Welcome to mirror list, hosted at ThFree Co, Russian Federation.

intgemm.h - github.com/marian-nmt/intgemm/intgemm.git - Unnamed repository; edit this file 'description' to name the repository.
summaryrefslogtreecommitdiff
blob: daf94ddae6aa99510ecebc924186788c11d9c303 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
#pragma once
/* Main interface for integer matrix multiplication.
 *
 * We are computing C = A * B with an optional scaling factor.
 *
 * A is typically activations.
 * Rows a multiple of 1 (no restriction)
 * Columns a multiple of 64 for 8-bit or 32 for 16-bit.
 * Use PrepareA to prepare A for multiplication.  This is meant to be fast.
 *
 * B is typically fixed model parameters.
 * Rows a multiple of 64 for 8-bit or 32 for 16-bit.
 * Columns a multiple of: 8
 * Use PrepareB to prepare B for multiplication.  This is slower, with the
 * intention that it will be prepared once and remembered.
 *
 * C is row major.
 *
 * Once both A and B are prepared, call Multiply.
 *
 * All memory (A, B, and C in float or prepared form) must be 64-byte aligned.
 * It's easy to write code that works on your CPU with lower alignment, but
 * breaks on AVX512.
 *
 * When preparing, you provide a quantization multiplier.  Values will be
 * multiplied by this then rounded to an integer.
 * For 16-bit neural networks, Jacob Devlin recommends 1024.0.
 * For 8-bit, use 127 / largest absolute value.
 *
 * Note that quantization saturates.  However, 16-bit does accumulation in
 * 32-bit which can overflow if you use too big of a multiplier.
 *
 * The multiply routine expects an unquantization multiplier.
 * This should be unquant_mult = 1.0 / (A_quant_mult * B_quant_mult).
 * Where A_quant_mult is what you passed to PrepareA and B_quant_mult is what you
 * passed to PrepareB.
 *
 * Feel free to multiply in a scaling factor to compute C = \lambda A * B by
 * passing unquant_mult = \lambda / (A_quant_mult * B_quant_mult).
 */

// Yes, both headers due to the debacle about int32_t
#include <cstdint>
#include <stdint.h>

#include "intgemm_config.h"
#include "types.h"
#include "sse2_gemm.h"
#include "ssse3_gemm.h"
#include "avx2_gemm.h"
#include "avx512_gemm.h"
#include "avx512vnni_gemm.h"

#if defined(__GNUC__) || defined(__clang__)
#include "cpuid.h"
#endif

/* Dispatch to functions based on runtime CPUID.  This adds one call-by-variable to each call. */

namespace intgemm {

struct Unsupported_16bit {
  static void Quantize(const float *, int16_t *, float, Index) {
    throw UnsupportedCPU();
  }
  static void PrepareB(const float *, int16_t *, float, Index, Index) {
    throw UnsupportedCPU();
  }
  static void PrepareBQuantizedTransposed(const int16_t *, int16_t *, Index, Index) {
    throw UnsupportedCPU();
  }
  static void PrepareBTransposed(const float *, int16_t *, float, Index, Index) {
    throw UnsupportedCPU();
  }
  static void SelectColumnsB(const int16_t *, int16_t *, Index, const Index *, const Index *) {
    throw UnsupportedCPU();
  }
  template <typename Callback>
  static void Multiply(const int16_t *, const int16_t *, Index, Index, Index, Callback) {
    throw UnsupportedCPU();
  }
  constexpr static const char *const kName = "16-bit Unsupported";
};

struct Unsupported_8bit {
  static void Quantize(const float *, int8_t *, float, Index) {
    throw UnsupportedCPU();
  }
  static void QuantizeU(const float *, uint8_t *, float, Index) {
    throw UnsupportedCPU();
  }
  static void PrepareA(const float *, int8_t *, float, Index, Index) {
    throw UnsupportedCPU();
  }
  static void PrepareBQuantizedTransposed(const int8_t *, int8_t *, Index, Index) {
    throw UnsupportedCPU();
  }
  static void PrepareBTransposed(const float *, int8_t *, float, Index, Index) {
    throw UnsupportedCPU();
  }
  static void PrepareB(const float *, int8_t *, float, Index, Index) {
    throw UnsupportedCPU();
  }
  template<class Callback>
  static void PrepareBias(const int8_t *, Index, Index, Callback) {
    throw UnsupportedCPU();
  }
  static void SelectColumnsB(const int8_t *, int8_t *, Index, const Index *, const Index *) {
    throw UnsupportedCPU();
  }
  template <typename Callback>
  static void Multiply(const int8_t *, const int8_t *, Index, Index, Index, Callback) {
    throw UnsupportedCPU();
  }
  template<class Callback>
  static void Multiply8Shift(const uint8_t *, const int8_t *, Index, Index, Index, Callback) {
    throw UnsupportedCPU();
  }

  constexpr static const char *const kName = "8-bit Unsupported";
};

#ifndef INTGEMM_COMPILER_SUPPORTS_AVX512BW
// These won't ever be called in this capacity, but it does let the code below compile.
typedef Unsupported_16bit AVX512_16bit;
typedef Unsupported_8bit AVX512_8bit;
namespace avx512f {
static inline float MaxAbsolute(const float * /*begin*/, const float * /*end*/) {
  throw UnsupportedCPU();
}
static inline MeanStd QuantizerStd(const float * /*begin*/, const float * /*end*/, bool) {
  throw UnsupportedCPU();
}
} //namespace
#endif

#ifndef INTGEMM_COMPILER_SUPPORTS_AVX512VNNI
// These won't ever be called in this capacity, but it does let the code below compile.
typedef Unsupported_8bit AVX512VNNI_8bit;
#endif

/* Returns:
 * axx512vnni if the CPU supports AVX512VNNI
 *
 * avx512bw if the CPU supports AVX512BW
 *
 * avx2 if the CPU supports AVX2
 *
 * ssse3 if the CPU supports SSSE3 (this distinction from SSE2 matters for 8-bit)
 *
 * sse2 if the CPU supports SSE2
 *
 * unsupported otherwise
 */
template <class T> T ChooseCPU(T
#ifdef INTGEMM_COMPILER_SUPPORTS_AVX512VNNI
    avx512vnni
#endif
    , T 
#ifdef INTGEMM_COMPILER_SUPPORTS_AVX512BW
    avx512bw
#endif
    , T avx2, T ssse3, T sse2, T unsupported) {
  /* If intgemm is compiled by gcc 6.4.1 then dlopened into an executable
   * compiled by gcc 7.3.0, there will be a undefined symbol __cpu_info.
   * Work around this by calling the intrinsics more directly instead of
   * __builtin_cpu_supports.
   *
   * clang 6.0.0-1ubuntu2 supports vnni but doesn't have
   *   __builtin_cpu_supports("avx512vnni")
   * so use the hand-coded CPUID for clang.
   */
#if defined(__GNUC__) || defined(__clang__)
  unsigned int m = __get_cpuid_max(0, NULL);
  unsigned int eax, ebx, ecx, edx;
  if (m >= 7) {
    __cpuid_count(7, 0, eax, ebx, ecx, edx);
#  ifdef INTGEMM_COMPILER_SUPPORTS_AVX512VNNI
    if (ecx & (1 << 11)) return avx512vnni;
#  endif
#  ifdef INTGEMM_COMPILER_SUPPORTS_AVX512BW
    if (ebx & (1 << 30)) return avx512bw;
#  endif
    if (ebx & (1 << 5)) return avx2;
  }
  if (m >= 1) {
    __cpuid_count(1, 0, eax, ebx, ecx, edx);
    if (ecx & (1 << 9)) return ssse3;
    if (edx & (1 << 26)) return sse2;
  }
  return unsupported;
#else // not gcc or clang.
  __builtin_cpu_init();
#  ifdef INTGEMM_COMPILER_SUPPORTS_AVX512VNNI
  if (
#    ifdef __INTEL_COMPILER
      _may_i_use_cpu_feature(_FEATURE_AVX512_VNNI)
#    else
      __builtin_cpu_supports("avx512vnni")
#    endif
      ) return vnni;
#  endif
#  ifdef INTGEMM_COMPILER_SUPPORTS_AVX512BW
  if (
#    ifdef __INTEL_COMPILER
      _may_i_use_cpu_feature(_FEATURE_AVX512BW)
#    else
      __builtin_cpu_supports("avx512bw")
#    endif
      ) return avx512bw;
#  endif
  if (__builtin_cpu_supports("avx2")) {
    return avx2;
  } else if (__builtin_cpu_supports("ssse3")) {
    return ssse3;
  } else if (__builtin_cpu_supports("sse2")) {
    return sse2;
  } else {
    return unsupported;
  }
#endif
}

struct TileInfo {
  const Index a_rows;
  const Index a_cols;
  const Index b_rows;
  const Index b_cols;
};

/*
 * 8-bit matrix multiplication
 */
struct Int8 {
  using Integer = int8_t;

  // A's size must be a multiple of 1x64, B's size must be a multiple of 64x8.
  static constexpr TileInfo tile_info{1, 64, 64, 8};

  // Currently A is prepared by quantization but this could theoretically change.
  // A's columns must be a multiple of 8.
  // The number of rows is anything.
  static inline void PrepareA(const float *input, int8_t *output, float quant_mult, Index rows, Index cols) {
    Quantize(input, output, quant_mult, rows * cols);
  }

  // Multiply floats by quant_mult then convert to 8-bit integers with saturation.
  static void (*Quantize)(const float *input, int8_t *output, float quant_mult, Index size);

  // Multiply floats by quant_mult then convert to 8-bit integers with saturation.
  // A version that adds 127 to each number, making sure that all numbers are positive
  static void (*QuantizeU)(const float *input, uint8_t *output, float quant_mult, Index size);

  // Warning: the output of PrepareB depends on the CPU.
  // It will match the Multiply function on the same CPU though.
  static void (*PrepareB)(const float *input, int8_t *output, float quant_mult, Index rows, Index cols);

  // Convert from a B that was already transposed (routine not provided) and
  // quantized (e.g. with Quantize) to the CPU-dependent format used for
  // Multiply.  This is useful for storing a quantized model on disk then in a
  // CPU-independent fashion.
  static void (*PrepareBQuantizedTransposed)(const int8_t *input, int8_t *output, Index inner, Index B_untransposed_cols);

  // Convert from a B that was already transposed (routine not provided) to
  // the CPU-dependent format used for Multiply.  This is useful for storing
  // a quantized model on disk then in a CPU-independent fashion.
  static void (*PrepareBTransposed)(const float *input, int8_t *output, float quant_mul, Index inner, Index B_untransposed_cols);

  // Select columns from a prepared B matrix.  The number of selected columns must be a multiple of 8.
  static void (*SelectColumnsB)(const int8_t *input, int8_t *output, Index rows, const Index *cols_begin, const Index *cols_end);

  // Multiply C = A * B, presuming A and B have been prepared.
  template <typename Callback>
  static void Multiply(const int8_t *A, const int8_t *B, Index A_rows, Index width, Index B_cols, Callback callback) {
    MultiplyImpl<Callback>::run(A, B, A_rows, width, B_cols, callback);
  }

  static const char *const kName;

private:
  template <typename Callback>
  struct MultiplyImpl {
    static void (*run)(const int8_t *A, const int8_t *B, Index A_rows, Index width, Index B_cols, Callback callback);
  };
};

template <typename Callback>
void (*Int8::MultiplyImpl<Callback>::run)(const int8_t *A, const int8_t *B, Index A_rows, Index width, Index B_cols, Callback callback) = ChooseCPU(OMPParallelWrap<Callback, AVX512VNNI_8bit>, OMPParallelWrap<Callback, AVX512_8bit>, OMPParallelWrap<Callback, AVX2_8bit>, OMPParallelWrap<Callback, SSSE3_8bit>, Unsupported_8bit::Multiply<Callback>, Unsupported_8bit::Multiply<Callback>);

/*
 * 8-bit matrix multiplication with shifting A by 127
 */
struct Int8Shift {
  using Integer = int8_t;

  // A's size must be a multiple of 1x64, B's size must be a multiple of 64x8.
  static constexpr TileInfo tile_info{1, 64, 64, 8};

  // Identical to the Int8 Version, except it adds 127 to each number, making sure that all numbers are positive.
  static inline void PrepareA(const float *input, int8_t *output, float quant_mult, Index rows, Index cols) {
    QuantizeU(input, reinterpret_cast<uint8_t *>(output), quant_mult, rows * cols);
  }

  // Multiply floats by quant_mult then convert to 8-bit integers with saturation.
  // A version that adds 127 to each number, making sure that all numbers are positive
  static void (*QuantizeU)(const float *input, uint8_t *output, float quant_mult, Index size);
  
  // Warning: the output of PrepareB depends on the CPU.
  // It will match the Multiply function on the same CPU though.
  static void PrepareB(const float *input, int8_t *output, float quant_mult, Index rows, Index cols) {
    Int8::PrepareB(input, output, quant_mult, rows, cols);
  }

  // Select columns from a prepared B matrix.  The number of selected columns must be a multiple of 8. 
  static void SelectColumnsB(const int8_t *input, int8_t *output, Index rows, const Index *cols_begin, const Index *cols_end) {
    Int8::SelectColumnsB(input, output, rows, cols_begin, cols_end);
  }

  // A slightly faster version compared to the Int8 one (assuming a bias is used) because of better handling of the sign bit
  // Multiply C = A * B + Bias, presuming A, B and Bias have all been prepared (for A, PrepareAnew should be used
  template<class Callback>
  static void Multiply(const int8_t *A, const int8_t *B, Index A_rows, Index width, Index B_cols, Callback callback) {
    MultiplyImpl<Callback>::run((const uint8_t *)A, B, A_rows, width, B_cols, callback);
  }

  // This function prepares the bias for the Multiply routine that does unsigned * signed multiplication.
  // The function takes:
  // a preparedB matrix, width, B_cols and
  // the callback UnquantizeAndAddBiasAndWrite(unquant_mult, Bias_matrix, Bias_matrix)
  // unquant_mult is computed by (-1)*(alpha)*(alpha)/(127.0f);
  template<class Callback>
  static void PrepareBias(const int8_t *B, Index width, Index B_cols, Callback callback) {
    PrepareBiasImpl<Callback>::run(B, width, B_cols, callback);
  }
  
  static const char *const kName;

private:
  template <typename Callback>
  struct MultiplyImpl {
    static void (*run)(const uint8_t *A, const int8_t *B, Index A_rows, Index width, Index B_cols, Callback callback);
  };

  template <typename Callback>
  struct PrepareBiasImpl {
    static void (*run)(const int8_t *B, Index width, Index B_cols, Callback callback);
  };
};

template <class Callback>
void (*Int8Shift::MultiplyImpl<Callback>::run)(const uint8_t *A, const int8_t *B, Index A_rows, Index width, Index B_cols, Callback callback) = ChooseCPU(
    OMPParallelWrap8Shift<Callback, AVX512VNNI_8bit>,
    OMPParallelWrap8Shift<Callback, AVX512_8bit>,
    OMPParallelWrap8Shift<Callback, AVX2_8bit>,
    OMPParallelWrap8Shift<Callback, SSSE3_8bit>, 
    Unsupported_8bit::Multiply8Shift<Callback>, Unsupported_8bit::Multiply8Shift<Callback>);

template <class Callback>
void (*Int8Shift::PrepareBiasImpl<Callback>::run)(const int8_t *B, Index width, Index B_cols, Callback callback) = ChooseCPU(AVX512VNNI_8bit::PrepareBias<Callback>, AVX512_8bit::PrepareBias<Callback>, AVX2_8bit::PrepareBias<Callback>, SSSE3_8bit::PrepareBias<Callback>, SSSE3_8bit::PrepareBias<Callback>, Unsupported_8bit::PrepareBias);

/*
 * 16-bit matrix multiplication
 */
struct Int16 {
  using Integer = int16_t;

  // A's size must be a multiple of 1x32, B's size must be a multiple of 32x8.
  static constexpr TileInfo tile_info{1, 32, 32, 8};

  // Currently A is prepared by quantization but this could theoretically change.
  // A's columns must be a multiple of 8.
  // The number of rows is anything.
  static inline void PrepareA(const float *input, int16_t *output, float quant_mult, Index rows, Index cols) {
    Quantize(input, output, quant_mult, rows * cols);
  }

  // Multiply floats by quant_mult then convert to 16-bit integers with saturation.
  // input
  static void (*Quantize)(const float *input, int16_t *output, float quant_mult, Index size);

  // Warning: the output of PrepareB depends on the CPU.
  // It will match the Multiply function on the same CPU though.
  static void (*PrepareB)(const float *input, int16_t *output, float quant_mult, Index rows, Index cols);

  // Convert from a B that was already transposed (routine not provided) and
  // quantized (e.g. with Quantize) to the CPU-dependent format used for
  // Multiply.  This is useful for storing a quantized model on disk then in a
  // CPU-independent fashion.
  static void (*PrepareBQuantizedTransposed)(const int16_t *input, int16_t *output, Index inner, Index B_untransposed_cols);

  // Convert from a B that was already transposed (routine not provided) to
  // the CPU-dependent format used for Multiply.  This is useful for storing
  // a quantized model on disk then in a CPU-independent fashion.
  static void (*PrepareBTransposed)(const float *input, int16_t *output, float quant_mul, Index inner, Index B_untransposed_cols);

  // Select columns from a prepared B matrix.  The number of selected columns must be a multiple of 8. 
  static void (*SelectColumnsB)(const int16_t *input, int16_t *output, Index rows, const Index *cols_begin, const Index *cols_end);

  // Multiply C = A * B, presuming A and B have been prepared.
  template <typename Callback>
  static void Multiply(const int16_t *A, const int16_t *B, Index A_rows, Index width, Index B_cols, Callback callback) {
    MultiplyImpl<Callback>::run(A, B, A_rows, width, B_cols, callback);
  }

  static const char *const kName;

private:
  template <typename Callback>
  struct MultiplyImpl {
    static void (*run)(const int16_t *A, const int16_t *B, Index A_rows, Index width, Index B_cols, Callback callback);
  };
};

template <typename Callback>
void (*Int16::MultiplyImpl<Callback>::run)(const int16_t *A, const int16_t *B, Index A_rows, Index width, Index B_cols, Callback callback) = ChooseCPU(OMPParallelWrap<Callback, AVX512_16bit> /*TODO VNNI 16-bit. */, OMPParallelWrap<Callback, AVX512_16bit>, OMPParallelWrap<Callback, AVX2_16bit>, OMPParallelWrap<Callback, SSE2_16bit>, OMPParallelWrap<Callback, SSE2_16bit>, Unsupported_16bit::Multiply<Callback>);

extern const CPUType kCPU;

// Get the maximum absolute value of an array of floats. The number of floats must be a multiple of 16 and 64-byte aligned.
extern float (*MaxAbsolute)(const float *begin, const float *end);

// Get a Quantization value that is equant to the mean of the data +N standard deviations. Use 2 by default
extern MeanStd (*EuclideanNorm)(const float *begin, const float *end, bool);

static inline MeanStd GetQuantizerStd(const float * begin, const float * end, bool absolute=false) {
  return EuclideanNorm(begin, end, absolute);
}


} // namespace intgemm