/* Copyright (c) 2016, Google Inc. * * Permission to use, copy, modify, and/or distribute this software for any * purpose with or without fee is hereby granted, provided that the above * copyright notice and this permission notice appear in all copies. * * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY * SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN ACTION * OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF OR IN * CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. */ #include #include #include #include #include "internal.h" extern uint16_t newhope_omegas_montgomery[]; extern uint16_t newhope_omegas_inv_montgomery[]; extern uint16_t newhope_psis_bitrev_montgomery[]; extern uint16_t newhope_psis_inv_montgomery[]; void NEWHOPE_POLY_frombytes(NEWHOPE_POLY* r, const uint8_t* a) { int i; for (i = 0; i < PARAM_N / 4; i++) { r->coeffs[4 * i + 0] = a[7 * i + 0] | (((uint16_t)a[7 * i + 1] & 0x3f) << 8); r->coeffs[4 * i + 1] = (a[7 * i + 1] >> 6) | (((uint16_t)a[7 * i + 2]) << 2) | (((uint16_t)a[7 * i + 3] & 0x0f) << 10); r->coeffs[4 * i + 2] = (a[7 * i + 3] >> 4) | (((uint16_t)a[7 * i + 4]) << 4) | (((uint16_t)a[7 * i + 5] & 0x03) << 12); r->coeffs[4 * i + 3] = (a[7 * i + 5] >> 2) | (((uint16_t)a[7 * i + 6]) << 6); } } void NEWHOPE_POLY_tobytes(uint8_t* r, const NEWHOPE_POLY* p) { int i; uint16_t t0, t1, t2, t3, m; int16_t c; for (i = 0; i < PARAM_N / 4; i++) { t0 = newhope_barrett_reduce( p->coeffs[4 * i + 0]); /* Make sure that coefficients have only 14 bits */ t1 = newhope_barrett_reduce(p->coeffs[4 * i + 1]); t2 = newhope_barrett_reduce(p->coeffs[4 * i + 2]); t3 = newhope_barrett_reduce(p->coeffs[4 * i + 3]); m = t0 - PARAM_Q; c = m; c >>= 15; t0 = m ^ ((t0 ^ m) & c); /* Make sure that coefficients are in [0,q] */ m = t1 - PARAM_Q; c = m; c >>= 15; t1 = m ^ ((t1 ^ m) & c); /* >= 15; t2 = m ^ ((t2 ^ m) & c); /* >= 15; t3 = m ^ ((t3 ^ m) & c); /* Make sure that coefficients are in [0,q] */ r[7 * i + 0] = t0 & 0xff; r[7 * i + 1] = (t0 >> 8) | (t1 << 6); r[7 * i + 2] = (t1 >> 2); r[7 * i + 3] = (t1 >> 10) | (t2 << 4); r[7 * i + 4] = (t2 >> 4); r[7 * i + 5] = (t2 >> 12) | (t3 << 2); r[7 * i + 6] = (t3 >> 6); } } void newhope_poly_uniform(NEWHOPE_POLY* a, const uint8_t* seed) { /* The reference implementation uses SHAKE-128 here; this implementation uses * AES-CTR. Use half the seed for the initialization vector and half for the * key. */ #if SEED_LENGTH != 2 * AES_BLOCK_SIZE #error "2 * seed length != AES_BLOCK_SIZE" #endif uint8_t ivec[AES_BLOCK_SIZE]; memcpy(ivec, &seed[SEED_LENGTH / 2], SEED_LENGTH / 2); AES_KEY key; AES_set_encrypt_key(seed, 8 * SEED_LENGTH / 2, &key); /* AES state. */ uint8_t ecount[AES_BLOCK_SIZE]; memset(ecount, 0, AES_BLOCK_SIZE); /* Encrypt a block of zeros just to get the random bytes. With luck, 2688 * bytes is enough. */ uint8_t buf[AES_BLOCK_SIZE * 168]; memset(buf, 0, sizeof(buf)); unsigned int block_num = 0; AES_ctr128_encrypt(buf, buf, sizeof(buf), &key, ivec, ecount, &block_num); size_t pos = 0, coeff_num = 0; while (coeff_num < PARAM_N) { /* Specialized for q = 12889 */ uint16_t val = (buf[pos] | ((uint16_t)buf[pos + 1] << 8)) & 0x3fff; if (val < PARAM_Q) { a->coeffs[coeff_num++] = val; } pos += 2; if (pos > sizeof(buf) - 2) { memset(buf, 0, sizeof(buf)); AES_ctr128_encrypt(buf, buf, sizeof(buf), &key, ivec, ecount, &block_num); pos = 0; } } } void NEWHOPE_POLY_noise(NEWHOPE_POLY* r) { #if PARAM_K != 16 #error "poly_getnoise in poly.c only supports k=16" #endif uint32_t tp[PARAM_N]; /* The reference implementation calls ChaCha20 here. */ RAND_bytes((uint8_t *) tp, sizeof(tp)); size_t i; for (i = 0; i < PARAM_N; i++) { const uint32_t t = tp[i]; size_t j; uint32_t d = 0; for (j = 0; j < 8; j++) { d += (t >> j) & 0x01010101; } const uint32_t a = ((d >> 8) & 0xff) + (d & 0xff); const uint32_t b = (d >> 24) + ((d >> 16) & 0xff); r->coeffs[i] = a + PARAM_Q - b; } } void newhope_poly_pointwise(NEWHOPE_POLY* r, const NEWHOPE_POLY* a, const NEWHOPE_POLY* b) { size_t i; for (i = 0; i < PARAM_N; i++) { uint16_t t = newhope_montgomery_reduce(3186 * b->coeffs[i]); /* t is now in Montgomery domain */ r->coeffs[i] = newhope_montgomery_reduce(a->coeffs[i] * t); /* r->coeffs[i] is back in normal domain */ } } void newhope_poly_add(NEWHOPE_POLY* r, const NEWHOPE_POLY* a, const NEWHOPE_POLY* b) { size_t i; for (i = 0; i < PARAM_N; i++) { r->coeffs[i] = newhope_barrett_reduce(a->coeffs[i] + b->coeffs[i]); } } void NEWHOPE_POLY_noise_ntt(NEWHOPE_POLY* r) { NEWHOPE_POLY_noise(r); /* Forward NTT transformation. Because we're operating on a noise polynomial, * we can regard the bits as already reversed and skip the bit-reversal * step: * * newhope_bitrev_vector(r->coeffs); */ newhope_mul_coefficients(r->coeffs, newhope_psis_bitrev_montgomery); newhope_ntt((uint16_t *) r->coeffs, newhope_omegas_montgomery); } void newhope_poly_invntt(NEWHOPE_POLY* r) { newhope_bitrev_vector(r->coeffs); newhope_ntt((uint16_t *) r->coeffs, newhope_omegas_inv_montgomery); newhope_mul_coefficients(r->coeffs, newhope_psis_inv_montgomery); }