
http://www.littlecms.com

Copyright © 2020 Marti Maria Saguer, all rights reserved.

Fast floating point plugin

 1.4

http://www.littlecms.com/

2 Introduction

Contents

Introduction .. 3

Licensing .. 3

Installation .. 3

Visual Studio ... 3

Linux/Unix/Mac ... 3

Formats .. 4

15 bit Photoshop format .. 6

Fast floating point processing ... 7

8-bit dither .. 7

Throughput increase guides ... 8

Sample ... 9

3 Introduction

Introduction

Little CMS floating point extensions is a customized plug-in. This add-on implements 4

features:

- Increased throughput for 8 bit transforms on gray, RGB and CMYK

- Support for internal Photoshop 1.15 fixed point format

- Increases throughput of 32 bit floating point color transforms

- Adds dithered 8-bit as output format for certain color spaces (Gray, RGB and

CMYK)

Licensing

PLEASE NOTE the license of the plug-in is GPL V3.

https://www.gnu.org/licenses/gpl-3.0.en.html

 The requirements of this license are, among others, to release your project’s

source code. If this is not acceptable for your commercial product, an alternate

license is available at a reasonable fee. See the web page Little CMS fast float

plugin for further information or contact me at sales@littlecms.com.

Installation

The plug-in comes in lcms2standard distribution. The plug-in itself is contained in

“<lcms2root>\plugins” folder.

Visual Studio

There is a Visual studio project ready to be included in solutions. The lcms2 included

solution also includes this project.

 <lcms2root>\plugins\fast_float\VC2019

Select the target (Release or debug) and build all.

Linux/Unix/Mac

Use this toggle when running configure on lcms2 distribution. Makefile will do all

necessary operations, including a testbed on “check” target.

 ./configure –with-fastfloat

 make

 make check

 sudo make install

https://www.gnu.org/licenses/gpl-3.0.en.html
https://www.littlecms.com/plugin/
https://www.littlecms.com/plugin/
mailto:sales@littlecms.com

4 Formats

Formats

The following new formats are added by the plug-in.

TYPE_GRAY_15 Gray scale 1 channel

TYPE_GRAY_15_REV Gray scale, reversed polarity

TYPE_GRAY_15_SE Gray scale, swapped endianess

TYPE_GRAYA_15 Gray scale plus one alpha channel (ignored)

TYPE_GRAYA_15_SE Gray scale plus one alpha channel (ignored),
swapped endianess

TYPE_GRAYA_15_PLANAR Gray scale plus one alpha channel (ignored), planar

TYPE_RGB_15 RGB 3 channels

TYPE_RGB_15_PLANAR RGB 3 channels planar

TYPE_RGB_15_SE RGB 3 channels with swapped endianness

TYPE_BGR_15 RGB 3 channels reversed channel order

TYPE_BGR_15_PLANAR RGB 3 channels reversed channel order, planar

TYPE_BGR_15_SE RGB 3 channels reversed channel order, swapped

endianness

TYPE_RGBA_15 RGB 3 channels plus one alpha channel (ignored),

TYPE_RGBA_15_PLANAR RGB 3 channels plus one alpha channel (ignored),
planar

TYPE_RGBA_15_SE RGB 3 channels plus one alpha channel (ignored),
swapped endianness

TYPE_ARGB_15 RGB 3 channels plus one alpha channel (ignored)

TYPE_ABGR_15 RGB 3 channels reversed channel order plus one

alpha channel (ignored)

TYPE_ABGR_15_PLANAR RGB 3 channels reversed channel order plus one

alpha channel (ignored), planar

TYPE_ABGR_15_SE RGB 3 channels reversed channel order plus one

alpha channel (ignored), swapped endianness

TYPE_BGRA_15 RGB 3 channels reversed channel order plus one

alpha channel (ignored)

TYPE_BGRA_15_SE RGB 3 channels reversed channel order plus one

alpha channel (ignored), swapped endianness

TYPE_CMY_15 CMY 3 channels (no K)

TYPE_YMC_15 CMY 3 channels, reversed order

TYPE_CMY_15_PLANAR CMY 3 channels (no K), planar

TYPE_CMY_15_SE CMY 3 channels (no K), swapped endianness

TYPE_CMYK_15 CMYK 4 channels

TYPE_CMYK_15_REV CMYK 4 channels, reversed

TYPE_CMYK_15_PLANAR CMYK 4 channels, planar configuration

TYPE_CMYK_15_SE CMYK 4 channels, endianness of words is swapped

(for big endian platforms)

TYPE_KYMC_15 KYMC 4 channels

TYPE_KYMC_15_SE KYMC 4 channels, endianness of words is swapped
(for big endian platforms)

TYPE_KCMY_15 KCMY 4 channels

TYPE_KCMY_15_REV KCMY 4 channels, reversed

TYPE_KCMY_15_SE KCMY 4 channels, endianness of words is swapped
(for big endian platforms)

TYPE_GRAY_8_DITHER
TYPE_RGB_8_DITHER

TYPE_RGBA_8_DITHER

Special formatters to activate dither (only meaningful
on output direction)

5

TYPE_BGR_8_DITHER
TYPE_ABGR_8_DITHER
TYPE_CMYK_8_DITHER

TYPE_KYMC_8_DITHER

6 15 bit Photoshop format

15 bit Photoshop format

Photoshop internal format is 1.15 fixed point. This simplifies computation and speeds up

some operation. The lcms plug-in provides direct support for following 15 bits types. For

further reference to this format, refer to Adobe Photoshop SDK.

TYPE_GRAY_15

TYPE_GRAY_15_REV

TYPE_GRAY_15_SE

TYPE_GRAYA_15

TYPE_GRAYA_15_SE

TYPE_GRAYA_15_PLANAR

TYPE_RGB_15

TYPE_RGB_15_PLANAR

TYPE_RGB_15_SE

TYPE_BGR_15

TYPE_BGR_15_PLANAR

TYPE_BGR_15_SE

TYPE_RGBA_15

TYPE_RGBA_15_PLANAR

TYPE_RGBA_15_SE

TYPE_ARGB_15

TYPE_ABGR_15

TYPE_ABGR_15_PLANAR

TYPE_ABGR_15_SE

TYPE_BGRA_15

TYPE_BGRA_15_SE

TYPE_CMY_15

TYPE_YMC_15

TYPE_CMY_15_PLANAR

TYPE_CMY_15_SE

TYPE_CMYK_15

TYPE_CMYK_15_REV

TYPE_CMYK_15_PLANAR

TYPE_CMYK_15_SE

TYPE_KYMC_15

TYPE_KYMC_15_SE

TYPE_KCMY_15

TYPE_KCMY_15_REV

TYPE_KCMY_15_SE

7 Fast floating point processing

Fast floating point processing

The plug in intercepts float-to-float color transforms and provides extra throughput on

certain cases. Following conditions should be met in order to get an optimized color

transform:

- Both input and output formats should be float.

- Optimizable color spaces are Gray, RGB, CMYK and Lab.

As long as those conditions are met, every single profile is prone to be optimized. The

test bed application shows the throughput increase obtained in a given platform.

Please note that unless both formats are float, the internal lcms2 math being used is 16

bits. This applies to dither as well.

8-bit dither

Certain operations on image data like color conversion (e.g. transforming sRGB to

printer CMYK) are best done using 16 bpc precision, especially when lookup tables

and interpolation are involved. ICC profiles typically use 16 bpc precision, as do the

transformation engines using those profiles. Although true 16 bpc pipelines are being

developed, and some are already available as host software, most hardware pipelines

today are limited to 8 bpc precision, causing the result of color conversions to be

truncated. This truncation to 8 bpc can cause visible and objectionable “banding”,

“contouring”, or “posterization” to occur in prints (large areas of “flat” color with abrupt

“jumps” in between, where the input shows only smoothly varying gradients). Using

true 16 bpc pipelines, the problem does not occur.

In order to minimize this effect a mechanism of error diffusion or “dither” has been

implemented in the plug-in. To enable this feature, any of those format specifiers

should be used for output only.

TYPE_GRAY_8_DITHER

TYPE_RGB_8_DITHER

TYPE_RGBA_8_DITHER

TYPE_BGR_8_DITHER

TYPE_ABGR_8_DITHER

TYPE_CMYK_8_DITHER

TYPE_KYMC_8_DITHER

8 Throughput increase guides

Throughput increase guides

- Avoid to use cmsChangeBuffersFormat(), Transforms that are polymorphic regarding

formats are not optimizable. If you need the same transform operating on 8 and 16 bits,

consider creating two transforms. Profiles data tables are already shared and the

thoughput gain is huge on 8 bits.

- Whenever possible, use the cmsDoTransformLineStride() to apply the color

transforms. Use image data blocks as big as possible. Starting the function is costly,

but then it goes fast. It is better to do a single call to this function for 10K scanlines that

10K calls for one scanline.

2.8

void cmsDoTransformLineStride(cmsHTRANSFORM Transform,
 const void* InputBuffer,
 void* OutputBuffer,
 cmsUInt32Number PixelsPerLine,

 cmsUInt32Number LineCount,
 cmsUInt32Number BytesPerLineIn,
 cmsUInt32Number BytesPerLineOut,

 cmsUInt32Number BytesPerPlaneIn,
 cmsUInt32Number

BytesPerPlaneOut

This function translates bitmaps with complex organization. Each bitmap may contain

several lines, and every may have padding. The distance from one line to the next one

is BytesPerLine{In/Out}. In planar formats, each line may hold several planes, each

plane may have padding. Padding of lines and planes should be same across all

bitmap. I.e. all lines in same bitmap have to be padded in same way. This function may

be more efficient that repeated calls to cmsDoTransform(), especially when customized

plug-ins are being used.

Parameters:

 hTransform: Handle to a color transform object.
InputBuffer: A pointer to the input bitmap

 OutputBuffer: A pointer to the output bitmap.
 PixelsPerLine: The number of pixels for line, which is same on input and in
output.

 LineCount: The number of lines, which is same on input and output
 BytesPerLine{In,Out}: The distance in bytes from one line to the next one.

BytesPerPlaneIn{In,Out}: The distance in bytes from one plane to the next one
inside a line. Only applies in planar formats.

Returns:

None

9 Sample

Sample

// Sample usage for 15 bit formatters

// Add this include to access new functionality
#include "lcms2_fast_float.h"

// This is the sample from the tutorial, but adapted for the plug-in

int main(void)
{
 cmsHPROFILE hInProfile, hOutProfile;
 cmsHTRANSFORM hTransform;

 int i;
 cmsUInt16Number YourInputBuffer[3], YourOutputBuffer[3];

 //*** This is the one and only additional line you need in your whole app

 //*** to activate the plug-in
 //***

 cmsPlugin(cmsFastFloatExtensions());

 //***
 //***
 //***

 // Convert from AdobeRGB to sRGB in Photoshop internal format
 hInProfile = cmsOpenProfileFromFile("AdobeRGB1998.icc", "r");
 hOutProfile = cmsOpenProfileFromFile("sRGB Color Space Profile.icm", "r");

 hTransform = cmsCreateTransform(hInProfile,
 TYPE_RGB_15, // Note this format is new!

 hOutProfile,
 TYPE_RGB_15,
 INTENT_PERCEPTUAL, 0);

 cmsCloseProfile(hInProfile);
 cmsCloseProfile(hOutProfile);

 YourInputBuffer[0] = 0; YourInputBuffer[1] = 0; YourInputBuffer[2] = 0;

 // Or whatever. Note this is 1fixed15 encoded.

 for (i = 0; i < 10; i++)
 {

 cmsDoTransform(hTransform, YourInputBuffer, YourOutputBuffer, 1);
 }

 // Get rid of resources, etc.

 cmsDeleteTransform(hTransform);

 return 0;
}

