Welcome to mirror list, hosted at ThFree Co, Russian Federation.

avx512_gemm.cc - github.com/marian-nmt/intgemm.git - Unnamed repository; edit this file 'description' to name the repository.
summaryrefslogtreecommitdiff
blob: e7df5ad6932a8b387f5ed0e5ae30d6bf6b8989a2 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
#include "avx512_gemm.h"
#include "interleave.h"
#include "multiply.h"

#include <cassert>
#include <cstddef>
#include <emmintrin.h>
#include <immintrin.h>
#include <stdint.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <tmmintrin.h>
#include <xmmintrin.h>

namespace intgemm {

namespace {

// Load from memory, multiply, and convert to int32_t.
inline __m512i QuantizerGrab(const float *input, const __m512 quant_mult_reg) {
  // Multiply each by the quantization factor.
  __m512 val = _mm512_mul_ps(*reinterpret_cast<const __m512*>(input), quant_mult_reg);
  // Cast to 32-bit int
  return _mm512_cvtps_epi32(val);
}

} // namespace


// AVX512 has combined collapse and store instructions:
// _mm512_mask_cvtsepi32_storeu_epi16
// _mm512_mask_cvtsepi32_storeu_epi8
// So conversion in memory uses these, but I also implement a wider version for
// rearranging B.
// 
// Convert to 16-bit signed integers.
void AVX512_16bit::Quantize(const float *input, int16_t *output, float quant_mult, int size) {
    assert(size % 16 == 0);
    assert(reinterpret_cast<uintptr_t>(input) % 64 == 0);
    // Fill with the quantization multiplier.
    const __m512 quant_mult_reg = _mm512_set1_ps(quant_mult);
    const float *end = input + size;
    for (; input != end; input += 16, output += 16) {
      // There doesn't seem to be an unmasked version.
      _mm512_mask_cvtsepi32_storeu_epi16(output, 0xffff, QuantizerGrab(input, quant_mult_reg));
    }
}

// Convert to 8-bit signed integers.
void AVX512_8bit::Quantize(const float *input, int8_t *output, float quant_mult, int size) {
  assert(size % 16 == 0);
  assert(reinterpret_cast<uintptr_t>(input) % 64 == 0);
  const __m512i neg127 = _mm512_set1_epi32(-127);
  const __m512 quant_mult_reg = _mm512_set1_ps(quant_mult);
  const float *end = input + size;
  for (; input < end; input += 16, output += 16) {
    __m512i asint = QuantizerGrab(input, quant_mult_reg);
    asint = _mm512_max_epi32(asint, neg127);
    // There doesn't seem to be an unmasked version.
    _mm512_mask_cvtsepi32_storeu_epi8(output, 0xffff, asint);
  }
}

namespace {

// For PrepareB we want to read 8 columns at a time.  When converting 32-bit
// floats to 8-bit values, that's 32 bytes of floats.  But AVX512 is 64 bytes
// wide so it reads off the edge of the tile.  We could expand the tile size
// but then the memory written to won't be contiguous anyway so we'd be doing a
// scatter anyway.  Easier to just read the 8 columns we wanted as 256 bits
// concatenate.
inline __m512 Concat(const __m256 first, const __m256 second) {
  // AVX512DQ but that goes with AVX512BW anyway.
  return _mm512_insertf32x8(_mm512_castps256_ps512(first), second, 1);
}

// Like QuantizerGrab, but allows 32-byte halves (i.e. 8 columns) to be controlled independently.
inline __m512i QuantizerGrabHalves(const float *input0, const float *input1, const __m512 quant_mult_reg) {
  __m512 appended = Concat(*reinterpret_cast<const __m256*>(input0), *reinterpret_cast<const __m256*>(input1));
  appended = _mm512_mul_ps(appended, quant_mult_reg);
  return _mm512_cvtps_epi32(appended);
}

// These are only used for reshaping due to the AVX512 instructions
// _mm512_mask_cvtsepi32_storeu_epi16 and _mm512_mask_cvtsepi32_storeu_epi8
// being used for the quantizer.
class QuantizeTile16 {
  public:
    typedef __m512i Integer;

    explicit QuantizeTile16(float mult) : mult_reg_(_mm512_set1_ps(mult)) {}

    inline __m512i ForReshape(const float *input, int cols) {
      __m512i g0 = QuantizerGrabHalves(input, input + 16 * cols, mult_reg_);
      __m512i g1 = QuantizerGrabHalves(input + 8 * cols, input + 24 * cols, mult_reg_);
      __m512i packed = _mm512_packs_epi32(g0, g1);
      // Permute within 256-bit lanes, so same as AVX2
      return _mm512_permutex_epi64(packed, 0xd8 /* 0, 2, 1, 3 */);
    }

  private:
    const __m512 mult_reg_;
};

class QuantizeTile8 {
  public:
    typedef __m512i Integer;

    explicit QuantizeTile8(float mult) : mult_reg_(_mm512_set1_ps(mult)) {}

    inline __m512i ForReshape(const float *input, int cols) {
      // TODO: try alternative: _mm512_cvtsepi32_epi8 ?
			const __m512i neg127 = _mm512_set1_epi8(-127);
			// In reverse order: grabbing the first 32-bit values from each 128-bit register, then the second 32-bit values, etc.
			const __m512i shuffle_param = _mm512_set_epi32(15, 11, 7, 3, 14, 10, 6, 2, 13, 9, 5, 1, 12, 8, 4, 0);

			// 32-bit format.
			__m512i g0 = QuantizerGrabHalves(input, input + 2 * cols, mult_reg_);
			__m512i g1 = QuantizerGrabHalves(input + 16 * cols, input + 18 * cols, mult_reg_);
			__m512i g2 = QuantizerGrabHalves(input + 32 * cols, input + 34 * cols, mult_reg_);
			__m512i g3 = QuantizerGrabHalves(input + 48 * cols, input + 50 * cols, mult_reg_);
			// Pack 32-bit to 16-bit.
			__m512i packed0 = _mm512_packs_epi32(g0, g1);
			__m512i packed1 = _mm512_packs_epi32(g2, g3);
			// Pack 16-bit to 8-bit.
			__m512i packed = _mm512_packs_epi16(packed0, packed1);
			// Ban -128.
			packed = _mm512_max_epi8(packed, neg127);
			// 0 1 2 3 16 17 18 19 32 33 34 35 48 49 50 51 4 5 6 7 20 21 22 23 36 37 38 39 52 53 54 55 8 9 10 11 24 25 26 27 40 41 42 43 56 57 58 59 12 13 14 15 28 29 30 31 44 45 46 47 60 61 62 63
			return _mm512_permutexvar_epi32(shuffle_param, packed);
		}

  private:
    const __m512 mult_reg_;
};

} // namespace

void AVX512_16bit::PrepareB(const float *input, int16_t *output, float quant_mult, int rows, int cols) {
  PrepareBFor16(input, output, QuantizeTile16(quant_mult), rows, cols);
}

void AVX512_16bit::SelectColumnsB(const int16_t *input, int16_t *output, int rows, const std::size_t *cols_begin, const std::size_t *cols_end) {
  SelectColumnsOfB((const __m512i*)input, (__m512i*)output, rows * 2, cols_begin, cols_end);
}

void AVX512_8bit::PrepareB(const float *input, int8_t *output, float quant_mult, int rows, int cols) {
  PrepareBFor8(input, output, QuantizeTile8(quant_mult), rows, cols);
}

void AVX512_8bit::SelectColumnsB(const int8_t *input, int8_t *output, int rows, const std::size_t *cols_begin, const std::size_t *cols_end) {
  SelectColumnsOfB((const __m512i*)input, (__m512i*)output, rows, cols_begin, cols_end);
}

void AVX512_16bit::Multiply(const int16_t *A, const int16_t *B, float *C, float unquant_mult, int A_rows, int width, int B_cols) {
  // The unquantization is only 256-bit wide because there are 8 results.
  Multiply16<__m512i, __m256> (A, B, C, unquant_mult, A_rows, width, B_cols);
}

// Special AVX512 implementation due to having 32 registers (so I don't have to
// allocate registers manually) and no sign instruction.
void AVX512_8bit::Multiply(const int8_t *A, const int8_t *B, float *C, float unquant_mult, int A_rows, int width, int B_cols) {
  typedef __m512i Integer;
  typedef __m256 Float; // For quantization we only do 8 at a time.
  // This is copy-paste from Multiply8_SSE2OrAVX2.
  assert(width % sizeof(Integer) == 0);
  assert(B_cols % 8 == 0);
  assert(reinterpret_cast<uintptr_t>(A) % sizeof(Integer) == 0);
  assert(reinterpret_cast<uintptr_t>(B) % sizeof(Integer) == 0);
  assert(reinterpret_cast<uintptr_t>(C) % sizeof(Integer) == 0);
  Float unquant_reg = set1_ps<Float>(unquant_mult);
  const int simd_width = width / sizeof(Integer);
  const Integer *B0_col = reinterpret_cast<const Integer*>(B);
  // Added for AVX512.
  Integer zeros = setzero_si<Integer>();
  // Go over 8 columns of B at a time.
  for (int B0_colidx = 0; B0_colidx != B_cols; B0_col += 8 * simd_width, B0_colidx += 8) {
    // Process one row of A at a time.  Doesn't seem to be faster to do multiple rows of A at once.
    for (int A_rowidx = 0; A_rowidx < A_rows; ++A_rowidx) {
      // Iterate over shared (inner) dimension.
      const Integer *A_live = reinterpret_cast<const Integer *>(A + A_rowidx * width);
      const Integer *A_end = A_live + simd_width;
      const Integer *B_live = B0_col;

      // Do the first iteration to initialize the sums.
      __m512i a = *A_live;
      __mmask64 neg_mask = _mm512_test_epi8_mask(a, _mm512_set1_epi8(-128));
      __m512i a_positive = _mm512_abs_epi8(a);
      // These will be packed 16-bit integers containing sums for each column of B multiplied by the row of A.
      Integer sum0 = maddubs_epi16(a_positive, _mm512_mask_sub_epi8(B_live[0], neg_mask, zeros, B_live[0]));
      Integer sum1 = maddubs_epi16(a_positive, _mm512_mask_sub_epi8(B_live[1], neg_mask, zeros, B_live[1]));
      Integer sum2 = maddubs_epi16(a_positive, _mm512_mask_sub_epi8(B_live[2], neg_mask, zeros, B_live[2]));
      Integer sum3 = maddubs_epi16(a_positive, _mm512_mask_sub_epi8(B_live[3], neg_mask, zeros, B_live[3]));
      Integer sum4 = maddubs_epi16(a_positive, _mm512_mask_sub_epi8(B_live[4], neg_mask, zeros, B_live[4]));
      Integer sum5 = maddubs_epi16(a_positive, _mm512_mask_sub_epi8(B_live[5], neg_mask, zeros, B_live[5]));
      Integer sum6 = maddubs_epi16(a_positive, _mm512_mask_sub_epi8(B_live[6], neg_mask, zeros, B_live[6]));
      Integer sum7 = maddubs_epi16(a_positive, _mm512_mask_sub_epi8(B_live[7], neg_mask, zeros, B_live[7]));

      ++A_live;
      B_live += 8;

      // Use A as the loop variable so the add can be done where gcc likes it
      // for branch prediction.
      for (; A_live != A_end; ++A_live, B_live += 8) {
        // Unique code here: can we do an inline function?
        // Retrieve a.  We will use this as the unsigned part.
        a = *A_live;
        // Retrieve the conveniently consecutive values of B.
        __m512i b0 = *B_live;
        __m512i b1 = *(B_live + 1);
        __m512i b2 = *(B_live + 2);
        __m512i b3 = *(B_live + 3);
        __m512i b4 = *(B_live + 4);
        __m512i b5 = *(B_live + 5);
        __m512i b6 = *(B_live + 6);
        __m512i b7 = *(B_live + 7);

        // Get a mask where a is negative.
        // Didn't seem to make a difference definining sign bits here vs at top
        neg_mask = _mm512_test_epi8_mask(a, _mm512_set1_epi8(-128));
        a_positive = _mm512_abs_epi8(a);

        // Negate by subtracting from zero with a mask.
        b0 = _mm512_mask_sub_epi8(b0, neg_mask, zeros, b0);
        b1 = _mm512_mask_sub_epi8(b1, neg_mask, zeros, b1);
        b2 = _mm512_mask_sub_epi8(b2, neg_mask, zeros, b2);
        b3 = _mm512_mask_sub_epi8(b3, neg_mask, zeros, b3);
        b4 = _mm512_mask_sub_epi8(b4, neg_mask, zeros, b4);
        b5 = _mm512_mask_sub_epi8(b5, neg_mask, zeros, b5);
        b6 = _mm512_mask_sub_epi8(b6, neg_mask, zeros, b6);
        b7 = _mm512_mask_sub_epi8(b7, neg_mask, zeros, b7);
        // The magic 8-bit multiply then horizontal sum into 16-bit.
        b0 = _mm512_maddubs_epi16(a_positive, b0);
        b1 = _mm512_maddubs_epi16(a_positive, b1);
        b2 = _mm512_maddubs_epi16(a_positive, b2);
        b3 = _mm512_maddubs_epi16(a_positive, b3);
        b4 = _mm512_maddubs_epi16(a_positive, b4);
        b5 = _mm512_maddubs_epi16(a_positive, b5);
        b6 = _mm512_maddubs_epi16(a_positive, b6);
        b7 = _mm512_maddubs_epi16(a_positive, b7);
        // Now we have 16-bit results that are the sum of two multiplies.
        // Choosing to approximate and do adds.
        // Perhaps every so often we could accumulate by upcasting.
        sum0 = _mm512_adds_epi16(sum0, b0);
        sum1 = _mm512_adds_epi16(sum1, b1);
        sum2 = _mm512_adds_epi16(sum2, b2);
        sum3 = _mm512_adds_epi16(sum3, b3);
        sum4 = _mm512_adds_epi16(sum4, b4);
        sum5 = _mm512_adds_epi16(sum5, b5);
        sum6 = _mm512_adds_epi16(sum6, b6);
        sum7 = _mm512_adds_epi16(sum7, b7);
        // Unique code ends: can we do an inline function?
      }
      // Upcast to 32-bit and horizontally add.
      Integer ones = set1_epi16<Integer>(1);
      sum0 = madd_epi16(sum0, ones);
      sum1 = madd_epi16(sum1, ones);
      sum2 = madd_epi16(sum2, ones);
      sum3 = madd_epi16(sum3, ones);
      sum4 = madd_epi16(sum4, ones);
      sum5 = madd_epi16(sum5, ones);
      sum6 = madd_epi16(sum6, ones);
      sum7 = madd_epi16(sum7, ones);
      Integer pack0123 = Pack0123(sum0, sum1, sum2, sum3);
      Integer pack4567 = Pack0123(sum4, sum5, sum6, sum7);
      WriteC(C + A_rowidx * B_cols + B0_colidx, pack0123, pack4567, unquant_reg);
    }
  }
}

const char *const AVX512_16bit::kName = "16-bit AVX512";
const char *const AVX512_8bit::kName = "8-bit AVX512";

float AVX512_MaxAbsolute(const float *begin, const float *end) {
  return MaxAbsoluteBackend<__m512>(begin, end);
}

} // namespace intgemm