Welcome to mirror list, hosted at ThFree Co, Russian Federation.

dtoa.h « internal « rapidjson « include - github.com/miloyip/rapidjson.git - Unnamed repository; edit this file 'description' to name the repository.
summaryrefslogtreecommitdiff
blob: de45e44f0f8ba3e0ca71cc75eca43507453eb4a1 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
// Copyright (C) 2011 Milo Yip
//
// Permission is hereby granted, free of charge, to any person obtaining a copy
// of this software and associated documentation files (the "Software"), to deal
// in the Software without restriction, including without limitation the rights
// to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
// copies of the Software, and to permit persons to whom the Software is
// furnished to do so, subject to the following conditions:
//
// The above copyright notice and this permission notice shall be included in
// all copies or substantial portions of the Software.
//
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
// IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
// FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
// AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
// LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
// OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
// THE SOFTWARE.

// This is a C++ header-only implementation of Grisu2 algorithm from the publication:
// Loitsch, Florian. "Printing floating-point numbers quickly and accurately with
// integers." ACM Sigplan Notices 45.6 (2010): 233-243.

#ifndef RAPIDJSON_DTOA_
#define RAPIDJSON_DTOA_

#if defined(_MSC_VER)
#include <intrin.h>
#if defined(_M_AMD64)
#pragma intrinsic(_BitScanReverse64)
#endif
#endif

#include "itoa.h" // GetDigitsLut()

namespace rapidjson {
namespace internal {

#ifdef __GNUC__
RAPIDJSON_DIAG_PUSH
RAPIDJSON_DIAG_OFF(effc++)
#endif

struct DiyFp {
    DiyFp() {}

    DiyFp(uint64_t f, int e) : f(f), e(e) {}

    DiyFp(double d) {
        union {
            double d;
            uint64_t u64;
        } u = { d };

        int biased_e = (u.u64 & kDpExponentMask) >> kDpSignificandSize;
        uint64_t significand = (u.u64 & kDpSignificandMask);
        if (biased_e != 0) {
            f = significand + kDpHiddenBit;
            e = biased_e - kDpExponentBias;
        } 
        else {
            f = significand;
            e = kDpMinExponent + 1;
        }
    }

    DiyFp operator-(const DiyFp& rhs) const {
        return DiyFp(f - rhs.f, e);
    }

    DiyFp operator*(const DiyFp& rhs) const {
#if defined(_MSC_VER) && defined(_M_AMD64)
        uint64_t h;
        uint64_t l = _umul128(f, rhs.f, &h);
        if (l & (uint64_t(1) << 63)) // rounding
            h++;
        return DiyFp(h, e + rhs.e + 64);
#elif (__GNUC__ > 4 || (__GNUC__ == 4 && __GNUC_MINOR__ >= 6)) && defined(__x86_64__)
        unsigned __int128 p = static_cast<unsigned __int128>(f) * static_cast<unsigned __int128>(rhs.f);
        uint64_t h = p >> 64;
        uint64_t l = static_cast<uint64_t>(p);
        if (l & (uint64_t(1) << 63)) // rounding
            h++;
        return DiyFp(h, e + rhs.e + 64);
#else
        const uint64_t M32 = 0xFFFFFFFF;
        const uint64_t a = f >> 32;
        const uint64_t b = f & M32;
        const uint64_t c = rhs.f >> 32;
        const uint64_t d = rhs.f & M32;
        const uint64_t ac = a * c;
        const uint64_t bc = b * c;
        const uint64_t ad = a * d;
        const uint64_t bd = b * d;
        uint64_t tmp = (bd >> 32) + (ad & M32) + (bc & M32);
        tmp += 1U << 31;  /// mult_round
        return DiyFp(ac + (ad >> 32) + (bc >> 32) + (tmp >> 32), e + rhs.e + 64);
#endif
    }

    DiyFp Normalize() const {
#if defined(_MSC_VER) && defined(_M_AMD64)
        unsigned long index;
        _BitScanReverse64(&index, f);
        return DiyFp(f << (63 - index), e - (63 - index));
#elif defined(__GNUC__)
        int s = __builtin_clzll(f);
        return DiyFp(f << s, e - s);
#else
        DiyFp res = *this;
        while (!(res.f & kDpHiddenBit)) {
            res.f <<= 1;
            res.e--;
        }
        res.f <<= (kDiySignificandSize - kDpSignificandSize - 1);
        res.e = res.e - (kDiySignificandSize - kDpSignificandSize - 1);
        return res;
#endif
    }

    DiyFp NormalizeBoundary() const {
#if defined(_MSC_VER) && defined(_M_AMD64)
        unsigned long index;
        _BitScanReverse64(&index, f);
        return DiyFp (f << (63 - index), e - (63 - index));
#else
        DiyFp res = *this;
        while (!(res.f & (kDpHiddenBit << 1))) {
            res.f <<= 1;
            res.e--;
        }
        res.f <<= (kDiySignificandSize - kDpSignificandSize - 2);
        res.e = res.e - (kDiySignificandSize - kDpSignificandSize - 2);
        return res;
#endif
    }

    void NormalizedBoundaries(DiyFp* minus, DiyFp* plus) const {
        DiyFp pl = DiyFp((f << 1) + 1, e - 1).NormalizeBoundary();
        DiyFp mi = (f == kDpHiddenBit) ? DiyFp((f << 2) - 1, e - 2) : DiyFp((f << 1) - 1, e - 1);
        mi.f <<= mi.e - pl.e;
        mi.e = pl.e;
        *plus = pl;
        *minus = mi;
    }

    static const int kDiySignificandSize = 64;
    static const int kDpSignificandSize = 52;
    static const int kDpExponentBias = 0x3FF + kDpSignificandSize;
    static const int kDpMinExponent = -kDpExponentBias;
    static const uint64_t kDpExponentMask = RAPIDJSON_UINT64_C2(0x7FF00000, 0x00000000);
    static const uint64_t kDpSignificandMask = RAPIDJSON_UINT64_C2(0x000FFFFF, 0xFFFFFFFF);
    static const uint64_t kDpHiddenBit = RAPIDJSON_UINT64_C2(0x00100000, 0x00000000);

    uint64_t f;
    int e;
};

inline DiyFp GetCachedPower(int e, int* K) {
    // 10^-348, 10^-340, ..., 10^340
    static const uint64_t kCachedPowers_F[] = {
        RAPIDJSON_UINT64_C2(0xfa8fd5a0, 0x081c0288), RAPIDJSON_UINT64_C2(0xbaaee17f, 0xa23ebf76),
        RAPIDJSON_UINT64_C2(0x8b16fb20, 0x3055ac76), RAPIDJSON_UINT64_C2(0xcf42894a, 0x5dce35ea),
        RAPIDJSON_UINT64_C2(0x9a6bb0aa, 0x55653b2d), RAPIDJSON_UINT64_C2(0xe61acf03, 0x3d1a45df),
        RAPIDJSON_UINT64_C2(0xab70fe17, 0xc79ac6ca), RAPIDJSON_UINT64_C2(0xff77b1fc, 0xbebcdc4f),
        RAPIDJSON_UINT64_C2(0xbe5691ef, 0x416bd60c), RAPIDJSON_UINT64_C2(0x8dd01fad, 0x907ffc3c),
        RAPIDJSON_UINT64_C2(0xd3515c28, 0x31559a83), RAPIDJSON_UINT64_C2(0x9d71ac8f, 0xada6c9b5),
        RAPIDJSON_UINT64_C2(0xea9c2277, 0x23ee8bcb), RAPIDJSON_UINT64_C2(0xaecc4991, 0x4078536d),
        RAPIDJSON_UINT64_C2(0x823c1279, 0x5db6ce57), RAPIDJSON_UINT64_C2(0xc2109436, 0x4dfb5637),
        RAPIDJSON_UINT64_C2(0x9096ea6f, 0x3848984f), RAPIDJSON_UINT64_C2(0xd77485cb, 0x25823ac7),
        RAPIDJSON_UINT64_C2(0xa086cfcd, 0x97bf97f4), RAPIDJSON_UINT64_C2(0xef340a98, 0x172aace5),
        RAPIDJSON_UINT64_C2(0xb23867fb, 0x2a35b28e), RAPIDJSON_UINT64_C2(0x84c8d4df, 0xd2c63f3b),
        RAPIDJSON_UINT64_C2(0xc5dd4427, 0x1ad3cdba), RAPIDJSON_UINT64_C2(0x936b9fce, 0xbb25c996),
        RAPIDJSON_UINT64_C2(0xdbac6c24, 0x7d62a584), RAPIDJSON_UINT64_C2(0xa3ab6658, 0x0d5fdaf6),
        RAPIDJSON_UINT64_C2(0xf3e2f893, 0xdec3f126), RAPIDJSON_UINT64_C2(0xb5b5ada8, 0xaaff80b8),
        RAPIDJSON_UINT64_C2(0x87625f05, 0x6c7c4a8b), RAPIDJSON_UINT64_C2(0xc9bcff60, 0x34c13053),
        RAPIDJSON_UINT64_C2(0x964e858c, 0x91ba2655), RAPIDJSON_UINT64_C2(0xdff97724, 0x70297ebd),
        RAPIDJSON_UINT64_C2(0xa6dfbd9f, 0xb8e5b88f), RAPIDJSON_UINT64_C2(0xf8a95fcf, 0x88747d94),
        RAPIDJSON_UINT64_C2(0xb9447093, 0x8fa89bcf), RAPIDJSON_UINT64_C2(0x8a08f0f8, 0xbf0f156b),
        RAPIDJSON_UINT64_C2(0xcdb02555, 0x653131b6), RAPIDJSON_UINT64_C2(0x993fe2c6, 0xd07b7fac),
        RAPIDJSON_UINT64_C2(0xe45c10c4, 0x2a2b3b06), RAPIDJSON_UINT64_C2(0xaa242499, 0x697392d3),
        RAPIDJSON_UINT64_C2(0xfd87b5f2, 0x8300ca0e), RAPIDJSON_UINT64_C2(0xbce50864, 0x92111aeb),
        RAPIDJSON_UINT64_C2(0x8cbccc09, 0x6f5088cc), RAPIDJSON_UINT64_C2(0xd1b71758, 0xe219652c),
        RAPIDJSON_UINT64_C2(0x9c400000, 0x00000000), RAPIDJSON_UINT64_C2(0xe8d4a510, 0x00000000),
        RAPIDJSON_UINT64_C2(0xad78ebc5, 0xac620000), RAPIDJSON_UINT64_C2(0x813f3978, 0xf8940984),
        RAPIDJSON_UINT64_C2(0xc097ce7b, 0xc90715b3), RAPIDJSON_UINT64_C2(0x8f7e32ce, 0x7bea5c70),
        RAPIDJSON_UINT64_C2(0xd5d238a4, 0xabe98068), RAPIDJSON_UINT64_C2(0x9f4f2726, 0x179a2245),
        RAPIDJSON_UINT64_C2(0xed63a231, 0xd4c4fb27), RAPIDJSON_UINT64_C2(0xb0de6538, 0x8cc8ada8),
        RAPIDJSON_UINT64_C2(0x83c7088e, 0x1aab65db), RAPIDJSON_UINT64_C2(0xc45d1df9, 0x42711d9a),
        RAPIDJSON_UINT64_C2(0x924d692c, 0xa61be758), RAPIDJSON_UINT64_C2(0xda01ee64, 0x1a708dea),
        RAPIDJSON_UINT64_C2(0xa26da399, 0x9aef774a), RAPIDJSON_UINT64_C2(0xf209787b, 0xb47d6b85),
        RAPIDJSON_UINT64_C2(0xb454e4a1, 0x79dd1877), RAPIDJSON_UINT64_C2(0x865b8692, 0x5b9bc5c2),
        RAPIDJSON_UINT64_C2(0xc83553c5, 0xc8965d3d), RAPIDJSON_UINT64_C2(0x952ab45c, 0xfa97a0b3),
        RAPIDJSON_UINT64_C2(0xde469fbd, 0x99a05fe3), RAPIDJSON_UINT64_C2(0xa59bc234, 0xdb398c25),
        RAPIDJSON_UINT64_C2(0xf6c69a72, 0xa3989f5c), RAPIDJSON_UINT64_C2(0xb7dcbf53, 0x54e9bece),
        RAPIDJSON_UINT64_C2(0x88fcf317, 0xf22241e2), RAPIDJSON_UINT64_C2(0xcc20ce9b, 0xd35c78a5),
        RAPIDJSON_UINT64_C2(0x98165af3, 0x7b2153df), RAPIDJSON_UINT64_C2(0xe2a0b5dc, 0x971f303a),
        RAPIDJSON_UINT64_C2(0xa8d9d153, 0x5ce3b396), RAPIDJSON_UINT64_C2(0xfb9b7cd9, 0xa4a7443c),
        RAPIDJSON_UINT64_C2(0xbb764c4c, 0xa7a44410), RAPIDJSON_UINT64_C2(0x8bab8eef, 0xb6409c1a),
        RAPIDJSON_UINT64_C2(0xd01fef10, 0xa657842c), RAPIDJSON_UINT64_C2(0x9b10a4e5, 0xe9913129),
        RAPIDJSON_UINT64_C2(0xe7109bfb, 0xa19c0c9d), RAPIDJSON_UINT64_C2(0xac2820d9, 0x623bf429),
        RAPIDJSON_UINT64_C2(0x80444b5e, 0x7aa7cf85), RAPIDJSON_UINT64_C2(0xbf21e440, 0x03acdd2d),
        RAPIDJSON_UINT64_C2(0x8e679c2f, 0x5e44ff8f), RAPIDJSON_UINT64_C2(0xd433179d, 0x9c8cb841),
        RAPIDJSON_UINT64_C2(0x9e19db92, 0xb4e31ba9), RAPIDJSON_UINT64_C2(0xeb96bf6e, 0xbadf77d9),
        RAPIDJSON_UINT64_C2(0xaf87023b, 0x9bf0ee6b)
    };
    static const int16_t kCachedPowers_E[] = {
        -1220, -1193, -1166, -1140, -1113, -1087, -1060, -1034, -1007,  -980,
         -954,  -927,  -901,  -874,  -847,  -821,  -794,  -768,  -741,  -715,
         -688,  -661,  -635,  -608,  -582,  -555,  -529,  -502,  -475,  -449,
         -422,  -396,  -369,  -343,  -316,  -289,  -263,  -236,  -210,  -183,
         -157,  -130,  -103,   -77,   -50,   -24,     3,    30,    56,    83,
          109,   136,   162,   189,   216,   242,   269,   295,   322,   348,
          375,   402,   428,   455,   481,   508,   534,   561,   588,   614,
          641,   667,   694,   720,   747,   774,   800,   827,   853,   880,
          907,   933,   960,   986,  1013,  1039,  1066
    };

    //int k = static_cast<int>(ceil((-61 - e) * 0.30102999566398114)) + 374;
    double dk = (-61 - e) * 0.30102999566398114 + 347;  // dk must be positive, so can do ceiling in positive
    int k = static_cast<int>(dk);
    if (k != dk)
        k++;

    unsigned index = static_cast<unsigned>((k >> 3) + 1);
    *K = -(-348 + static_cast<int>(index << 3));    // decimal exponent no need lookup table

    return DiyFp(kCachedPowers_F[index], kCachedPowers_E[index]);
}

inline void GrisuRound(char* buffer, int len, uint64_t delta, uint64_t rest, uint64_t ten_kappa, uint64_t wp_w) {
    while (rest < wp_w && delta - rest >= ten_kappa &&
           (rest + ten_kappa < wp_w ||  /// closer
            wp_w - rest > rest + ten_kappa - wp_w)) {
        buffer[len - 1]--;
        rest += ten_kappa;
    }
}

inline unsigned CountDecimalDigit32(uint32_t n) {
    // Simple pure C++ implementation was faster than __builtin_clz version in this situation.
    if (n < 10) return 1;
    if (n < 100) return 2;
    if (n < 1000) return 3;
    if (n < 10000) return 4;
    if (n < 100000) return 5;
    if (n < 1000000) return 6;
    if (n < 10000000) return 7;
    if (n < 100000000) return 8;
    if (n < 1000000000) return 9;
    return 10;
}

inline void DigitGen(const DiyFp& W, const DiyFp& Mp, uint64_t delta, char* buffer, int* len, int* K) {
    static const uint32_t kPow10[] = { 1, 10, 100, 1000, 10000, 100000, 1000000, 10000000, 100000000, 1000000000 };
    const DiyFp one(uint64_t(1) << -Mp.e, Mp.e);
    const DiyFp wp_w = Mp - W;
    uint32_t p1 = static_cast<uint32_t>(Mp.f >> -one.e);
    uint64_t p2 = Mp.f & (one.f - 1);
    int kappa = CountDecimalDigit32(p1);
    *len = 0;

    while (kappa > 0) {
        uint32_t d;
        switch (kappa) {
            case 10: d = p1 / 1000000000; p1 %= 1000000000; break;
            case  9: d = p1 /  100000000; p1 %=  100000000; break;
            case  8: d = p1 /   10000000; p1 %=   10000000; break;
            case  7: d = p1 /    1000000; p1 %=    1000000; break;
            case  6: d = p1 /     100000; p1 %=     100000; break;
            case  5: d = p1 /      10000; p1 %=      10000; break;
            case  4: d = p1 /       1000; p1 %=       1000; break;
            case  3: d = p1 /        100; p1 %=        100; break;
            case  2: d = p1 /         10; p1 %=         10; break;
            case  1: d = p1;              p1 =           0; break;
            default: 
#if defined(_MSC_VER)
                __assume(0);
#elif __GNUC__ > 4 || (__GNUC__ == 4 && __GNUC_MINOR__ >= 5)
                __builtin_unreachable();
#else
                d = 0;
#endif
        }
        if (d || *len)
            buffer[(*len)++] = '0' + static_cast<char>(d);
        kappa--;
        uint64_t tmp = (static_cast<uint64_t>(p1) << -one.e) + p2;
        if (tmp <= delta) {
            *K += kappa;
            GrisuRound(buffer, *len, delta, tmp, static_cast<uint64_t>(kPow10[kappa]) << -one.e, wp_w.f);
            return;
        }
    }

    // kappa = 0
    for (;;) {
        p2 *= 10;
        delta *= 10;
        char d = static_cast<char>(p2 >> -one.e);
        if (d || *len)
            buffer[(*len)++] = '0' + d;
        p2 &= one.f - 1;
        kappa--;
        if (p2 < delta) {
            *K += kappa;
            GrisuRound(buffer, *len, delta, p2, one.f, wp_w.f * kPow10[-kappa]);
            return;
        }
    }
}

inline void Grisu2(double value, char* buffer, int* length, int* K) {
    const DiyFp v(value);
    DiyFp w_m, w_p;
    v.NormalizedBoundaries(&w_m, &w_p);

    const DiyFp c_mk = GetCachedPower(w_p.e, K);
    const DiyFp W = v.Normalize() * c_mk;
    DiyFp Wp = w_p * c_mk;
    DiyFp Wm = w_m * c_mk;
    Wm.f++;
    Wp.f--;
    DigitGen(W, Wp, Wp.f - Wm.f, buffer, length, K);
}

inline char* WriteExponent(int K, char* buffer) {
    if (K < 0) {
        *buffer++ = '-';
        K = -K;
    }

    if (K >= 100) {
        *buffer++ = '0' + static_cast<char>(K / 100);
        K %= 100;
        const char* d = GetDigitsLut() + K * 2;
        *buffer++ = d[0];
        *buffer++ = d[1];
    }
    else if (K >= 10) {
        const char* d = GetDigitsLut() + K * 2;
        *buffer++ = d[0];
        *buffer++ = d[1];
    }
    else
        *buffer++ = '0' + static_cast<char>(K);

    return buffer;
}

inline char* Prettify(char* buffer, int length, int k) {
    const int kk = length + k;  // 10^(kk-1) <= v < 10^kk

    if (length <= kk && kk <= 21) {
        // 1234e7 -> 12340000000
        for (int i = length; i < kk; i++)
            buffer[i] = '0';
        buffer[kk] = '.';
        buffer[kk + 1] = '0';
        return &buffer[kk + 2];
    }
    else if (0 < kk && kk <= 21) {
        // 1234e-2 -> 12.34
        std::memmove(&buffer[kk + 1], &buffer[kk], length - kk);
        buffer[kk] = '.';
        return &buffer[length + 1];
    }
    else if (-6 < kk && kk <= 0) {
        // 1234e-6 -> 0.001234
        const int offset = 2 - kk;
        std::memmove(&buffer[offset], &buffer[0], length);
        buffer[0] = '0';
        buffer[1] = '.';
        for (int i = 2; i < offset; i++)
            buffer[i] = '0';
        return &buffer[length + offset];
    }
    else if (length == 1) {
        // 1e30
        buffer[1] = 'e';
        return WriteExponent(kk - 1, &buffer[2]);
    }
    else {
        // 1234e30 -> 1.234e33
        std::memmove(&buffer[2], &buffer[1], length - 1);
        buffer[1] = '.';
        buffer[length + 1] = 'e';
        return WriteExponent(kk - 1, &buffer[0 + length + 2]);
    }
}

inline char* dtoa(double value, char* buffer) {
    if (value == 0) {
        buffer[0] = '0';
        buffer[1] = '.';
        buffer[2] = '0';
        return &buffer[3];
    }
    else {
        if (value < 0) {
            *buffer++ = '-';
            value = -value;
        }
        int length, K;
        Grisu2(value, buffer, &length, &K);
        return Prettify(buffer, length, K);
    }
}

#ifdef __GNUC__
RAPIDJSON_DIAG_POP
#endif

} // namespace internal
} // namespace rapidjson

#endif // RAPIDJSON_DTOA_