Welcome to mirror list, hosted at ThFree Co, Russian Federation.

github.com/mono/boringssl.git - Unnamed repository; edit this file 'description' to name the repository.
summaryrefslogtreecommitdiff
path: root/crypto
diff options
context:
space:
mode:
authorDavid Benjamin <davidben@google.com>2016-08-28 09:22:46 +0300
committerCQ bot account: commit-bot@chromium.org <commit-bot@chromium.org>2016-08-30 18:32:31 +0300
commit147f1c468c937e0d05c9d1168f709c316a0697d2 (patch)
tree12a307ef133ea95ccf255b33af34e4bf7532f3df /crypto
parent8c2d53ad990d4972b03b2048e87d0f190523d59c (diff)
Simplify RC4 code and remove assembly.
This removes all but the generic C RC4 implementation. At this point we want to optimize for size/simplicity rather than speed. See also upstream's 3e9e810f2e047effb1056211794d2d12ec2b04e7 which removed the RC4_CHUNK code and standardized on RC4_INDEX. A since-removed comment says that it was implemented for "pre-21164a Alpha CPUs don't have byte load/store instructions" and helps with SPARC and MIPS. This also removes all the manual loop unrolling. Change-Id: I91135568483260b2e1e675f190fb00ce8f9eff3d Reviewed-on: https://boringssl-review.googlesource.com/10720 Commit-Queue: David Benjamin <davidben@google.com> Commit-Queue: Adam Langley <agl@google.com> Reviewed-by: Adam Langley <agl@google.com> CQ-Verified: CQ bot account: commit-bot@chromium.org <commit-bot@chromium.org>
Diffstat (limited to 'crypto')
-rw-r--r--crypto/rc4/CMakeLists.txt20
-rw-r--r--crypto/rc4/asm/rc4-586.pl392
-rw-r--r--crypto/rc4/asm/rc4-x86_64.pl653
-rw-r--r--crypto/rc4/rc4.c233
4 files changed, 24 insertions, 1274 deletions
diff --git a/crypto/rc4/CMakeLists.txt b/crypto/rc4/CMakeLists.txt
index 151773a7..a008fe53 100644
--- a/crypto/rc4/CMakeLists.txt
+++ b/crypto/rc4/CMakeLists.txt
@@ -1,29 +1,9 @@
include_directories(../../include)
-if (${ARCH} STREQUAL "x86_64")
- set(
- RC4_ARCH_SOURCES
-
- rc4-x86_64.${ASM_EXT}
- )
-endif()
-
-if (${ARCH} STREQUAL "x86")
- set(
- RC4_ARCH_SOURCES
-
- rc4-586.${ASM_EXT}
- )
-endif()
-
add_library(
rc4
OBJECT
rc4.c
- ${RC4_ARCH_SOURCES}
)
-
-perlasm(rc4-x86_64.${ASM_EXT} asm/rc4-x86_64.pl)
-perlasm(rc4-586.${ASM_EXT} asm/rc4-586.pl)
diff --git a/crypto/rc4/asm/rc4-586.pl b/crypto/rc4/asm/rc4-586.pl
deleted file mode 100644
index 78f48cc0..00000000
--- a/crypto/rc4/asm/rc4-586.pl
+++ /dev/null
@@ -1,392 +0,0 @@
-#!/usr/bin/env perl
-
-# ====================================================================
-# [Re]written by Andy Polyakov <appro@fy.chalmers.se> for the OpenSSL
-# project. The module is, however, dual licensed under OpenSSL and
-# CRYPTOGAMS licenses depending on where you obtain it. For further
-# details see http://www.openssl.org/~appro/cryptogams/.
-# ====================================================================
-
-# At some point it became apparent that the original SSLeay RC4
-# assembler implementation performs suboptimally on latest IA-32
-# microarchitectures. After re-tuning performance has changed as
-# following:
-#
-# Pentium -10%
-# Pentium III +12%
-# AMD +50%(*)
-# P4 +250%(**)
-#
-# (*) This number is actually a trade-off:-) It's possible to
-# achieve +72%, but at the cost of -48% off PIII performance.
-# In other words code performing further 13% faster on AMD
-# would perform almost 2 times slower on Intel PIII...
-# For reference! This code delivers ~80% of rc4-amd64.pl
-# performance on the same Opteron machine.
-# (**) This number requires compressed key schedule set up by
-# RC4_set_key [see commentary below for further details].
-#
-# <appro@fy.chalmers.se>
-
-# May 2011
-#
-# Optimize for Core2 and Westmere [and incidentally Opteron]. Current
-# performance in cycles per processed byte (less is better) and
-# improvement relative to previous version of this module is:
-#
-# Pentium 10.2 # original numbers
-# Pentium III 7.8(*)
-# Intel P4 7.5
-#
-# Opteron 6.1/+20% # new MMX numbers
-# Core2 5.3/+67%(**)
-# Westmere 5.1/+94%(**)
-# Sandy Bridge 5.0/+8%
-# Atom 12.6/+6%
-#
-# (*) PIII can actually deliver 6.6 cycles per byte with MMX code,
-# but this specific code performs poorly on Core2. And vice
-# versa, below MMX/SSE code delivering 5.8/7.1 on Core2 performs
-# poorly on PIII, at 8.0/14.5:-( As PIII is not a "hot" CPU
-# [anymore], I chose to discard PIII-specific code path and opt
-# for original IALU-only code, which is why MMX/SSE code path
-# is guarded by SSE2 bit (see below), not MMX/SSE.
-# (**) Performance vs. block size on Core2 and Westmere had a maximum
-# at ... 64 bytes block size. And it was quite a maximum, 40-60%
-# in comparison to largest 8KB block size. Above improvement
-# coefficients are for the largest block size.
-
-$0 =~ m/(.*[\/\\])[^\/\\]+$/; $dir=$1;
-push(@INC,"${dir}","${dir}../../perlasm");
-require "x86asm.pl";
-
-$output=pop;
-open STDOUT,">$output";
-
-&asm_init($ARGV[0],"rc4-586.pl",$x86only = $ARGV[$#ARGV] eq "386");
-
-$xx="eax";
-$yy="ebx";
-$tx="ecx";
-$ty="edx";
-$inp="esi";
-$out="ebp";
-$dat="edi";
-
-sub RC4_loop {
- my $i=shift;
- my $func = ($i==0)?*mov:*or;
-
- &add (&LB($yy),&LB($tx));
- &mov ($ty,&DWP(0,$dat,$yy,4));
- &mov (&DWP(0,$dat,$yy,4),$tx);
- &mov (&DWP(0,$dat,$xx,4),$ty);
- &add ($ty,$tx);
- &inc (&LB($xx));
- &and ($ty,0xff);
- &ror ($out,8) if ($i!=0);
- if ($i<3) {
- &mov ($tx,&DWP(0,$dat,$xx,4));
- } else {
- &mov ($tx,&wparam(3)); # reload [re-biased] out
- }
- &$func ($out,&DWP(0,$dat,$ty,4));
-}
-
-if ($alt=0) {
- # >20% faster on Atom and Sandy Bridge[!], 8% faster on Opteron,
- # but ~40% slower on Core2 and Westmere... Attempt to add movz
- # brings down Opteron by 25%, Atom and Sandy Bridge by 15%, yet
- # on Core2 with movz it's almost 20% slower than below alternative
- # code... Yes, it's a total mess...
- my @XX=($xx,$out);
- $RC4_loop_mmx = sub { # SSE actually...
- my $i=shift;
- my $j=$i<=0?0:$i>>1;
- my $mm=$i<=0?"mm0":"mm".($i&1);
-
- &add (&LB($yy),&LB($tx));
- &lea (@XX[1],&DWP(1,@XX[0]));
- &pxor ("mm2","mm0") if ($i==0);
- &psllq ("mm1",8) if ($i==0);
- &and (@XX[1],0xff);
- &pxor ("mm0","mm0") if ($i<=0);
- &mov ($ty,&DWP(0,$dat,$yy,4));
- &mov (&DWP(0,$dat,$yy,4),$tx);
- &pxor ("mm1","mm2") if ($i==0);
- &mov (&DWP(0,$dat,$XX[0],4),$ty);
- &add (&LB($ty),&LB($tx));
- &movd (@XX[0],"mm7") if ($i==0);
- &mov ($tx,&DWP(0,$dat,@XX[1],4));
- &pxor ("mm1","mm1") if ($i==1);
- &movq ("mm2",&QWP(0,$inp)) if ($i==1);
- &movq (&QWP(-8,(@XX[0],$inp)),"mm1") if ($i==0);
- &pinsrw ($mm,&DWP(0,$dat,$ty,4),$j);
-
- push (@XX,shift(@XX)) if ($i>=0);
- }
-} else {
- # Using pinsrw here improves performane on Intel CPUs by 2-3%, but
- # brings down AMD by 7%...
- $RC4_loop_mmx = sub {
- my $i=shift;
-
- &add (&LB($yy),&LB($tx));
- &psllq ("mm1",8*(($i-1)&7)) if (abs($i)!=1);
- &mov ($ty,&DWP(0,$dat,$yy,4));
- &mov (&DWP(0,$dat,$yy,4),$tx);
- &mov (&DWP(0,$dat,$xx,4),$ty);
- &inc ($xx);
- &add ($ty,$tx);
- &movz ($xx,&LB($xx)); # (*)
- &movz ($ty,&LB($ty)); # (*)
- &pxor ("mm2",$i==1?"mm0":"mm1") if ($i>=0);
- &movq ("mm0",&QWP(0,$inp)) if ($i<=0);
- &movq (&QWP(-8,($out,$inp)),"mm2") if ($i==0);
- &mov ($tx,&DWP(0,$dat,$xx,4));
- &movd ($i>0?"mm1":"mm2",&DWP(0,$dat,$ty,4));
-
- # (*) This is the key to Core2 and Westmere performance.
- # Whithout movz out-of-order execution logic confuses
- # itself and fails to reorder loads and stores. Problem
- # appears to be fixed in Sandy Bridge...
- }
-}
-
-&external_label("OPENSSL_ia32cap_P");
-
-# void asm_RC4(RC4_KEY *key,size_t len,const unsigned char *inp,unsigned char *out);
-&function_begin("asm_RC4");
- &mov ($dat,&wparam(0)); # load key schedule pointer
- &mov ($ty, &wparam(1)); # load len
- &mov ($inp,&wparam(2)); # load inp
- &mov ($out,&wparam(3)); # load out
-
- &xor ($xx,$xx); # avoid partial register stalls
- &xor ($yy,$yy);
-
- &cmp ($ty,0); # safety net
- &je (&label("abort"));
-
- &mov (&LB($xx),&BP(0,$dat)); # load key->x
- &mov (&LB($yy),&BP(4,$dat)); # load key->y
- &add ($dat,8);
-
- &lea ($tx,&DWP(0,$inp,$ty));
- &sub ($out,$inp); # re-bias out
- &mov (&wparam(1),$tx); # save input+len
-
- &inc (&LB($xx));
-
- # detect compressed key schedule...
- &cmp (&DWP(256,$dat),-1);
- &je (&label("RC4_CHAR"));
-
- &mov ($tx,&DWP(0,$dat,$xx,4));
-
- &and ($ty,-4); # how many 4-byte chunks?
- &jz (&label("loop1"));
-
- &mov (&wparam(3),$out); # $out as accumulator in these loops
- if ($x86only) {
- &jmp (&label("go4loop4"));
- } else {
- &test ($ty,-8);
- &jz (&label("go4loop4"));
-
- &picmeup($out,"OPENSSL_ia32cap_P");
- &bt (&DWP(0,$out),26); # check SSE2 bit [could have been MMX]
- &jnc (&label("go4loop4"));
-
- &mov ($out,&wparam(3)) if (!$alt);
- &movd ("mm7",&wparam(3)) if ($alt);
- &and ($ty,-8);
- &lea ($ty,&DWP(-8,$inp,$ty));
- &mov (&DWP(-4,$dat),$ty); # save input+(len/8)*8-8
-
- &$RC4_loop_mmx(-1);
- &jmp(&label("loop_mmx_enter"));
-
- &set_label("loop_mmx",16);
- &$RC4_loop_mmx(0);
- &set_label("loop_mmx_enter");
- for ($i=1;$i<8;$i++) { &$RC4_loop_mmx($i); }
- &mov ($ty,$yy);
- &xor ($yy,$yy); # this is second key to Core2
- &mov (&LB($yy),&LB($ty)); # and Westmere performance...
- &cmp ($inp,&DWP(-4,$dat));
- &lea ($inp,&DWP(8,$inp));
- &jb (&label("loop_mmx"));
-
- if ($alt) {
- &movd ($out,"mm7");
- &pxor ("mm2","mm0");
- &psllq ("mm1",8);
- &pxor ("mm1","mm2");
- &movq (&QWP(-8,$out,$inp),"mm1");
- } else {
- &psllq ("mm1",56);
- &pxor ("mm2","mm1");
- &movq (&QWP(-8,$out,$inp),"mm2");
- }
- &emms ();
-
- &cmp ($inp,&wparam(1)); # compare to input+len
- &je (&label("done"));
- &jmp (&label("loop1"));
- }
-
-&set_label("go4loop4",16);
- &lea ($ty,&DWP(-4,$inp,$ty));
- &mov (&wparam(2),$ty); # save input+(len/4)*4-4
-
- &set_label("loop4");
- for ($i=0;$i<4;$i++) { RC4_loop($i); }
- &ror ($out,8);
- &xor ($out,&DWP(0,$inp));
- &cmp ($inp,&wparam(2)); # compare to input+(len/4)*4-4
- &mov (&DWP(0,$tx,$inp),$out);# $tx holds re-biased out here
- &lea ($inp,&DWP(4,$inp));
- &mov ($tx,&DWP(0,$dat,$xx,4));
- &jb (&label("loop4"));
-
- &cmp ($inp,&wparam(1)); # compare to input+len
- &je (&label("done"));
- &mov ($out,&wparam(3)); # restore $out
-
- &set_label("loop1",16);
- &add (&LB($yy),&LB($tx));
- &mov ($ty,&DWP(0,$dat,$yy,4));
- &mov (&DWP(0,$dat,$yy,4),$tx);
- &mov (&DWP(0,$dat,$xx,4),$ty);
- &add ($ty,$tx);
- &inc (&LB($xx));
- &and ($ty,0xff);
- &mov ($ty,&DWP(0,$dat,$ty,4));
- &xor (&LB($ty),&BP(0,$inp));
- &lea ($inp,&DWP(1,$inp));
- &mov ($tx,&DWP(0,$dat,$xx,4));
- &cmp ($inp,&wparam(1)); # compare to input+len
- &mov (&BP(-1,$out,$inp),&LB($ty));
- &jb (&label("loop1"));
-
- &jmp (&label("done"));
-
-# this is essentially Intel P4 specific codepath...
-&set_label("RC4_CHAR",16);
- &movz ($tx,&BP(0,$dat,$xx));
- # strangely enough unrolled loop performs over 20% slower...
- &set_label("cloop1");
- &add (&LB($yy),&LB($tx));
- &movz ($ty,&BP(0,$dat,$yy));
- &mov (&BP(0,$dat,$yy),&LB($tx));
- &mov (&BP(0,$dat,$xx),&LB($ty));
- &add (&LB($ty),&LB($tx));
- &movz ($ty,&BP(0,$dat,$ty));
- &add (&LB($xx),1);
- &xor (&LB($ty),&BP(0,$inp));
- &lea ($inp,&DWP(1,$inp));
- &movz ($tx,&BP(0,$dat,$xx));
- &cmp ($inp,&wparam(1));
- &mov (&BP(-1,$out,$inp),&LB($ty));
- &jb (&label("cloop1"));
-
-&set_label("done");
- &dec (&LB($xx));
- &mov (&DWP(-4,$dat),$yy); # save key->y
- &mov (&BP(-8,$dat),&LB($xx)); # save key->x
-&set_label("abort");
-&function_end("asm_RC4");
-
-########################################################################
-
-$inp="esi";
-$out="edi";
-$idi="ebp";
-$ido="ecx";
-$idx="edx";
-
-# void asm_RC4_set_key(RC4_KEY *key,int len,const unsigned char *data);
-&function_begin("asm_RC4_set_key");
- &mov ($out,&wparam(0)); # load key
- &mov ($idi,&wparam(1)); # load len
- &mov ($inp,&wparam(2)); # load data
- &picmeup($idx,"OPENSSL_ia32cap_P");
-
- &lea ($out,&DWP(2*4,$out)); # &key->data
- &lea ($inp,&DWP(0,$inp,$idi)); # $inp to point at the end
- &neg ($idi);
- &xor ("eax","eax");
- &mov (&DWP(-4,$out),$idi); # borrow key->y
-
- &bt (&DWP(0,$idx),20); # check for bit#20
- &jc (&label("c1stloop"));
-
-&set_label("w1stloop",16);
- &mov (&DWP(0,$out,"eax",4),"eax"); # key->data[i]=i;
- &add (&LB("eax"),1); # i++;
- &jnc (&label("w1stloop"));
-
- &xor ($ido,$ido);
- &xor ($idx,$idx);
-
-&set_label("w2ndloop",16);
- &mov ("eax",&DWP(0,$out,$ido,4));
- &add (&LB($idx),&BP(0,$inp,$idi));
- &add (&LB($idx),&LB("eax"));
- &add ($idi,1);
- &mov ("ebx",&DWP(0,$out,$idx,4));
- &jnz (&label("wnowrap"));
- &mov ($idi,&DWP(-4,$out));
- &set_label("wnowrap");
- &mov (&DWP(0,$out,$idx,4),"eax");
- &mov (&DWP(0,$out,$ido,4),"ebx");
- &add (&LB($ido),1);
- &jnc (&label("w2ndloop"));
-&jmp (&label("exit"));
-
-# Unlike all other x86 [and x86_64] implementations, Intel P4 core
-# [including EM64T] was found to perform poorly with above "32-bit" key
-# schedule, a.k.a. RC4_INT. Performance improvement for IA-32 hand-coded
-# assembler turned out to be 3.5x if re-coded for compressed 8-bit one,
-# a.k.a. RC4_CHAR! It's however inappropriate to just switch to 8-bit
-# schedule for x86[_64], because non-P4 implementations suffer from
-# significant performance losses then, e.g. PIII exhibits >2x
-# deterioration, and so does Opteron. In order to assure optimal
-# all-round performance, we detect P4 at run-time and set up compressed
-# key schedule, which is recognized by RC4 procedure.
-
-&set_label("c1stloop",16);
- &mov (&BP(0,$out,"eax"),&LB("eax")); # key->data[i]=i;
- &add (&LB("eax"),1); # i++;
- &jnc (&label("c1stloop"));
-
- &xor ($ido,$ido);
- &xor ($idx,$idx);
- &xor ("ebx","ebx");
-
-&set_label("c2ndloop",16);
- &mov (&LB("eax"),&BP(0,$out,$ido));
- &add (&LB($idx),&BP(0,$inp,$idi));
- &add (&LB($idx),&LB("eax"));
- &add ($idi,1);
- &mov (&LB("ebx"),&BP(0,$out,$idx));
- &jnz (&label("cnowrap"));
- &mov ($idi,&DWP(-4,$out));
- &set_label("cnowrap");
- &mov (&BP(0,$out,$idx),&LB("eax"));
- &mov (&BP(0,$out,$ido),&LB("ebx"));
- &add (&LB($ido),1);
- &jnc (&label("c2ndloop"));
-
- &mov (&DWP(256,$out),-1); # mark schedule as compressed
-
-&set_label("exit");
- &xor ("eax","eax");
- &mov (&DWP(-8,$out),"eax"); # key->x=0;
- &mov (&DWP(-4,$out),"eax"); # key->y=0;
-&function_end("asm_RC4_set_key");
-
-&asm_finish();
-
-close STDOUT;
diff --git a/crypto/rc4/asm/rc4-x86_64.pl b/crypto/rc4/asm/rc4-x86_64.pl
deleted file mode 100644
index fd52fbb7..00000000
--- a/crypto/rc4/asm/rc4-x86_64.pl
+++ /dev/null
@@ -1,653 +0,0 @@
-#!/usr/bin/env perl
-#
-# ====================================================================
-# Written by Andy Polyakov <appro@fy.chalmers.se> for the OpenSSL
-# project. The module is, however, dual licensed under OpenSSL and
-# CRYPTOGAMS licenses depending on where you obtain it. For further
-# details see http://www.openssl.org/~appro/cryptogams/.
-# ====================================================================
-#
-# July 2004
-#
-# 2.22x RC4 tune-up:-) It should be noted though that my hand [as in
-# "hand-coded assembler"] doesn't stand for the whole improvement
-# coefficient. It turned out that eliminating RC4_CHAR from config
-# line results in ~40% improvement (yes, even for C implementation).
-# Presumably it has everything to do with AMD cache architecture and
-# RAW or whatever penalties. Once again! The module *requires* config
-# line *without* RC4_CHAR! As for coding "secret," I bet on partial
-# register arithmetics. For example instead of 'inc %r8; and $255,%r8'
-# I simply 'inc %r8b'. Even though optimization manual discourages
-# to operate on partial registers, it turned out to be the best bet.
-# At least for AMD... How IA32E would perform remains to be seen...
-
-# November 2004
-#
-# As was shown by Marc Bevand reordering of couple of load operations
-# results in even higher performance gain of 3.3x:-) At least on
-# Opteron... For reference, 1x in this case is RC4_CHAR C-code
-# compiled with gcc 3.3.2, which performs at ~54MBps per 1GHz clock.
-# Latter means that if you want to *estimate* what to expect from
-# *your* Opteron, then multiply 54 by 3.3 and clock frequency in GHz.
-
-# November 2004
-#
-# Intel P4 EM64T core was found to run the AMD64 code really slow...
-# The only way to achieve comparable performance on P4 was to keep
-# RC4_CHAR. Kind of ironic, huh? As it's apparently impossible to
-# compose blended code, which would perform even within 30% marginal
-# on either AMD and Intel platforms, I implement both cases. See
-# rc4_skey.c for further details...
-
-# April 2005
-#
-# P4 EM64T core appears to be "allergic" to 64-bit inc/dec. Replacing
-# those with add/sub results in 50% performance improvement of folded
-# loop...
-
-# May 2005
-#
-# As was shown by Zou Nanhai loop unrolling can improve Intel EM64T
-# performance by >30% [unlike P4 32-bit case that is]. But this is
-# provided that loads are reordered even more aggressively! Both code
-# pathes, AMD64 and EM64T, reorder loads in essentially same manner
-# as my IA-64 implementation. On Opteron this resulted in modest 5%
-# improvement [I had to test it], while final Intel P4 performance
-# achieves respectful 432MBps on 2.8GHz processor now. For reference.
-# If executed on Xeon, current RC4_CHAR code-path is 2.7x faster than
-# RC4_INT code-path. While if executed on Opteron, it's only 25%
-# slower than the RC4_INT one [meaning that if CPU ยต-arch detection
-# is not implemented, then this final RC4_CHAR code-path should be
-# preferred, as it provides better *all-round* performance].
-
-# March 2007
-#
-# Intel Core2 was observed to perform poorly on both code paths:-( It
-# apparently suffers from some kind of partial register stall, which
-# occurs in 64-bit mode only [as virtually identical 32-bit loop was
-# observed to outperform 64-bit one by almost 50%]. Adding two movzb to
-# cloop1 boosts its performance by 80%! This loop appears to be optimal
-# fit for Core2 and therefore the code was modified to skip cloop8 on
-# this CPU.
-
-# May 2010
-#
-# Intel Westmere was observed to perform suboptimally. Adding yet
-# another movzb to cloop1 improved performance by almost 50%! Core2
-# performance is improved too, but nominally...
-
-# May 2011
-#
-# The only code path that was not modified is P4-specific one. Non-P4
-# Intel code path optimization is heavily based on submission by Maxim
-# Perminov, Maxim Locktyukhin and Jim Guilford of Intel. I've used
-# some of the ideas even in attempt to optmize the original RC4_INT
-# code path... Current performance in cycles per processed byte (less
-# is better) and improvement coefficients relative to previous
-# version of this module are:
-#
-# Opteron 5.3/+0%(*)
-# P4 6.5
-# Core2 6.2/+15%(**)
-# Westmere 4.2/+60%
-# Sandy Bridge 4.2/+120%
-# Atom 9.3/+80%
-#
-# (*) But corresponding loop has less instructions, which should have
-# positive effect on upcoming Bulldozer, which has one less ALU.
-# For reference, Intel code runs at 6.8 cpb rate on Opteron.
-# (**) Note that Core2 result is ~15% lower than corresponding result
-# for 32-bit code, meaning that it's possible to improve it,
-# but more than likely at the cost of the others (see rc4-586.pl
-# to get the idea)...
-
-$flavour = shift;
-$output = shift;
-if ($flavour =~ /\./) { $output = $flavour; undef $flavour; }
-
-$win64=0; $win64=1 if ($flavour =~ /[nm]asm|mingw64/ || $output =~ /\.asm$/);
-
-$0 =~ m/(.*[\/\\])[^\/\\]+$/; $dir=$1;
-( $xlate="${dir}x86_64-xlate.pl" and -f $xlate ) or
-( $xlate="${dir}../../perlasm/x86_64-xlate.pl" and -f $xlate) or
-die "can't locate x86_64-xlate.pl";
-
-open OUT,"| \"$^X\" \"$xlate\" $flavour \"$output\"";
-*STDOUT=*OUT;
-
-$dat="%rdi"; # arg1
-$len="%rsi"; # arg2
-$inp="%rdx"; # arg3
-$out="%rcx"; # arg4
-
-{
-$code=<<___;
-.text
-.extern OPENSSL_ia32cap_P
-
-.globl asm_RC4
-.type asm_RC4,\@function,4
-.align 16
-asm_RC4:
- or $len,$len
- jne .Lentry
- ret
-.Lentry:
- push %rbx
- push %r12
- push %r13
-.Lprologue:
- mov $len,%r11
- mov $inp,%r12
- mov $out,%r13
-___
-my $len="%r11"; # reassign input arguments
-my $inp="%r12";
-my $out="%r13";
-
-my @XX=("%r10","%rsi");
-my @TX=("%rax","%rbx");
-my $YY="%rcx";
-my $TY="%rdx";
-
-$code.=<<___;
- xor $XX[0],$XX[0]
- xor $YY,$YY
-
- lea 8($dat),$dat
- mov -8($dat),$XX[0]#b
- mov -4($dat),$YY#b
- cmpl \$-1,256($dat)
- je .LRC4_CHAR
- mov OPENSSL_ia32cap_P(%rip),%r8d
- xor $TX[1],$TX[1]
- inc $XX[0]#b
- sub $XX[0],$TX[1]
- sub $inp,$out
- movl ($dat,$XX[0],4),$TX[0]#d
- test \$-16,$len
- jz .Lloop1
- bt \$30,%r8d # Intel CPU?
- jc .Lintel
- and \$7,$TX[1]
- lea 1($XX[0]),$XX[1]
- jz .Loop8
- sub $TX[1],$len
-.Loop8_warmup:
- add $TX[0]#b,$YY#b
- movl ($dat,$YY,4),$TY#d
- movl $TX[0]#d,($dat,$YY,4)
- movl $TY#d,($dat,$XX[0],4)
- add $TY#b,$TX[0]#b
- inc $XX[0]#b
- movl ($dat,$TX[0],4),$TY#d
- movl ($dat,$XX[0],4),$TX[0]#d
- xorb ($inp),$TY#b
- movb $TY#b,($out,$inp)
- lea 1($inp),$inp
- dec $TX[1]
- jnz .Loop8_warmup
-
- lea 1($XX[0]),$XX[1]
- jmp .Loop8
-.align 16
-.Loop8:
-___
-for ($i=0;$i<8;$i++) {
-$code.=<<___ if ($i==7);
- add \$8,$XX[1]#b
-___
-$code.=<<___;
- add $TX[0]#b,$YY#b
- movl ($dat,$YY,4),$TY#d
- movl $TX[0]#d,($dat,$YY,4)
- movl `4*($i==7?-1:$i)`($dat,$XX[1],4),$TX[1]#d
- ror \$8,%r8 # ror is redundant when $i=0
- movl $TY#d,4*$i($dat,$XX[0],4)
- add $TX[0]#b,$TY#b
- movb ($dat,$TY,4),%r8b
-___
-push(@TX,shift(@TX)); #push(@XX,shift(@XX)); # "rotate" registers
-}
-$code.=<<___;
- add \$8,$XX[0]#b
- ror \$8,%r8
- sub \$8,$len
-
- xor ($inp),%r8
- mov %r8,($out,$inp)
- lea 8($inp),$inp
-
- test \$-8,$len
- jnz .Loop8
- cmp \$0,$len
- jne .Lloop1
- jmp .Lexit
-
-.align 16
-.Lintel:
- test \$-32,$len
- jz .Lloop1
- and \$15,$TX[1]
- jz .Loop16_is_hot
- sub $TX[1],$len
-.Loop16_warmup:
- add $TX[0]#b,$YY#b
- movl ($dat,$YY,4),$TY#d
- movl $TX[0]#d,($dat,$YY,4)
- movl $TY#d,($dat,$XX[0],4)
- add $TY#b,$TX[0]#b
- inc $XX[0]#b
- movl ($dat,$TX[0],4),$TY#d
- movl ($dat,$XX[0],4),$TX[0]#d
- xorb ($inp),$TY#b
- movb $TY#b,($out,$inp)
- lea 1($inp),$inp
- dec $TX[1]
- jnz .Loop16_warmup
-
- mov $YY,$TX[1]
- xor $YY,$YY
- mov $TX[1]#b,$YY#b
-
-.Loop16_is_hot:
- lea ($dat,$XX[0],4),$XX[1]
-___
-sub RC4_loop {
- my $i=shift;
- my $j=$i<0?0:$i;
- my $xmm="%xmm".($j&1);
-
- $code.=" add \$16,$XX[0]#b\n" if ($i==15);
- $code.=" movdqu ($inp),%xmm2\n" if ($i==15);
- $code.=" add $TX[0]#b,$YY#b\n" if ($i<=0);
- $code.=" movl ($dat,$YY,4),$TY#d\n";
- $code.=" pxor %xmm0,%xmm2\n" if ($i==0);
- $code.=" psllq \$8,%xmm1\n" if ($i==0);
- $code.=" pxor $xmm,$xmm\n" if ($i<=1);
- $code.=" movl $TX[0]#d,($dat,$YY,4)\n";
- $code.=" add $TY#b,$TX[0]#b\n";
- $code.=" movl `4*($j+1)`($XX[1]),$TX[1]#d\n" if ($i<15);
- $code.=" movz $TX[0]#b,$TX[0]#d\n";
- $code.=" movl $TY#d,4*$j($XX[1])\n";
- $code.=" pxor %xmm1,%xmm2\n" if ($i==0);
- $code.=" lea ($dat,$XX[0],4),$XX[1]\n" if ($i==15);
- $code.=" add $TX[1]#b,$YY#b\n" if ($i<15);
- $code.=" pinsrw \$`($j>>1)&7`,($dat,$TX[0],4),$xmm\n";
- $code.=" movdqu %xmm2,($out,$inp)\n" if ($i==0);
- $code.=" lea 16($inp),$inp\n" if ($i==0);
- $code.=" movl ($XX[1]),$TX[1]#d\n" if ($i==15);
-}
- RC4_loop(-1);
-$code.=<<___;
- jmp .Loop16_enter
-.align 16
-.Loop16:
-___
-
-for ($i=0;$i<16;$i++) {
- $code.=".Loop16_enter:\n" if ($i==1);
- RC4_loop($i);
- push(@TX,shift(@TX)); # "rotate" registers
-}
-$code.=<<___;
- mov $YY,$TX[1]
- xor $YY,$YY # keyword to partial register
- sub \$16,$len
- mov $TX[1]#b,$YY#b
- test \$-16,$len
- jnz .Loop16
-
- psllq \$8,%xmm1
- pxor %xmm0,%xmm2
- pxor %xmm1,%xmm2
- movdqu %xmm2,($out,$inp)
- lea 16($inp),$inp
-
- cmp \$0,$len
- jne .Lloop1
- jmp .Lexit
-
-.align 16
-.Lloop1:
- add $TX[0]#b,$YY#b
- movl ($dat,$YY,4),$TY#d
- movl $TX[0]#d,($dat,$YY,4)
- movl $TY#d,($dat,$XX[0],4)
- add $TY#b,$TX[0]#b
- inc $XX[0]#b
- movl ($dat,$TX[0],4),$TY#d
- movl ($dat,$XX[0],4),$TX[0]#d
- xorb ($inp),$TY#b
- movb $TY#b,($out,$inp)
- lea 1($inp),$inp
- dec $len
- jnz .Lloop1
- jmp .Lexit
-
-.align 16
-.LRC4_CHAR:
- add \$1,$XX[0]#b
- movzb ($dat,$XX[0]),$TX[0]#d
- test \$-8,$len
- jz .Lcloop1
- jmp .Lcloop8
-.align 16
-.Lcloop8:
- mov ($inp),%r8d
- mov 4($inp),%r9d
-___
-# unroll 2x4-wise, because 64-bit rotates kill Intel P4...
-for ($i=0;$i<4;$i++) {
-$code.=<<___;
- add $TX[0]#b,$YY#b
- lea 1($XX[0]),$XX[1]
- movzb ($dat,$YY),$TY#d
- movzb $XX[1]#b,$XX[1]#d
- movzb ($dat,$XX[1]),$TX[1]#d
- movb $TX[0]#b,($dat,$YY)
- cmp $XX[1],$YY
- movb $TY#b,($dat,$XX[0])
- jne .Lcmov$i # Intel cmov is sloooow...
- mov $TX[0],$TX[1]
-.Lcmov$i:
- add $TX[0]#b,$TY#b
- xor ($dat,$TY),%r8b
- ror \$8,%r8d
-___
-push(@TX,shift(@TX)); push(@XX,shift(@XX)); # "rotate" registers
-}
-for ($i=4;$i<8;$i++) {
-$code.=<<___;
- add $TX[0]#b,$YY#b
- lea 1($XX[0]),$XX[1]
- movzb ($dat,$YY),$TY#d
- movzb $XX[1]#b,$XX[1]#d
- movzb ($dat,$XX[1]),$TX[1]#d
- movb $TX[0]#b,($dat,$YY)
- cmp $XX[1],$YY
- movb $TY#b,($dat,$XX[0])
- jne .Lcmov$i # Intel cmov is sloooow...
- mov $TX[0],$TX[1]
-.Lcmov$i:
- add $TX[0]#b,$TY#b
- xor ($dat,$TY),%r9b
- ror \$8,%r9d
-___
-push(@TX,shift(@TX)); push(@XX,shift(@XX)); # "rotate" registers
-}
-$code.=<<___;
- lea -8($len),$len
- mov %r8d,($out)
- lea 8($inp),$inp
- mov %r9d,4($out)
- lea 8($out),$out
-
- test \$-8,$len
- jnz .Lcloop8
- cmp \$0,$len
- jne .Lcloop1
- jmp .Lexit
-___
-$code.=<<___;
-.align 16
-.Lcloop1:
- add $TX[0]#b,$YY#b
- movzb $YY#b,$YY#d
- movzb ($dat,$YY),$TY#d
- movb $TX[0]#b,($dat,$YY)
- movb $TY#b,($dat,$XX[0])
- add $TX[0]#b,$TY#b
- add \$1,$XX[0]#b
- movzb $TY#b,$TY#d
- movzb $XX[0]#b,$XX[0]#d
- movzb ($dat,$TY),$TY#d
- movzb ($dat,$XX[0]),$TX[0]#d
- xorb ($inp),$TY#b
- lea 1($inp),$inp
- movb $TY#b,($out)
- lea 1($out),$out
- sub \$1,$len
- jnz .Lcloop1
- jmp .Lexit
-
-.align 16
-.Lexit:
- sub \$1,$XX[0]#b
- movl $XX[0]#d,-8($dat)
- movl $YY#d,-4($dat)
-
- mov (%rsp),%r13
- mov 8(%rsp),%r12
- mov 16(%rsp),%rbx
- add \$24,%rsp
-.Lepilogue:
- ret
-.size asm_RC4,.-asm_RC4
-___
-}
-
-$idx="%r8";
-$ido="%r9";
-
-$code.=<<___;
-.globl asm_RC4_set_key
-.type asm_RC4_set_key,\@function,3
-.align 16
-asm_RC4_set_key:
- lea 8($dat),$dat
- lea ($inp,$len),$inp
- neg $len
- mov $len,%rcx
- xor %eax,%eax
- xor $ido,$ido
- xor %r10,%r10
- xor %r11,%r11
-
- mov OPENSSL_ia32cap_P(%rip),$idx#d
- bt \$20,$idx#d # RC4_CHAR?
- jc .Lc1stloop
- jmp .Lw1stloop
-
-.align 16
-.Lw1stloop:
- mov %eax,($dat,%rax,4)
- add \$1,%al
- jnc .Lw1stloop
-
- xor $ido,$ido
- xor $idx,$idx
-.align 16
-.Lw2ndloop:
- mov ($dat,$ido,4),%r10d
- add ($inp,$len,1),$idx#b
- add %r10b,$idx#b
- add \$1,$len
- mov ($dat,$idx,4),%r11d
- cmovz %rcx,$len
- mov %r10d,($dat,$idx,4)
- mov %r11d,($dat,$ido,4)
- add \$1,$ido#b
- jnc .Lw2ndloop
- jmp .Lexit_key
-
-.align 16
-.Lc1stloop:
- mov %al,($dat,%rax)
- add \$1,%al
- jnc .Lc1stloop
-
- xor $ido,$ido
- xor $idx,$idx
-.align 16
-.Lc2ndloop:
- mov ($dat,$ido),%r10b
- add ($inp,$len),$idx#b
- add %r10b,$idx#b
- add \$1,$len
- mov ($dat,$idx),%r11b
- jnz .Lcnowrap
- mov %rcx,$len
-.Lcnowrap:
- mov %r10b,($dat,$idx)
- mov %r11b,($dat,$ido)
- add \$1,$ido#b
- jnc .Lc2ndloop
- movl \$-1,256($dat)
-
-.align 16
-.Lexit_key:
- xor %eax,%eax
- mov %eax,-8($dat)
- mov %eax,-4($dat)
- ret
-.size asm_RC4_set_key,.-asm_RC4_set_key
-___
-
-# EXCEPTION_DISPOSITION handler (EXCEPTION_RECORD *rec,ULONG64 frame,
-# CONTEXT *context,DISPATCHER_CONTEXT *disp)
-if ($win64) {
-$rec="%rcx";
-$frame="%rdx";
-$context="%r8";
-$disp="%r9";
-
-$code.=<<___;
-.extern __imp_RtlVirtualUnwind
-.type stream_se_handler,\@abi-omnipotent
-.align 16
-stream_se_handler:
- push %rsi
- push %rdi
- push %rbx
- push %rbp
- push %r12
- push %r13
- push %r14
- push %r15
- pushfq
- sub \$64,%rsp
-
- mov 120($context),%rax # pull context->Rax
- mov 248($context),%rbx # pull context->Rip
-
- lea .Lprologue(%rip),%r10
- cmp %r10,%rbx # context->Rip<prologue label
- jb .Lin_prologue
-
- mov 152($context),%rax # pull context->Rsp
-
- lea .Lepilogue(%rip),%r10
- cmp %r10,%rbx # context->Rip>=epilogue label
- jae .Lin_prologue
-
- lea 24(%rax),%rax
-
- mov -8(%rax),%rbx
- mov -16(%rax),%r12
- mov -24(%rax),%r13
- mov %rbx,144($context) # restore context->Rbx
- mov %r12,216($context) # restore context->R12
- mov %r13,224($context) # restore context->R13
-
-.Lin_prologue:
- mov 8(%rax),%rdi
- mov 16(%rax),%rsi
- mov %rax,152($context) # restore context->Rsp
- mov %rsi,168($context) # restore context->Rsi
- mov %rdi,176($context) # restore context->Rdi
-
- jmp .Lcommon_seh_exit
-.size stream_se_handler,.-stream_se_handler
-
-.type key_se_handler,\@abi-omnipotent
-.align 16
-key_se_handler:
- push %rsi
- push %rdi
- push %rbx
- push %rbp
- push %r12
- push %r13
- push %r14
- push %r15
- pushfq
- sub \$64,%rsp
-
- mov 152($context),%rax # pull context->Rsp
- mov 8(%rax),%rdi
- mov 16(%rax),%rsi
- mov %rsi,168($context) # restore context->Rsi
- mov %rdi,176($context) # restore context->Rdi
-
-.Lcommon_seh_exit:
-
- mov 40($disp),%rdi # disp->ContextRecord
- mov $context,%rsi # context
- mov \$154,%ecx # sizeof(CONTEXT)
- .long 0xa548f3fc # cld; rep movsq
-
- mov $disp,%rsi
- xor %rcx,%rcx # arg1, UNW_FLAG_NHANDLER
- mov 8(%rsi),%rdx # arg2, disp->ImageBase
- mov 0(%rsi),%r8 # arg3, disp->ControlPc
- mov 16(%rsi),%r9 # arg4, disp->FunctionEntry
- mov 40(%rsi),%r10 # disp->ContextRecord
- lea 56(%rsi),%r11 # &disp->HandlerData
- lea 24(%rsi),%r12 # &disp->EstablisherFrame
- mov %r10,32(%rsp) # arg5
- mov %r11,40(%rsp) # arg6
- mov %r12,48(%rsp) # arg7
- mov %rcx,56(%rsp) # arg8, (NULL)
- call *__imp_RtlVirtualUnwind(%rip)
-
- mov \$1,%eax # ExceptionContinueSearch
- add \$64,%rsp
- popfq
- pop %r15
- pop %r14
- pop %r13
- pop %r12
- pop %rbp
- pop %rbx
- pop %rdi
- pop %rsi
- ret
-.size key_se_handler,.-key_se_handler
-
-.section .pdata
-.align 4
- .rva .LSEH_begin_asm_RC4
- .rva .LSEH_end_asm_RC4
- .rva .LSEH_info_asm_RC4
-
- .rva .LSEH_begin_asm_RC4_set_key
- .rva .LSEH_end_asm_RC4_set_key
- .rva .LSEH_info_asm_RC4_set_key
-
-.section .xdata
-.align 8
-.LSEH_info_asm_RC4:
- .byte 9,0,0,0
- .rva stream_se_handler
-.LSEH_info_asm_RC4_set_key:
- .byte 9,0,0,0
- .rva key_se_handler
-___
-}
-
-sub reg_part {
-my ($reg,$conv)=@_;
- if ($reg =~ /%r[0-9]+/) { $reg .= $conv; }
- elsif ($conv eq "b") { $reg =~ s/%[er]([^x]+)x?/%$1l/; }
- elsif ($conv eq "w") { $reg =~ s/%[er](.+)/%$1/; }
- elsif ($conv eq "d") { $reg =~ s/%[er](.+)/%e$1/; }
- return $reg;
-}
-
-$code =~ s/(%[a-z0-9]+)#([bwd])/reg_part($1,$2)/gem;
-$code =~ s/\`([^\`]*)\`/eval $1/gem;
-
-print $code;
-
-close STDOUT;
diff --git a/crypto/rc4/rc4.c b/crypto/rc4/rc4.c
index b8e1d9f0..a27a657f 100644
--- a/crypto/rc4/rc4.c
+++ b/crypto/rc4/rc4.c
@@ -56,228 +56,43 @@
#include <openssl/rc4.h>
-#if defined(OPENSSL_NO_ASM) || \
- (!defined(OPENSSL_X86_64) && !defined(OPENSSL_X86))
-
-#if defined(OPENSSL_64_BIT)
-#define RC4_CHUNK uint64_t
-#elif defined(OPENSSL_32_BIT)
-#define RC4_CHUNK uint32_t
-#else
-#error "Unknown word size"
-#endif
-
-
-/* RC4 as implemented from a posting from
- * Newsgroups: sci.crypt
- * From: sterndark@netcom.com (David Sterndark)
- * Subject: RC4 Algorithm revealed.
- * Message-ID: <sternCvKL4B.Hyy@netcom.com>
- * Date: Wed, 14 Sep 1994 06:35:31 GMT */
void RC4(RC4_KEY *key, size_t len, const uint8_t *in, uint8_t *out) {
- uint32_t *d;
- uint32_t x, y, tx, ty;
- size_t i;
-
- x = key->x;
- y = key->y;
- d = key->data;
-
-#define RC4_STEP \
- (x = (x + 1) & 0xff, tx = d[x], y = (tx + y) & 0xff, ty = d[y], d[y] = tx, \
- d[x] = ty, (RC4_CHUNK)d[(tx + ty) & 0xff])
-
- if ((((size_t)in & (sizeof(RC4_CHUNK) - 1)) |
- ((size_t)out & (sizeof(RC4_CHUNK) - 1))) == 0) {
- RC4_CHUNK ichunk, otp;
- const union {
- long one;
- char little;
- } is_endian = {1};
-
- /* I reckon we can afford to implement both endian
- * cases and to decide which way to take at run-time
- * because the machine code appears to be very compact
- * and redundant 1-2KB is perfectly tolerable (i.e.
- * in case the compiler fails to eliminate it:-). By
- * suggestion from Terrel Larson <terr@terralogic.net>
- * who also stands for the is_endian union:-)
- *
- * Special notes.
- *
- * - is_endian is declared automatic as doing otherwise
- * (declaring static) prevents gcc from eliminating
- * the redundant code;
- * - compilers (those I've tried) don't seem to have
- * problems eliminating either the operators guarded
- * by "if (sizeof(RC4_CHUNK)==8)" or the condition
- * expressions themselves so I've got 'em to replace
- * corresponding #ifdefs from the previous version;
- * - I chose to let the redundant switch cases when
- * sizeof(RC4_CHUNK)!=8 be (were also #ifdefed
- * before);
- * - in case you wonder "&(sizeof(RC4_CHUNK)*8-1)" in
- * [LB]ESHFT guards against "shift is out of range"
- * warnings when sizeof(RC4_CHUNK)!=8
- *
- * <appro@fy.chalmers.se> */
- if (!is_endian.little) { /* BIG-ENDIAN CASE */
-#define BESHFT(c) \
- (((sizeof(RC4_CHUNK) - (c) - 1) * 8) & (sizeof(RC4_CHUNK) * 8 - 1))
- for (; len & (0 - sizeof(RC4_CHUNK)); len -= sizeof(RC4_CHUNK)) {
- ichunk = *(RC4_CHUNK *)in;
- otp = RC4_STEP << BESHFT(0);
- otp |= RC4_STEP << BESHFT(1);
- otp |= RC4_STEP << BESHFT(2);
- otp |= RC4_STEP << BESHFT(3);
-#if defined(OPENSSL_64_BIT)
- otp |= RC4_STEP << BESHFT(4);
- otp |= RC4_STEP << BESHFT(5);
- otp |= RC4_STEP << BESHFT(6);
- otp |= RC4_STEP << BESHFT(7);
-#endif
- *(RC4_CHUNK *)out = otp ^ ichunk;
- in += sizeof(RC4_CHUNK);
- out += sizeof(RC4_CHUNK);
- }
- } else { /* LITTLE-ENDIAN CASE */
-#define LESHFT(c) (((c) * 8) & (sizeof(RC4_CHUNK) * 8 - 1))
- for (; len & (0 - sizeof(RC4_CHUNK)); len -= sizeof(RC4_CHUNK)) {
- ichunk = *(RC4_CHUNK *)in;
- otp = RC4_STEP;
- otp |= RC4_STEP << 8;
- otp |= RC4_STEP << 16;
- otp |= RC4_STEP << 24;
-#if defined(OPENSSL_64_BIT)
- otp |= RC4_STEP << LESHFT(4);
- otp |= RC4_STEP << LESHFT(5);
- otp |= RC4_STEP << LESHFT(6);
- otp |= RC4_STEP << LESHFT(7);
-#endif
- *(RC4_CHUNK *)out = otp ^ ichunk;
- in += sizeof(RC4_CHUNK);
- out += sizeof(RC4_CHUNK);
- }
- }
+ uint32_t x = key->x;
+ uint32_t y = key->y;
+ uint32_t *d = key->data;
+
+ for (size_t i = 0; i < len; i++) {
+ x = (x + 1) & 0xff;
+ uint32_t tx = d[x];
+ y = (tx + y) & 0xff;
+ uint32_t ty = d[y];
+ d[x] = ty;
+ d[y] = tx;
+ out[i] = d[(tx + ty) & 0xff] ^ in[i];
}
-#define LOOP(in, out) \
- x = ((x + 1) & 0xff); \
- tx = d[x]; \
- y = (tx + y) & 0xff; \
- d[x] = ty = d[y]; \
- d[y] = tx; \
- (out) = d[(tx + ty) & 0xff] ^ (in);
-
-#ifndef RC4_INDEX
-#define RC4_LOOP(a, b, i) LOOP(*((a)++), *((b)++))
-#else
-#define RC4_LOOP(a, b, i) LOOP(a[i], b[i])
-#endif
- i = len >> 3;
- if (i) {
- for (;;) {
- RC4_LOOP(in, out, 0);
- RC4_LOOP(in, out, 1);
- RC4_LOOP(in, out, 2);
- RC4_LOOP(in, out, 3);
- RC4_LOOP(in, out, 4);
- RC4_LOOP(in, out, 5);
- RC4_LOOP(in, out, 6);
- RC4_LOOP(in, out, 7);
-#ifdef RC4_INDEX
- in += 8;
- out += 8;
-#endif
- if (--i == 0) {
- break;
- }
- }
- }
- i = len & 0x07;
- if (i) {
- for (;;) {
- RC4_LOOP(in, out, 0);
- if (--i == 0) {
- break;
- }
- RC4_LOOP(in, out, 1);
- if (--i == 0) {
- break;
- }
- RC4_LOOP(in, out, 2);
- if (--i == 0) {
- break;
- }
- RC4_LOOP(in, out, 3);
- if (--i == 0) {
- break;
- }
- RC4_LOOP(in, out, 4);
- if (--i == 0) {
- break;
- }
- RC4_LOOP(in, out, 5);
- if (--i == 0) {
- break;
- }
- RC4_LOOP(in, out, 6);
- if (--i == 0) {
- break;
- }
- }
- }
key->x = x;
key->y = y;
}
void RC4_set_key(RC4_KEY *rc4key, unsigned len, const uint8_t *key) {
- uint32_t tmp;
- unsigned i, id1, id2;
- uint32_t *d;
-
- d = &rc4key->data[0];
+ uint32_t *d = &rc4key->data[0];
rc4key->x = 0;
rc4key->y = 0;
- id1 = id2 = 0;
-#define SK_LOOP(d, n) \
- { \
- tmp = d[(n)]; \
- id2 = (key[id1] + tmp + id2) & 0xff; \
- if (++id1 == len) \
- id1 = 0; \
- d[(n)] = d[id2]; \
- d[id2] = tmp; \
- }
-
- for (i = 0; i < 256; i++) {
+ for (unsigned i = 0; i < 256; i++) {
d[i] = i;
}
- for (i = 0; i < 256; i += 4) {
- SK_LOOP(d, i + 0);
- SK_LOOP(d, i + 1);
- SK_LOOP(d, i + 2);
- SK_LOOP(d, i + 3);
- }
-}
-#else
-
-/* In this case several functions are provided by asm code. However, one cannot
- * control asm symbol visibility with command line flags and such so they are
- * always hidden and wrapped by these C functions, which can be so
- * controlled. */
-
-void asm_RC4(RC4_KEY *key, size_t len, const uint8_t *in, uint8_t *out);
-void RC4(RC4_KEY *key, size_t len, const uint8_t *in, uint8_t *out) {
- asm_RC4(key, len, in, out);
-}
-
-void asm_RC4_set_key(RC4_KEY *rc4key, unsigned len, const uint8_t *key);
-void RC4_set_key(RC4_KEY *rc4key, unsigned len, const uint8_t *key) {
- asm_RC4_set_key(rc4key, len, key);
+ unsigned id1 = 0, id2 = 0;
+ for (unsigned i = 0; i < 256; i++) {
+ uint32_t tmp = d[i];
+ id2 = (key[id1] + tmp + id2) & 0xff;
+ if (++id1 == len) {
+ id1 = 0;
+ }
+ d[i] = d[id2];
+ d[id2] = tmp;
+ }
}
-
-#endif /* OPENSSL_NO_ASM || (!OPENSSL_X86_64 && !OPENSSL_X86) */