Welcome to mirror list, hosted at ThFree Co, Russian Federation.

github.com/marian-nmt/marian.git - Unnamed repository; edit this file 'description' to name the repository.
summaryrefslogtreecommitdiff
diff options
context:
space:
mode:
Diffstat (limited to 'doc/layer.md')
-rw-r--r--doc/layer.md241
1 files changed, 241 insertions, 0 deletions
diff --git a/doc/layer.md b/doc/layer.md
new file mode 100644
index 00000000..295a3153
--- /dev/null
+++ b/doc/layer.md
@@ -0,0 +1,241 @@
+# Layers
+
+In a typical deep neural network, highest-level blocks, which perform different kinds of
+transformations on their inputs are called layers. A layer wraps a group of nodes and performs a
+specific mathematical computation, offering a shortcut for building a more complex neural network.
+
+In Marian, for example, the `mlp::dense` layer represents a fully connected layer, which implements
+the operation `output = activation(input * weight + bias)`. A dense layer in the graph can be
+constructed with the following code:
+```cpp
+// add input node x
+auto x = graph->constant({120,5}, inits::fromVector(inputData));
+// construct a dense layer in the graph
+auto layer1 = mlp::dense()
+ ("prefix", "layer1") // prefix name is layer1
+ ("dim", 5) // output dimension is 5
+ ("activation", (int)mlp::act::tanh) // activation function is tanh
+ .construct(graph)->apply(x); // construct this layer in graph
+ // and link node x as the input
+```
+The options are passed to the layer using pairs of `(key, value)`, where `key` is a predefined
+option, and `value` is the option value. Then `construct()` is called to create a layer instance in
+the graph, and `apply()` to link the input with this layer.
+
+Alternatively, the same layer can be created defining nodes and operations directly:
+```cpp
+// construct a dense layer using nodes
+auto W1 = graph->param("W1", {120, 5}, inits::glorotUniform());
+auto b1 = graph->param("b1", {1, 5}, inits::zeros());
+auto h = tanh(affine(x, W1, b1));
+```
+There are four categories of layers implemented in Marian, described in the sections below.
+
+## Convolution layer
+
+To use a `convolution` layer, you first need to install [NVIDIA cuDNN](https://developer.nvidia.com/cudnn).
+The convolution layer supported by Marian is a 2D
+[convolution layer](https://en.wikipedia.org/wiki/Convolutional_neural_network#Convolutional_layers).
+This layer creates a convolution kernel which is used to convolved with the input. The options that
+can be passed to a `convolution` layer are the following:
+
+| Option Name | Definition | Value Type | Default Value |
+| ------------- |----------------|---------------|---------------|
+| prefix | Prefix name (used to form the parameter names) | `std::string` | `None` |
+| kernel-dims | The height and width of the kernel | `std::pair<int, int>` | `None`|
+| kernel-num | The number of kernel | `int` | `None` |
+| paddings | The height and width of paddings | `std::pair<int, int>` | `(0,0)`|
+| strides | The height and width of strides | `std::pair<int, int>` | `(1,1)` |
+
+Example:
+```cpp
+// construct a convolution layer
+auto conv_1 = convolution(graph) // pass graph pointer to the layer
+ ("prefix", "conv_1") // prefix name is conv_1
+ ("kernel-dims", std::make_pair(3,3)) // kernel is 3*3
+ ("kernel-num", 32) // kernel no. is 32
+ .apply(x); // link node x as the input
+```
+
+## MLP layers
+
+Marian offers `mlp::mlp`, which creates a
+[multilayer perceptron (MLP)](https://en.wikipedia.org/wiki/Multilayer_perceptron) network.
+It is a container which can stack multiple layers using `push_back()` function. There are two types
+of MLP layers provided by Marian: `mlp::dense` and `mlp::output`.
+
+The `mlp::dense` layer, as introduced before, is a fully connected layer, and it accepts the
+following options:
+
+| Option Name | Definition | Value Type | Default Value |
+| ------------- |----------------|---------------|---------------|
+| prefix | Prefix name (used to form the parameter names) | `std::string` | `None` |
+| dim | Output dimension | `int` | `None` |
+| layer-normalization | Whether to normalise the layer output or not | `bool` | `false` |
+| nematus-normalization | Whether to use Nematus layer normalisation or not | `bool` | `false` |
+| activation | Activation function | `int` | `mlp::act::linear` |
+
+The available activation functions for mlp are `mlp::act::linear`, `mlp::act::tanh`,
+`mlp::act::sigmoid`, `mlp::act::ReLU`, `mlp::act::LeakyReLU`, `mlp::act::PReLU`, and
+`mlp::act::swish`.
+
+Example:
+```cpp
+// construct a mlp::dense layer
+auto dense_layer = mlp::dense()
+ ("prefix", "dense_layer") // prefix name is dense_layer
+ ("dim", 3) // output dimension is 3
+ ("activation", (int)mlp::act::sigmoid) // activation function is sigmoid
+ .construct(graph)->apply(x); // construct this layer in graph and link node x as the input
+```
+
+The `mlp::output` layer is used, as the name suggests, to construct an output layer. You can tie
+embedding layers to `mlp::output` layer using `tieTransposed()`, or set shortlisted words using
+`setShortlist()`. The general options of `mlp::output` layer are listed below:
+
+| Option Name | Definition | Value Type | Default Value |
+| ------------- |----------------|---------------|---------------|
+| prefix | Prefix name (used to form the parameter names) | `std::string` | `None` |
+| dim | Output dimension | `int` | `None` |
+| vocab | File path to the factored vocabulary | `std::string` | `None` |
+| output-omit-bias | Whether this layer has a bias parameter | `bool` | `true` |
+| lemma-dim-emb | Re-embedding dimension of lemma in factors, must be used with `vocab` option | `int` | `0` |
+| output-approx-knn | Parameters for LSH-based output approximation, i.e., `k` (the first element) and `nbit` (the second element) | `std::vector<int>` | None |
+
+Example:
+```cpp
+// construct a mlp::output layer
+auto last = mlp::output()
+ ("prefix", "last") // prefix name is dense_layer
+ ("dim", 5); // output dimension is 5
+```
+Finally, an example showing how to create a `mlp::mlp` network containing multiple layers:
+```cpp
+// construct a mlp::mlp network
+auto mlp_networks = mlp::mlp() // construct a mpl container
+ .push_back(mlp::dense() // construct a dense layer
+ ("prefix", "dense") // prefix name is dense
+ ("dim", 5) // dimension is 5
+ ("activation", (int)mlp::act::tanh))// activation function is tanh
+ .push_back(mlp::output() // construct a output layer
+ ("dim", 5)) // dimension is 5
+ ("prefix", "mlp_network") // prefix name is mlp_network
+ .construct(graph); // construct this mlp layers in graph
+```
+
+## RNN layers
+Marian offers `rnn::rnn` for creating a [recurrent neural network
+(RNN)](https://en.wikipedia.org/wiki/Recurrent_neural_network) network. Just like `mlp::mlp`,
+`rnn::rnn` is a container which can stack multiple layers using `push_back()` function. Unlike mlp
+layers, Marian only provides cell-level APIs to construct RNN. RNN cells only process a single
+timestep instead of the whole batches of input sequences. There are two types of rnn layers provided
+by Marian: `rnn::cell` and `rnn::stacked_cell`.
+
+The `rnn::cell` is the base component of RNN and `rnn::stacked_cell` is a stack of `rnn::cell`. The
+few options of `rnn::cell` layer are listed below:
+
+| Option Name | Definition | Value Type | Default Value |
+| ------------- |----------------|---------------|---------------|
+| type | Type of RNN cell | `std::string` | `None` |
+
+There are nine types of RNN cells provided by Marian: `gru`, `gru-nematus`, `lstm`, `mlstm`, `mgru`,
+`tanh`, `relu`, `sru`, `ssru`. The general options for all RNN cells are the following:
+
+| Option Name | Definition | Value Type | Default Value |
+| ------------- |----------------|---------------|---------------|
+| dimInput | Input dimension | `int` | `None` |
+| dimState | Dimension of hidden state | `int` | `None` |
+| prefix | Prefix name (used to form the parameter names) | `std::string` | `None` |
+| layer-normalization | Whether to normalise the layer output or not | `bool` | `false` |
+| dropout | Dropout probability | `float` | `0` |
+| transition | Whether it is a transition layer | `bool` | `false` |
+| final | Whether it is an RNN final layer or hidden layer | `bool` | `false` |
+
+```{note}
+Not all the options listed above are available for all the cells. For example, `final` option is
+only used for `gru` and `gru-nematus` cells.
+```
+
+Example for `rnn::cell`:
+```cpp
+// construct a rnn cell
+auto rnn_cell = rnn::cell()
+ ("type", "gru") // type of rnn cell is gru
+ ("prefix", "gru_cell") // prefix name is gru_cell
+ ("final", false); // this cell is the final layer
+```
+Example for `rnn::stacked_cell`:
+```cpp
+// construct a stack of rnn cells
+auto highCell = rnn::stacked_cell();
+// for loop to add rnn cells into the stack
+for(size_t j = 1; j <= 512; j++) {
+ auto paramPrefix ="cell" + std::to_string(j);
+ highCell.push_back(rnn::cell()("prefix", paramPrefix));
+}
+```
+
+The list of available options for `rnn::rnn` layers:
+
+| Option Name | Definition | Value Type | Default Value |
+| ------------- |----------------|---------------|---------------|
+| type | Type of RNN layer | `std::string` | `gru` |
+| direction | RNN direction | `int` | `rnn::dir::forward` |
+| dimInput | Input dimension | `int` | `None` |
+| dimState | Dimension of hidden state | `int` | `None` |
+| prefix | Prefix name (used to form the parameter names) | `std::string` | `None` |
+| layer-normalization | Whether to normalise the layer output or not | `bool` | `false` |
+| nematus-normalization | Whether to use Nematus layer normalisation or not | `bool` | `false` |
+| dropout | Dropout probability | `float` | `0` |
+| skip | Whether to use skip connections | `bool` | `false` |
+| skipFirst | Whether to use skip connections for the layer(s) with `index > 0` | `bool` | `false` |
+
+Examples for `rnn::rnn()`:
+```cpp
+// construct a `rnn::rnn()` container
+auto rnn_container = rnn::rnn(
+ "type", "gru", // type of rnn cell is gru
+ "prefix", "rnn_layers", // prefix name is rnn_layers
+ "dimInput", 10, // input dimension is 10
+ "dimState", 5, // dimension of hidden state is 5
+ "dropout", 0, // dropout probability is 0
+ "layer-normalization", false) // do not normalise the layer output
+ .push_back(rnn::cell()) // add a rnn::cell in this rnn container
+ .construct(graph); // construct this rnn container in graph
+```
+Marian provides four RNN directions in `rnn::dir` enumerator: `rnn::dir::forward`,
+`rnn::dir::backward`, `rnn::dir::alternating_forward` and `rnn::dir::alternating_backward`.
+For rnn::rnn(), you can use `transduce()` to map the input state to the output state.
+
+An example for `transduce()`:
+```cpp
+auto output = rnn.construct(graph)->transduce(input);
+```
+
+## Embedding layer
+Marian provides a shortcut to construct a regular embedding layer `embedding` for words embedding.
+For `embedding` layers, there are following options available:
+
+| Option Name | Definition | Value Type | Default Value |
+| ------------- |----------------|---------------|---------------|
+| dimVocab | Size of vocabulary| `int` | `None` |
+| dimEmb | Size of embedding vector | `int` | `None` |
+| dropout | Dropout probability | `float` | `0` |
+| inference | Whether it is used for inference | `bool` | `false` |
+| prefix | Prefix name (used to form the parameter names) | `std::string` | `None` |
+| fixed | whether this layer is fixed (not trainable) | `bool` | `false` |
+| dimFactorEmb | Size of factored embedding vector | `int` | `None` |
+| factorsCombine | Which strategy is chosen to combine the factor embeddings; it can be `"concat"` | `std::string` | `None` |
+| vocab | File path to the factored vocabulary | `std::string` | `None` |
+| embFile | Paths to the factored embedding vectors | `std::string>` | `None` |
+| normalization | Whether to normalise the layer output or not | `bool` | `false` |
+
+Example to construct an embedding layer:
+```cpp
+// construct an embedding layer
+auto embedding_layer = embedding()
+ ("prefix", "embedding") // prefix name is embedding
+ ("dimVocab", 1024) // vocabulary size is 1024
+ ("dimEmb", 512) // size of embedding vector is 512
+ .construct(graph); // construct this embedding layer in graph
+```