this block size.
  static const Index kBTileRow = 16;
  static const Index kBTileCol = 8;
/*
  INTGEMM_AVX2 static void PrepareB(const float *input, int16_t *output, float quant_mult, Index rows, Index cols) {
    PrepareBFor16(input, output, avx2::QuantizeTile16(quant_mult), rows, cols);
  }*/
  INTGEMM_PREPARE_B_16(INTGEMM_AVX2, avx2::QuantizeTile16)

  INTGEMM_AVX2 static void SelectColumnsB(const int16_t *input, int16_t *output, Index rows, const Index *cols_begin, const Index *cols_end) {
    avx2::SelectColumnsOfB((const __m256i*)input, (__m256i*)output, rows * 2, cols_begin, cols_end);
  }
  
  INTGEMM_MULTIPLY16(__m256i, INTGEMM_AVX2, CPUType::AVX2)

  constexpr static const char *const kName = "16-bit INTGEMM_AVX2";

  static const CPUType kUses = CPUType::AVX2;
};

namespace avx2 {
/* Read 8 floats at a time from input0, input1, input2, and input3.  Quantize
 * them to 8-bit by multiplying with quant_mult_reg then rounding. Concatenate
 * the result into one register and return it.
 */
class QuantizeTile8 {
  public:
    typedef __m256i Integer;

    INTGEMM_AVX2 explicit QuantizeTile8(float quant_mult) : mult_(_mm256_set1_ps(quant_mult)) {}

    INTGEMM_AVX2 inline __m256i Consecutive(const float *input) {
      return Tile(input, input + 8, input + 16, input + 24);
    }

    INTGEMM_AVX2 inline __m256i ForReshape(const float *input, Index cols) {
      // Put higher rows in the second half of the register.  These will jumble
      // around in the same way then conveniently land in the right place.
      return Tile(input, input + 2 * cols, input + 16 * cols, input + 18 * cols);
    }

  private:
    INTGEMM_AVX2 inline __m256i Tile(const float *input0, const float *input1, const float *input2, const float *input3) {
      // Looking at the assembly, gcc has pulled this outside the loops calling this.
      const __m256i neg127 = _mm256_set1_epi8(-127);
      const __m256i shuffle_param = _mm256_set_epi32(7, 3, 6, 2, 5, 1, 4, 0);
      // Grab 4 registers at a time in 32-bit format.
      __m256i g0 = avx2::QuantizerGrab(input0, mult_);
      __m256i g1 = avx2::QuantizerGrab(input1, mult_);
      __m256i g2 = avx2::QuantizerGrab(input2, mult_);
      __m256i g3 = avx2::QuantizerGrab(input3, mult_);
      // Pack 32-bit to 16-bit.
      __m256i packed0 = _mm256_packs_epi32(g0, g1);
      __m256i packed1 = _mm256_packs_epi32(g2, g3);
      // Pack 16-bit to 8-bit.
      __m256i packed = _mm256_packs_epi16(packed0, packed1);
      // Ban -128.
      packed = _mm256_max_epi8(packed, neg127);
      // Currently in 0 1 2 3 8 9 10 11 16 17 18 19 24 25 26 27 4 5 6 7 12 13 14 15 20 21 22 23 28 29 30 31
      // Or as 32-bit integers 0 2 4 6 1 3 5 7
      // Technically this could be removed so long as the rows are bigger than 16
      // and the values are only used for GEMM.
      return _mm256_permutevar8x32_epi32(packed, shuffle_param);
    }
    
    const __m256 mult_;
};

// Technically only requires AVX
INTGEMM_MAXABSOLUTE(__m256, INTGEMM_AVX2)

} // namespace

struct AVX2_8bit {
  typedef int8_t Integer;

  // Currently A is prepared by quantization but this could theoretically change.
  INTGEMM_AVX2 static inline void PrepareA(const float *input, int8_t *output, float quant_mult, Index rows, Index cols) {
    Quantize(input, output, quant_mult, rows * cols);
  }

  // Just quantize everything in order.
  INTGEMM_AVX2 static void Quantize(const float *input, int8_t *output, float quant_mult, Index size) {
    assert(size % 32 == 0);
    assert(reinterpret_cast<uintptr_t>(input) % 32 == 0);
    avx2::QuantizeTile8 q(quant_mult);
    const float *end = input + size;
    for (; input != end; input += 32, output += 32) {
      *reinterpret_cast<__m256i*>(output) = q.Consecutive(input);
    }
  }

  // Tile size for B; B must be a multiple of this block size.
  static const Index kBTileRow = 32;
  static const Index kBTileCol = 8;

  INTGEMM_PREPARE_B_8(INTGEMM_AVX2, avx2::QuantizeTile8)

  INTGEMM_AVX2 static void SelectColumnsB(const int8_t *input, int8_t *output, Index rows, const Index *cols_begin, const Index *cols_end) {
    avx2::SelectColumnsOfB((const __m256i*)input, (__m256i*)output, rows, cols_begin, cols_end);
  }

  INTGEMM_MULTIPLY8(__m256i, INTGEMM_AVX2, CPUType::AVX2)
  
  constexpr static const char *const kName = "8-bit INTGEMM_AVX2";

  static const CPUType kUses = CPUType::AVX2;
};

} // namespace intgemm