Welcome to mirror list, hosted at ThFree Co, Russian Federation.

generic.h « layers « src - github.com/marian-nmt/marian.git - Unnamed repository; edit this file 'description' to name the repository.
summaryrefslogtreecommitdiff
blob: b423befeb25b00998382ecf8a1629a8561cbe84e (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
#pragma once

#include "common/definitions.h"
#include "graph/expression_operators.h"
#include "marian.h"

#include "data/shortlist.h"
#include "layers/factory.h"

namespace marian {
namespace mlp {
/** Activation functions for MLP layers. */
enum struct act : int { linear, tanh, sigmoid, ReLU, LeakyReLU, PReLU, swish };
}  // namespace mlp
}  // namespace marian

namespace marian {

/**
 * Base class for a layer.
 * Each layer consists of LayerBase and IXXXLayer which defines one or more apply()
 * functions for the respective layer type (different layers may require different signatures).
 * This base class contains configuration info for creating parameters and executing apply().
 */
class LayerBase {
protected:
  Ptr<ExpressionGraph> graph_;
  Ptr<Options> options_;

public:
  LayerBase(Ptr<ExpressionGraph> graph, Ptr<Options> options) : graph_(graph), options_(options) {}

  template <typename T>
  T opt(const std::string key) const {
    return options_->get<T>(key);
  }

  template <typename T>
  T opt(const std::string key, const T& defaultValue) const {
    return options_->get<T>(key, defaultValue);
  }
};

/** Simplest layer interface: Unary function. */
struct IUnaryLayer {
  virtual ~IUnaryLayer() {}
  /** Link a node as the input for this layer. */
  virtual Expr apply(Expr) = 0;
  /** Link a list of nodes as the inputs for this layer. */
  virtual Expr apply(const std::vector<Expr>& es) {
    ABORT_IF(es.size() > 1, "Not implemented");  // simple stub
    return apply(es.front());
  }
};

/** Shortlist interface for layers. */
struct IHasShortList {
  virtual void setShortlist(Ptr<data::Shortlist> shortlist) = 0;
  virtual void clear() = 0;
};

/** Embedding from corpus sub-batch to (emb, mask). */
struct IEmbeddingLayer {
  virtual std::tuple<Expr /*embeddings*/, Expr /*mask*/> apply(
      Ptr<data::SubBatch> subBatch) const = 0;

  virtual Expr apply(const Words& embIdx, const Shape& shape) const = 0;

  // alternative from indices directly
  virtual Expr applyIndices(const std::vector<WordIndex>& embIdx, const Shape& shape) const = 0;
  virtual ~IEmbeddingLayer() {}
};

/**
 * Base class for Encoder and Decoder classes.
 * Have embeddings and a batch index (=stream index).
 */
class EncoderDecoderLayerBase : public LayerBase {
protected:
  const std::string prefix_;
  const bool embeddingFix_;
  const float dropoutEmbeddings_;  // this drops out full embedding vectors
  const bool inference_;
  const size_t batchIndex_;
  mutable std::vector<Ptr<IEmbeddingLayer>> embeddingLayers_;  // (lazily created)

  EncoderDecoderLayerBase(Ptr<ExpressionGraph> graph,
                          Ptr<Options> options,
                          const std::string& prefix,
                          size_t batchIndex,
                          float dropoutEmbeddings,
                          bool embeddingFix)
      : LayerBase(graph, options),
        prefix_(options->get<std::string>("prefix", prefix)),
        embeddingFix_(embeddingFix),
        dropoutEmbeddings_(dropoutEmbeddings),
        inference_(options->get<bool>("inference", false)),
        batchIndex_(options->get<size_t>("index", batchIndex)) {}

  virtual ~EncoderDecoderLayerBase() {}

private:
  Ptr<IEmbeddingLayer> createEmbeddingLayer() const;
  Ptr<IEmbeddingLayer> createULREmbeddingLayer() const;

public:
  /**
   * Get all embedding layer(s).
   * It lazily creates the embedding layer on first call.
   * This is lazy mostly because the constructors of the consuming objects are not
   * guaranteed presently to have access to their graph.
   * @param ulr whether to use ULREmbedding layer. false by default.
   * @return a shared pointer to the embedding layer
   */
  Ptr<IEmbeddingLayer> getEmbeddingLayer(bool ulr = false) const;
};

/**
 *  The namespace mlp.
 *  Declare class Dense and all the available functions for creating
 *  <a href=https://en.wikipedia.org/wiki/Multilayer_perceptron>multilayer perceptron (MLP)</a>
 *  network.
 */
namespace mlp {

/**
 * Base class for a fully connected layer.
 * Implement the operations `output = activation(input * weight + bias)`.
 */
class Dense : public LayerBase, public IUnaryLayer {
public:
  /**
   * Construct a dense layer in the graph.
   * @param graph The expression graph.
   * @param options The options used for this dense layer.
   */
  Dense(Ptr<ExpressionGraph> graph, Ptr<Options> options) : LayerBase(graph, options) {}
  /**
   * Apply/Link a vector of dense layers (with the given inputs) to the expression graph.
   * @param inputs The vector of the input expressions
   * @return The expression holding the dense layers
   */
  Expr apply(const std::vector<Expr>& inputs) override {
    ABORT_IF(inputs.empty(), "No inputs");

    auto name = opt<std::string>("prefix");
    auto dim = opt<int>("dim");

    auto useLayerNorm = opt<bool>("layer-normalization", false);
    auto useNematusNorm = opt<bool>("nematus-normalization", false);
    auto activation = (act)opt<int>("activation", (int)act::linear);

    auto g = graph_;

    std::vector<Expr> outputs;
    size_t i = 0;

    std::string num;
    for(auto&& in : inputs) {
      if(inputs.size() > 1)
        num = std::to_string(i);

      Expr W = g->param(name + "_W" + num, {in->shape()[-1], dim}, inits::glorotUniform());
      Expr b = g->param(name + "_b" + num, {1, dim}, inits::zeros());

      if(useLayerNorm) {
        if(useNematusNorm) {
          auto ln_s = g->param(name + "_ln_s" + num, {1, dim}, inits::fromValue(1.f));
          auto ln_b = g->param(name + "_ln_b" + num, {1, dim}, inits::zeros());

          outputs.push_back(layerNorm(affine(in, W, b), ln_s, ln_b, NEMATUS_LN_EPS));
        } else {
          auto gamma = g->param(name + "_gamma" + num, {1, dim}, inits::fromValue(1.0));

          outputs.push_back(layerNorm(dot(in, W), gamma, b));
        }
      } else {
        outputs.push_back(affine(in, W, b));
      }
      i++;
    }

    // clang-format off
    switch(activation) {
      case act::linear:    return plus(outputs);
      case act::tanh:      return tanh(outputs);
      case act::sigmoid:   return sigmoid(outputs);
      case act::ReLU:      return relu(outputs);
      case act::LeakyReLU: return leakyrelu(outputs);
      case act::PReLU:     return prelu(outputs);
      case act::swish:     return swish(outputs);
      default:             return plus(outputs);
    }
    // clang-format on
  };
  /**
   * Apply/Link this dense layer (with the given input) to the expression graph.
   * @param input The input expression
   * @return The expression holding the dense layer
   */
  Expr apply(Expr input) override { return apply(std::vector<Expr>({input})); }
};

}  // namespace mlp

// --- a few layers with built-in parameters created on the fly, without proper object
// @TODO: change to a proper layer object

static inline std::function<Expr(Expr)> activationByName(const std::string& actName) {
  if (actName == "relu")
    return (ActivationFunction*)relu;
  else if (actName == "swish")
    return (ActivationFunction*)swish;
  else if (actName == "gelu")
    return (ActivationFunction*)gelu;
  else if (actName == "sigmoid")
    return (ActivationFunction*)sigmoid;
  else if (actName == "") // return identity function if activation name is empty
    return [](Expr x) { return x; };
  ABORT("Invalid activation name '{}'", actName);
}

// like affine() but with built-in parameters, activation, and dropout
static inline Expr denseInline(Expr x,
                               std::string prefix,
                               std::string suffix,
                               int outDim,
                               Ptr<inits::NodeInitializer> initFn = inits::glorotUniform(),
                               std::string actName = "",
                               float dropProb = 0.0f) {
  auto graph = x->graph();

  auto W = graph->param(prefix + "_W" + suffix, {x->shape()[-1], outDim}, initFn);
  auto b = graph->param(prefix + "_b" + suffix, {1, outDim}, inits::zeros());

  if(actName == "relu") {
    x = affineWithRelu(x, W, b); // speed optimization for inference, @TODO: handle better in future layer framework
  } else {
    x = affine(x, W, b);
    x = activationByName(actName)(x);
  }
  x = dropout(x, dropProb);  // @TODO: check for infernce?
  return x;
}

static inline Expr layerNorm(Expr x, std::string prefix, std::string suffix = std::string()) {
  int dimModel = x->shape()[-1];
  auto scale = x->graph()->param(prefix + "_ln_scale" + suffix, {1, dimModel}, inits::ones());
  auto bias = x->graph()->param(prefix + "_ln_bias" + suffix, {1, dimModel}, inits::zeros());
  return marian::layerNorm(x, scale, bias, 1e-6f);
}

static inline Expr rmsNorm(Expr x, std::string prefix, std::string suffix = std::string()) {
  int dimModel = x->shape()[-1];
  auto scale = x->graph()->param(prefix + "_rms_scale" + suffix, {1, dimModel}, inits::ones());
  return marian::rmsNorm(x, scale, nullptr, 1e-6f);
}

}  // namespace marian