/* Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com) * All rights reserved. * * This package is an SSL implementation written * by Eric Young (eay@cryptsoft.com). * The implementation was written so as to conform with Netscapes SSL. * * This library is free for commercial and non-commercial use as long as * the following conditions are aheared to. The following conditions * apply to all code found in this distribution, be it the RC4, RSA, * lhash, DES, etc., code; not just the SSL code. The SSL documentation * included with this distribution is covered by the same copyright terms * except that the holder is Tim Hudson (tjh@cryptsoft.com). * * Copyright remains Eric Young's, and as such any Copyright notices in * the code are not to be removed. * If this package is used in a product, Eric Young should be given attribution * as the author of the parts of the library used. * This can be in the form of a textual message at program startup or * in documentation (online or textual) provided with the package. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. All advertising materials mentioning features or use of this software * must display the following acknowledgement: * "This product includes cryptographic software written by * Eric Young (eay@cryptsoft.com)" * The word 'cryptographic' can be left out if the rouines from the library * being used are not cryptographic related :-). * 4. If you include any Windows specific code (or a derivative thereof) from * the apps directory (application code) you must include an acknowledgement: * "This product includes software written by Tim Hudson (tjh@cryptsoft.com)" * * THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. * * The licence and distribution terms for any publically available version or * derivative of this code cannot be changed. i.e. this code cannot simply be * copied and put under another distribution licence * [including the GNU Public Licence.] */ /* ==================================================================== * Copyright (c) 1998-2007 The OpenSSL Project. All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in * the documentation and/or other materials provided with the * distribution. * * 3. All advertising materials mentioning features or use of this * software must display the following acknowledgment: * "This product includes software developed by the OpenSSL Project * for use in the OpenSSL Toolkit. (http://www.openssl.org/)" * * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to * endorse or promote products derived from this software without * prior written permission. For written permission, please contact * openssl-core@openssl.org. * * 5. Products derived from this software may not be called "OpenSSL" * nor may "OpenSSL" appear in their names without prior written * permission of the OpenSSL Project. * * 6. Redistributions of any form whatsoever must retain the following * acknowledgment: * "This product includes software developed by the OpenSSL Project * for use in the OpenSSL Toolkit (http://www.openssl.org/)" * * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ``AS IS'' AND ANY * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED * OF THE POSSIBILITY OF SUCH DAMAGE. * ==================================================================== * * This product includes cryptographic software written by Eric Young * (eay@cryptsoft.com). This product includes software written by Tim * Hudson (tjh@cryptsoft.com). * */ /* ==================================================================== * Copyright 2002 Sun Microsystems, Inc. ALL RIGHTS RESERVED. * ECC cipher suite support in OpenSSL originally developed by * SUN MICROSYSTEMS, INC., and contributed to the OpenSSL project. */ /* ==================================================================== * Copyright 2005 Nokia. All rights reserved. * * The portions of the attached software ("Contribution") is developed by * Nokia Corporation and is licensed pursuant to the OpenSSL open source * license. * * The Contribution, originally written by Mika Kousa and Pasi Eronen of * Nokia Corporation, consists of the "PSK" (Pre-Shared Key) ciphersuites * support (see RFC 4279) to OpenSSL. * * No patent licenses or other rights except those expressly stated in * the OpenSSL open source license shall be deemed granted or received * expressly, by implication, estoppel, or otherwise. * * No assurances are provided by Nokia that the Contribution does not * infringe the patent or other intellectual property rights of any third * party or that the license provides you with all the necessary rights * to make use of the Contribution. * * THE SOFTWARE IS PROVIDED "AS IS" WITHOUT WARRANTY OF ANY KIND. IN * ADDITION TO THE DISCLAIMERS INCLUDED IN THE LICENSE, NOKIA * SPECIFICALLY DISCLAIMS ANY LIABILITY FOR CLAIMS BROUGHT BY YOU OR ANY * OTHER ENTITY BASED ON INFRINGEMENT OF INTELLECTUAL PROPERTY RIGHTS OR * OTHERWISE. */ #include #include #include #include #include #include "ssl_locl.h" struct handshake_digest { long mask; const EVP_MD *(*md_func)(void); }; static const struct handshake_digest ssl_handshake_digests[SSL_MAX_DIGEST] = { {SSL_HANDSHAKE_MAC_MD5, EVP_md5}, {SSL_HANDSHAKE_MAC_SHA, EVP_sha1}, {SSL_HANDSHAKE_MAC_SHA256, EVP_sha256}, {SSL_HANDSHAKE_MAC_SHA384, EVP_sha384}, }; #define CIPHER_ADD 1 #define CIPHER_KILL 2 #define CIPHER_DEL 3 #define CIPHER_ORD 4 #define CIPHER_SPECIAL 5 typedef struct cipher_order_st { const SSL_CIPHER *cipher; int active; int dead; int in_group; struct cipher_order_st *next, *prev; } CIPHER_ORDER; static const SSL_CIPHER cipher_aliases[] = { {0, SSL_TXT_ALL, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}, /* "COMPLEMENTOFDEFAULT" (does *not* include ciphersuites not found in ALL!) */ {0, SSL_TXT_CMPDEF, 0, SSL_kEDH | SSL_kEECDH, SSL_aNULL, 0, 0, 0, 0, 0, 0, 0}, /* key exchange aliases * (some of those using only a single bit here combine * multiple key exchange algs according to the RFCs, * e.g. kEDH combines DHE_DSS and DHE_RSA) */ {0, SSL_TXT_kRSA, 0, SSL_kRSA, 0, 0, 0, 0, 0, 0, 0, 0}, {0, SSL_TXT_kEDH, 0, SSL_kEDH, 0, 0, 0, 0, 0, 0, 0, 0}, {0, SSL_TXT_DH, 0, SSL_kEDH, 0, 0, 0, 0, 0, 0, 0, 0}, {0, SSL_TXT_kEECDH, 0, SSL_kEECDH, 0, 0, 0, 0, 0, 0, 0, 0}, {0, SSL_TXT_ECDH, 0, SSL_kEECDH, 0, 0, 0, 0, 0, 0, 0, 0}, {0, SSL_TXT_kPSK, 0, SSL_kPSK, 0, 0, 0, 0, 0, 0, 0, 0}, /* server authentication aliases */ {0, SSL_TXT_aRSA, 0, 0, SSL_aRSA, 0, 0, 0, 0, 0, 0, 0}, {0, SSL_TXT_aNULL, 0, 0, SSL_aNULL, 0, 0, 0, 0, 0, 0, 0}, {0, SSL_TXT_aECDSA, 0, 0, SSL_aECDSA, 0, 0, 0, 0, 0, 0, 0}, {0, SSL_TXT_ECDSA, 0, 0, SSL_aECDSA, 0, 0, 0, 0, 0, 0, 0}, {0, SSL_TXT_aPSK, 0, 0, SSL_aPSK, 0, 0, 0, 0, 0, 0, 0}, /* aliases combining key exchange and server authentication */ {0, SSL_TXT_EDH, 0, SSL_kEDH, ~SSL_aNULL, 0, 0, 0, 0, 0, 0, 0}, {0, SSL_TXT_EECDH, 0, SSL_kEECDH, ~SSL_aNULL, 0, 0, 0, 0, 0, 0, 0}, {0, SSL_TXT_RSA, 0, SSL_kRSA, SSL_aRSA, 0, 0, 0, 0, 0, 0, 0}, {0, SSL_TXT_ADH, 0, SSL_kEDH, SSL_aNULL, 0, 0, 0, 0, 0, 0, 0}, {0, SSL_TXT_AECDH, 0, SSL_kEECDH, SSL_aNULL, 0, 0, 0, 0, 0, 0, 0}, {0, SSL_TXT_PSK, 0, SSL_kPSK, SSL_aPSK, 0, 0, 0, 0, 0, 0, 0}, /* symmetric encryption aliases */ {0, SSL_TXT_3DES, 0, 0, 0, SSL_3DES, 0, 0, 0, 0, 0, 0}, {0, SSL_TXT_RC4, 0, 0, 0, SSL_RC4, 0, 0, 0, 0, 0, 0}, {0, SSL_TXT_AES128, 0, 0, 0, SSL_AES128 | SSL_AES128GCM, 0, 0, 0, 0, 0, 0}, {0, SSL_TXT_AES256, 0, 0, 0, SSL_AES256 | SSL_AES256GCM, 0, 0, 0, 0, 0, 0}, {0, SSL_TXT_AES, 0, 0, 0, SSL_AES, 0, 0, 0, 0, 0, 0}, {0, SSL_TXT_AES_GCM, 0, 0, 0, SSL_AES128GCM | SSL_AES256GCM, 0, 0, 0, 0, 0, 0}, {0, SSL_TXT_CHACHA20, 0, 0, 0, SSL_CHACHA20POLY1305, 0, 0, 0, 0, 0, 0}, /* MAC aliases */ {0, SSL_TXT_MD5, 0, 0, 0, 0, SSL_MD5, 0, 0, 0, 0, 0}, {0, SSL_TXT_SHA1, 0, 0, 0, 0, SSL_SHA1, 0, 0, 0, 0, 0}, {0, SSL_TXT_SHA, 0, 0, 0, 0, SSL_SHA1, 0, 0, 0, 0, 0}, {0, SSL_TXT_SHA256, 0, 0, 0, 0, SSL_SHA256, 0, 0, 0, 0, 0}, {0, SSL_TXT_SHA384, 0, 0, 0, 0, SSL_SHA384, 0, 0, 0, 0, 0}, /* protocol version aliases */ {0, SSL_TXT_SSLV3, 0, 0, 0, 0, 0, SSL_SSLV3, 0, 0, 0, 0}, {0, SSL_TXT_TLSV1, 0, 0, 0, 0, 0, SSL_TLSV1, 0, 0, 0, 0}, {0, SSL_TXT_TLSV1_2, 0, 0, 0, 0, 0, SSL_TLSV1_2, 0, 0, 0, 0}, /* strength classes */ {0, SSL_TXT_MEDIUM, 0, 0, 0, 0, 0, 0, SSL_MEDIUM, 0, 0, 0}, {0, SSL_TXT_HIGH, 0, 0, 0, 0, 0, 0, SSL_HIGH, 0, 0, 0}, /* FIPS 140-2 approved ciphersuite */ {0, SSL_TXT_FIPS, 0, 0, 0, 0, 0, 0, SSL_FIPS, 0, 0, 0}, }; /* ssl_cipher_get_evp_aead sets |*aead| to point to the correct EVP_AEAD object * for |s->cipher|. It returns 1 on success and 0 on error. */ int ssl_cipher_get_evp_aead(const SSL_SESSION *s, const EVP_AEAD **aead) { const SSL_CIPHER *c = s->cipher; *aead = NULL; if (c == NULL) { return 0; } if ((c->algorithm2 & SSL_CIPHER_ALGORITHM2_AEAD) == 0 && (c->algorithm2 & SSL_CIPHER_ALGORITHM2_STATEFUL_AEAD) == 0) { return 0; } switch (c->algorithm_enc) { case SSL_AES128GCM: *aead = EVP_aead_aes_128_gcm(); return 1; case SSL_AES256GCM: *aead = EVP_aead_aes_256_gcm(); return 1; case SSL_CHACHA20POLY1305: *aead = EVP_aead_chacha20_poly1305(); return 1; case SSL_RC4: if (c->algorithm_mac != SSL_MD5) { return 0; } *aead = EVP_aead_rc4_md5_tls(); return 1; } return 0; } int ssl_cipher_get_evp(const SSL_SESSION *s, const EVP_CIPHER **enc, const EVP_MD **md, int *mac_pkey_type, int *mac_secret_size) { const SSL_CIPHER *c; c = s->cipher; if (c == NULL || /* This function doesn't deal with EVP_AEAD. See * |ssl_cipher_get_aead_evp|. */ (c->algorithm2 & SSL_CIPHER_ALGORITHM2_AEAD) || enc == NULL || md == NULL) { return 0; } switch (c->algorithm_enc) { case SSL_3DES: *enc = EVP_des_ede3_cbc(); break; case SSL_RC4: *enc = EVP_rc4(); break; case SSL_AES128: *enc = EVP_aes_128_cbc(); break; case SSL_AES256: *enc = EVP_aes_256_cbc(); break; default: return 0; } if (!ssl_cipher_get_mac(s, md, mac_pkey_type, mac_secret_size)) { return 0; } assert(*enc != NULL && *md != NULL); /* TODO(fork): enable the stitched cipher modes. */ #if 0 if (s->ssl_version>>8 != TLS1_VERSION_MAJOR || s->ssl_version < TLS1_VERSION) return 1; if (c->algorithm_enc == SSL_RC4 && c->algorithm_mac == SSL_MD5 && (evp=EVP_get_cipherbyname("RC4-HMAC-MD5"))) *enc = evp, *md = NULL; else if (c->algorithm_enc == SSL_AES128 && c->algorithm_mac == SSL_SHA1 && (evp=EVP_get_cipherbyname("AES-128-CBC-HMAC-SHA1"))) *enc = evp, *md = NULL; else if (c->algorithm_enc == SSL_AES256 && c->algorithm_mac == SSL_SHA1 && (evp=EVP_get_cipherbyname("AES-256-CBC-HMAC-SHA1"))) *enc = evp, *md = NULL; #endif return 1; } int ssl_cipher_get_mac(const SSL_SESSION *s, const EVP_MD **md, int *mac_pkey_type, int *mac_secret_size) { const SSL_CIPHER *c; c = s->cipher; if (c == NULL) { return 0; } switch (c->algorithm_mac) { case SSL_MD5: *md = EVP_md5(); break; case SSL_SHA1: *md = EVP_sha1(); break; case SSL_SHA256: *md = EVP_sha256(); break; case SSL_SHA384: *md = EVP_sha384(); break; default: return 0; } if (mac_pkey_type != NULL) { *mac_pkey_type = EVP_PKEY_HMAC; } if (mac_secret_size != NULL) { *mac_secret_size = EVP_MD_size(*md); } return 1; } int ssl_get_handshake_digest(int idx, long *mask, const EVP_MD **md) { if (idx < 0 || idx >= SSL_MAX_DIGEST) { return 0; } *mask = ssl_handshake_digests[idx].mask; *md = ssl_handshake_digests[idx].md_func(); return 1; } #define ITEM_SEP(a) \ (((a) == ':') || ((a) == ' ') || ((a) == ';') || ((a) == ',')) static void ll_append_tail(CIPHER_ORDER **head, CIPHER_ORDER *curr, CIPHER_ORDER **tail) { if (curr == *tail) { return; } if (curr == *head) { *head = curr->next; } if (curr->prev != NULL) { curr->prev->next = curr->next; } if (curr->next != NULL) { curr->next->prev = curr->prev; } (*tail)->next = curr; curr->prev = *tail; curr->next = NULL; *tail = curr; } static void ll_append_head(CIPHER_ORDER **head, CIPHER_ORDER *curr, CIPHER_ORDER **tail) { if (curr == *head) { return; } if (curr == *tail) { *tail = curr->prev; } if (curr->next != NULL) { curr->next->prev = curr->prev; } if (curr->prev != NULL) { curr->prev->next = curr->next; } (*head)->prev = curr; curr->next = *head; curr->prev = NULL; *head = curr; } static void ssl_cipher_collect_ciphers(const SSL_PROTOCOL_METHOD *ssl_method, int num_of_ciphers, CIPHER_ORDER *co_list, CIPHER_ORDER **head_p, CIPHER_ORDER **tail_p) { int i, co_list_num; const SSL_CIPHER *c; /* We have num_of_ciphers descriptions compiled in, depending on the method * selected (SSLv2 and/or SSLv3, TLSv1 etc). These will later be sorted in a * linked list with at most num entries. */ /* Get the initial list of ciphers */ co_list_num = 0; /* actual count of ciphers */ for (i = 0; i < num_of_ciphers; i++) { c = ssl_method->get_cipher(i); /* drop those that use any of that is not available */ if (c != NULL && c->valid) { co_list[co_list_num].cipher = c; co_list[co_list_num].next = NULL; co_list[co_list_num].prev = NULL; co_list[co_list_num].active = 0; co_list[co_list_num].in_group = 0; co_list_num++; } } /* Prepare linked list from list entries. */ if (co_list_num > 0) { co_list[0].prev = NULL; if (co_list_num > 1) { co_list[0].next = &co_list[1]; for (i = 1; i < co_list_num - 1; i++) { co_list[i].prev = &co_list[i - 1]; co_list[i].next = &co_list[i + 1]; } co_list[co_list_num - 1].prev = &co_list[co_list_num - 2]; } co_list[co_list_num - 1].next = NULL; *head_p = &co_list[0]; *tail_p = &co_list[co_list_num - 1]; } } static void ssl_cipher_collect_aliases(const SSL_CIPHER **ca_list, int num_of_group_aliases, CIPHER_ORDER *head) { CIPHER_ORDER *ciph_curr; const SSL_CIPHER **ca_curr; int i; /* First, add the real ciphers as already collected. */ ciph_curr = head; ca_curr = ca_list; while (ciph_curr != NULL) { *ca_curr = ciph_curr->cipher; ca_curr++; ciph_curr = ciph_curr->next; } /* Now we add the available ones from the cipher_aliases[] table. They * represent either one or more algorithms, some of which in any affected * category must be supported (set in enabled_mask), or represent a cipher * strength value (will be added in any case because algorithms=0). */ for (i = 0; i < num_of_group_aliases; i++) { *ca_curr = cipher_aliases + i; ca_curr++; } *ca_curr = NULL; /* end of list */ } static void ssl_cipher_apply_rule( unsigned long cipher_id, unsigned long alg_mkey, unsigned long alg_auth, unsigned long alg_enc, unsigned long alg_mac, unsigned long alg_ssl, unsigned long algo_strength, int rule, int strength_bits, int in_group, CIPHER_ORDER **head_p, CIPHER_ORDER **tail_p) { CIPHER_ORDER *head, *tail, *curr, *next, *last; const SSL_CIPHER *cp; int reverse = 0; if (rule == CIPHER_DEL) { /* needed to maintain sorting between currently deleted ciphers */ reverse = 1; } head = *head_p; tail = *tail_p; if (reverse) { next = tail; last = head; } else { next = head; last = tail; } curr = NULL; for (;;) { if (curr == last) { break; } curr = next; if (curr == NULL) { break; } next = reverse ? curr->prev : curr->next; cp = curr->cipher; /* Selection criteria is either the value of strength_bits * or the algorithms used. */ if (strength_bits >= 0) { if (strength_bits != cp->strength_bits) { continue; } } else { if ((alg_mkey && !(alg_mkey & cp->algorithm_mkey)) || (alg_auth && !(alg_auth & cp->algorithm_auth)) || (alg_enc && !(alg_enc & cp->algorithm_enc)) || (alg_mac && !(alg_mac & cp->algorithm_mac)) || (alg_ssl && !(alg_ssl & cp->algorithm_ssl)) || (algo_strength && !(algo_strength & cp->algo_strength))) { continue; } } /* add the cipher if it has not been added yet. */ if (rule == CIPHER_ADD) { /* reverse == 0 */ if (!curr->active) { ll_append_tail(&head, curr, &tail); curr->active = 1; curr->in_group = in_group; } } /* Move the added cipher to this location */ else if (rule == CIPHER_ORD) { /* reverse == 0 */ if (curr->active) { ll_append_tail(&head, curr, &tail); curr->in_group = 0; } } else if (rule == CIPHER_DEL) { /* reverse == 1 */ if (curr->active) { /* most recently deleted ciphersuites get best positions * for any future CIPHER_ADD (note that the CIPHER_DEL loop * works in reverse to maintain the order) */ ll_append_head(&head, curr, &tail); curr->active = 0; curr->in_group = 0; } } else if (rule == CIPHER_KILL) { /* reverse == 0 */ if (head == curr) { head = curr->next; } else { curr->prev->next = curr->next; } if (tail == curr) { tail = curr->prev; } curr->active = 0; if (curr->next != NULL) { curr->next->prev = curr->prev; } if (curr->prev != NULL) { curr->prev->next = curr->next; } curr->next = NULL; curr->prev = NULL; } } *head_p = head; *tail_p = tail; } static int ssl_cipher_strength_sort(CIPHER_ORDER **head_p, CIPHER_ORDER **tail_p) { int max_strength_bits, i, *number_uses; CIPHER_ORDER *curr; /* This routine sorts the ciphers with descending strength. The sorting must * keep the pre-sorted sequence, so we apply the normal sorting routine as * '+' movement to the end of the list. */ max_strength_bits = 0; curr = *head_p; while (curr != NULL) { if (curr->active && curr->cipher->strength_bits > max_strength_bits) { max_strength_bits = curr->cipher->strength_bits; } curr = curr->next; } number_uses = OPENSSL_malloc((max_strength_bits + 1) * sizeof(int)); if (!number_uses) { OPENSSL_PUT_ERROR(SSL, ssl_cipher_strength_sort, ERR_R_MALLOC_FAILURE); return 0; } memset(number_uses, 0, (max_strength_bits + 1) * sizeof(int)); /* Now find the strength_bits values actually used. */ curr = *head_p; while (curr != NULL) { if (curr->active) { number_uses[curr->cipher->strength_bits]++; } curr = curr->next; } /* Go through the list of used strength_bits values in descending order. */ for (i = max_strength_bits; i >= 0; i--) { if (number_uses[i] > 0) { ssl_cipher_apply_rule(0, 0, 0, 0, 0, 0, 0, CIPHER_ORD, i, 0, head_p, tail_p); } } OPENSSL_free(number_uses); return 1; } static int ssl_cipher_process_rulestr(const char *rule_str, CIPHER_ORDER **head_p, CIPHER_ORDER **tail_p, const SSL_CIPHER **ca_list) { unsigned long alg_mkey, alg_auth, alg_enc, alg_mac, alg_ssl, algo_strength; const char *l, *buf; int j, multi, found, rule, retval, ok, buflen, in_group = 0, has_group = 0; unsigned long cipher_id = 0; char ch; retval = 1; l = rule_str; for (;;) { ch = *l; if (ch == '\0') { break; /* done */ } if (in_group) { if (ch == ']') { if (!in_group) { OPENSSL_PUT_ERROR(SSL, ssl_cipher_process_rulestr, SSL_R_UNEXPECTED_GROUP_CLOSE); retval = found = in_group = 0; break; } if (*tail_p) { (*tail_p)->in_group = 0; } in_group = 0; l++; continue; } if (ch == '|') { rule = CIPHER_ADD; l++; continue; } else if (!(ch >= 'a' && ch <= 'z') && !(ch >= 'A' && ch <= 'Z') && !(ch >= '0' && ch <= '9')) { OPENSSL_PUT_ERROR(SSL, ssl_cipher_process_rulestr, SSL_R_UNEXPECTED_OPERATOR_IN_GROUP); retval = found = in_group = 0; break; } else { rule = CIPHER_ADD; } } else if (ch == '-') { rule = CIPHER_DEL; l++; } else if (ch == '+') { rule = CIPHER_ORD; l++; } else if (ch == '!') { rule = CIPHER_KILL; l++; } else if (ch == '@') { rule = CIPHER_SPECIAL; l++; } else if (ch == '[') { if (in_group) { OPENSSL_PUT_ERROR(SSL, ssl_cipher_process_rulestr, SSL_R_NESTED_GROUP); retval = found = in_group = 0; break; } in_group = 1; has_group = 1; l++; continue; } else { rule = CIPHER_ADD; } /* If preference groups are enabled, the only legal operator is +. * Otherwise the in_group bits will get mixed up. */ if (has_group && rule != CIPHER_ADD) { OPENSSL_PUT_ERROR(SSL, ssl_cipher_process_rulestr, SSL_R_MIXED_SPECIAL_OPERATOR_WITH_GROUPS); retval = found = in_group = 0; break; } if (ITEM_SEP(ch)) { l++; continue; } alg_mkey = 0; alg_auth = 0; alg_enc = 0; alg_mac = 0; alg_ssl = 0; algo_strength = 0; for (;;) { ch = *l; buf = l; buflen = 0; while (((ch >= 'A') && (ch <= 'Z')) || ((ch >= '0') && (ch <= '9')) || ((ch >= 'a') && (ch <= 'z')) || (ch == '-') || (ch == '.')) { ch = *(++l); buflen++; } if (buflen == 0) { /* We hit something we cannot deal with, it is no command or separator * nor alphanumeric, so we call this an error. */ OPENSSL_PUT_ERROR(SSL, ssl_cipher_process_rulestr, SSL_R_INVALID_COMMAND); retval = found = in_group = 0; l++; break; } if (rule == CIPHER_SPECIAL) { found = 0; /* unused -- avoid compiler warning */ break; /* special treatment */ } /* check for multi-part specification */ if (ch == '+') { multi = 1; l++; } else { multi = 0; } /* Now search for the cipher alias in the ca_list. Be careful with the * strncmp, because the "buflen" limitation will make the rule "ADH:SOME" * and the cipher "ADH-MY-CIPHER" look like a match for buflen=3. So * additionally check whether the cipher name found has the correct * length. We can save a strlen() call: just checking for the '\0' at the * right place is sufficient, we have to strncmp() anyway. (We cannot use * strcmp(), because buf is not '\0' terminated.) */ j = found = 0; cipher_id = 0; while (ca_list[j]) { if (!strncmp(buf, ca_list[j]->name, buflen) && (ca_list[j]->name[buflen] == '\0')) { found = 1; break; } else { j++; } } if (!found) { break; /* ignore this entry */ } if (ca_list[j]->algorithm_mkey) { if (alg_mkey) { alg_mkey &= ca_list[j]->algorithm_mkey; if (!alg_mkey) { found = 0; break; } } else { alg_mkey = ca_list[j]->algorithm_mkey; } } if (ca_list[j]->algorithm_auth) { if (alg_auth) { alg_auth &= ca_list[j]->algorithm_auth; if (!alg_auth) { found = 0; break; } } else { alg_auth = ca_list[j]->algorithm_auth; } } if (ca_list[j]->algorithm_enc) { if (alg_enc) { alg_enc &= ca_list[j]->algorithm_enc; if (!alg_enc) { found = 0; break; } } else { alg_enc = ca_list[j]->algorithm_enc; } } if (ca_list[j]->algorithm_mac) { if (alg_mac) { alg_mac &= ca_list[j]->algorithm_mac; if (!alg_mac) { found = 0; break; } } else { alg_mac = ca_list[j]->algorithm_mac; } } if (ca_list[j]->algo_strength) { if (algo_strength) { algo_strength &= ca_list[j]->algo_strength; if (!algo_strength) { found = 0; break; } } else { algo_strength |= ca_list[j]->algo_strength; } } if (ca_list[j]->valid) { /* explicit ciphersuite found; its protocol version does not become * part of the search pattern! */ cipher_id = ca_list[j]->id; } else { /* not an explicit ciphersuite; only in this case, the protocol version * is considered part of the search pattern. */ if (ca_list[j]->algorithm_ssl) { if (alg_ssl) { alg_ssl &= ca_list[j]->algorithm_ssl; if (!alg_ssl) { found = 0; break; } } else { alg_ssl = ca_list[j]->algorithm_ssl; } } } if (!multi) { break; } } /* Ok, we have the rule, now apply it. */ if (rule == CIPHER_SPECIAL) { /* special command */ ok = 0; if (buflen == 8 && !strncmp(buf, "STRENGTH", 8)) { ok = ssl_cipher_strength_sort(head_p, tail_p); } else { OPENSSL_PUT_ERROR(SSL, ssl_cipher_process_rulestr, SSL_R_INVALID_COMMAND); } if (ok == 0) { retval = 0; } /* We do not support any "multi" options together with "@", so throw away * the rest of the command, if any left, until end or ':' is found. */ while (*l != '\0' && !ITEM_SEP(*l)) { l++; } } else if (found) { ssl_cipher_apply_rule(cipher_id, alg_mkey, alg_auth, alg_enc, alg_mac, alg_ssl, algo_strength, rule, -1, in_group, head_p, tail_p); } else { while (*l != '\0' && !ITEM_SEP(*l)) { l++; } } } if (in_group) { OPENSSL_PUT_ERROR(SSL, ssl_cipher_process_rulestr, SSL_R_INVALID_COMMAND); retval = 0; } return retval; } STACK_OF(SSL_CIPHER) * ssl_create_cipher_list(const SSL_PROTOCOL_METHOD *ssl_method, struct ssl_cipher_preference_list_st **cipher_list, STACK_OF(SSL_CIPHER) * *cipher_list_by_id, const char *rule_str, CERT *c) { int ok, num_of_ciphers, num_of_alias_max, num_of_group_aliases; STACK_OF(SSL_CIPHER) *cipherstack = NULL, *tmp_cipher_list = NULL; const char *rule_p; CIPHER_ORDER *co_list = NULL, *head = NULL, *tail = NULL, *curr; const SSL_CIPHER **ca_list = NULL; uint8_t *in_group_flags = NULL; unsigned int num_in_group_flags = 0; struct ssl_cipher_preference_list_st *pref_list = NULL; /* Return with error if nothing to do. */ if (rule_str == NULL || cipher_list == NULL) { return NULL; } /* Now we have to collect the available ciphers from the compiled in ciphers. * We cannot get more than the number compiled in, so it is used for * allocation. */ num_of_ciphers = ssl_method->num_ciphers(); co_list = (CIPHER_ORDER *)OPENSSL_malloc(sizeof(CIPHER_ORDER) * num_of_ciphers); if (co_list == NULL) { OPENSSL_PUT_ERROR(SSL, ssl_create_cipher_list, ERR_R_MALLOC_FAILURE); return NULL; } ssl_cipher_collect_ciphers(ssl_method, num_of_ciphers, co_list, &head, &tail); /* Now arrange all ciphers by preference: * TODO(davidben): Compute this order once and copy it. */ /* Everything else being equal, prefer ECDHE_ECDSA then ECDHE_RSA over other * key exchange mechanisms */ ssl_cipher_apply_rule(0, SSL_kEECDH, SSL_aECDSA, 0, 0, 0, 0, CIPHER_ADD, -1, 0, &head, &tail); ssl_cipher_apply_rule(0, SSL_kEECDH, 0, 0, 0, 0, 0, CIPHER_ADD, -1, 0, &head, &tail); ssl_cipher_apply_rule(0, SSL_kEECDH, 0, 0, 0, 0, 0, CIPHER_DEL, -1, 0, &head, &tail); /* Order the bulk ciphers. First the preferred AEAD ciphers. We prefer * CHACHA20 unless there is hardware support for fast and constant-time * AES_GCM. */ if (EVP_has_aes_hardware()) { ssl_cipher_apply_rule(0, 0, 0, SSL_AES256GCM, 0, 0, 0, CIPHER_ADD, -1, 0, &head, &tail); ssl_cipher_apply_rule(0, 0, 0, SSL_AES128GCM, 0, 0, 0, CIPHER_ADD, -1, 0, &head, &tail); ssl_cipher_apply_rule(0, 0, 0, SSL_CHACHA20POLY1305, 0, 0, 0, CIPHER_ADD, -1, 0, &head, &tail); } else { ssl_cipher_apply_rule(0, 0, 0, SSL_CHACHA20POLY1305, 0, 0, 0, CIPHER_ADD, -1, 0, &head, &tail); ssl_cipher_apply_rule(0, 0, 0, SSL_AES256GCM, 0, 0, 0, CIPHER_ADD, -1, 0, &head, &tail); ssl_cipher_apply_rule(0, 0, 0, SSL_AES128GCM, 0, 0, 0, CIPHER_ADD, -1, 0, &head, &tail); } /* Then the legacy non-AEAD ciphers: AES_256_CBC, AES-128_CBC, RC4_128_SHA, * RC4_128_MD5, 3DES_EDE_CBC_SHA. */ ssl_cipher_apply_rule(0, 0, 0, SSL_AES256, 0, 0, 0, CIPHER_ADD, -1, 0, &head, &tail); ssl_cipher_apply_rule(0, 0, 0, SSL_AES128, 0, 0, 0, CIPHER_ADD, -1, 0, &head, &tail); ssl_cipher_apply_rule(0, 0, 0, SSL_RC4, ~SSL_MD5, 0, 0, CIPHER_ADD, -1, 0, &head, &tail); ssl_cipher_apply_rule(0, 0, 0, SSL_RC4, SSL_MD5, 0, 0, CIPHER_ADD, -1, 0, &head, &tail); ssl_cipher_apply_rule(0, 0, 0, SSL_3DES, 0, 0, 0, CIPHER_ADD, -1, 0, &head, &tail); /* Temporarily enable everything else for sorting */ ssl_cipher_apply_rule(0, 0, 0, 0, 0, 0, 0, CIPHER_ADD, -1, 0, &head, &tail); /* Move ciphers without forward secrecy to the end. */ ssl_cipher_apply_rule(0, ~(SSL_kEDH | SSL_kEECDH), 0, 0, 0, 0, 0, CIPHER_ORD, -1, 0, &head, &tail); /* Move anonymous ciphers to the end. Usually, these will remain disabled. * (For applications that allow them, they aren't too bad, but we prefer * authenticated ciphers.) * TODO(davidben): Remove them altogether? */ ssl_cipher_apply_rule(0, 0, SSL_aNULL, 0, 0, 0, 0, CIPHER_ORD, -1, 0, &head, &tail); /* Now disable everything (maintaining the ordering!) */ ssl_cipher_apply_rule(0, 0, 0, 0, 0, 0, 0, CIPHER_DEL, -1, 0, &head, &tail); /* We also need cipher aliases for selecting based on the rule_str. There * might be two types of entries in the rule_str: 1) names of ciphers * themselves 2) aliases for groups of ciphers. For 1) we need the available * ciphers and for 2) the cipher groups of cipher_aliases added together in * one list (otherwise we would be happy with just the cipher_aliases * table). */ num_of_group_aliases = sizeof(cipher_aliases) / sizeof(SSL_CIPHER); num_of_alias_max = num_of_ciphers + num_of_group_aliases + 1; ca_list = OPENSSL_malloc(sizeof(SSL_CIPHER *) * num_of_alias_max); if (ca_list == NULL) { OPENSSL_PUT_ERROR(SSL, ssl_create_cipher_list, ERR_R_MALLOC_FAILURE); goto err; } ssl_cipher_collect_aliases(ca_list, num_of_group_aliases, head); /* If the rule_string begins with DEFAULT, apply the default rule before * using the (possibly available) additional rules. */ ok = 1; rule_p = rule_str; if (strncmp(rule_str, "DEFAULT", 7) == 0) { ok = ssl_cipher_process_rulestr(SSL_DEFAULT_CIPHER_LIST, &head, &tail, ca_list); rule_p += 7; if (*rule_p == ':') { rule_p++; } } if (ok && strlen(rule_p) > 0) { ok = ssl_cipher_process_rulestr(rule_p, &head, &tail, ca_list); } OPENSSL_free((void *)ca_list); /* Not needed anymore */ if (!ok) { goto err; } /* Allocate new "cipherstack" for the result, return with error * if we cannot get one. */ cipherstack = sk_SSL_CIPHER_new_null(); if (cipherstack == NULL) { goto err; } in_group_flags = OPENSSL_malloc(num_of_ciphers); if (!in_group_flags) { goto err; } /* The cipher selection for the list is done. The ciphers are added * to the resulting precedence to the STACK_OF(SSL_CIPHER). */ for (curr = head; curr != NULL; curr = curr->next) { if (curr->active) { sk_SSL_CIPHER_push(cipherstack, curr->cipher); in_group_flags[num_in_group_flags++] = curr->in_group; } } OPENSSL_free(co_list); /* Not needed any longer */ co_list = NULL; tmp_cipher_list = sk_SSL_CIPHER_dup(cipherstack); if (tmp_cipher_list == NULL) { goto err; } pref_list = OPENSSL_malloc(sizeof(struct ssl_cipher_preference_list_st)); if (!pref_list) { goto err; } pref_list->ciphers = cipherstack; pref_list->in_group_flags = OPENSSL_malloc(num_in_group_flags); if (!pref_list->in_group_flags) { goto err; } memcpy(pref_list->in_group_flags, in_group_flags, num_in_group_flags); OPENSSL_free(in_group_flags); in_group_flags = NULL; if (*cipher_list != NULL) { ssl_cipher_preference_list_free(*cipher_list); } *cipher_list = pref_list; pref_list = NULL; if (cipher_list_by_id != NULL) { if (*cipher_list_by_id != NULL) { sk_SSL_CIPHER_free(*cipher_list_by_id); } *cipher_list_by_id = tmp_cipher_list; tmp_cipher_list = NULL; sk_SSL_CIPHER_set_cmp_func(*cipher_list_by_id, ssl_cipher_ptr_id_cmp); sk_SSL_CIPHER_sort(*cipher_list_by_id); } else { sk_SSL_CIPHER_free(tmp_cipher_list); tmp_cipher_list = NULL; } return cipherstack; err: if (co_list) { OPENSSL_free(co_list); } if (in_group_flags) { OPENSSL_free(in_group_flags); } if (cipherstack) { sk_SSL_CIPHER_free(cipherstack); } if (tmp_cipher_list) { sk_SSL_CIPHER_free(tmp_cipher_list); } if (pref_list && pref_list->in_group_flags) { OPENSSL_free(pref_list->in_group_flags); } if (pref_list) { OPENSSL_free(pref_list); } return NULL; } const char *SSL_CIPHER_description(const SSL_CIPHER *cipher, char *buf, int len) { const char *ver; const char *kx, *au, *enc, *mac; unsigned long alg_mkey, alg_auth, alg_enc, alg_mac, alg_ssl; static const char *format = "%-23s %s Kx=%-8s Au=%-4s Enc=%-9s Mac=%-4s\n"; alg_mkey = cipher->algorithm_mkey; alg_auth = cipher->algorithm_auth; alg_enc = cipher->algorithm_enc; alg_mac = cipher->algorithm_mac; alg_ssl = cipher->algorithm_ssl; if (alg_ssl & SSL_SSLV3) { ver = "SSLv3"; } else if (alg_ssl & SSL_TLSV1_2) { ver = "TLSv1.2"; } else { ver = "unknown"; } switch (alg_mkey) { case SSL_kRSA: kx = "RSA"; break; case SSL_kEDH: kx = "DH"; break; case SSL_kEECDH: kx = "ECDH"; break; case SSL_kPSK: kx = "PSK"; break; default: kx = "unknown"; } switch (alg_auth) { case SSL_aRSA: au = "RSA"; break; case SSL_aNULL: au = "None"; break; case SSL_aECDSA: au = "ECDSA"; break; case SSL_aPSK: au = "PSK"; break; default: au = "unknown"; break; } switch (alg_enc) { case SSL_3DES: enc = "3DES(168)"; break; case SSL_RC4: enc = "RC4(128)"; break; case SSL_AES128: enc = "AES(128)"; break; case SSL_AES256: enc = "AES(256)"; break; case SSL_AES128GCM: enc = "AESGCM(128)"; break; case SSL_AES256GCM: enc = "AESGCM(256)"; break; case SSL_CHACHA20POLY1305: enc = "ChaCha20-Poly1305"; break; default: enc = "unknown"; break; } switch (alg_mac) { case SSL_MD5: mac = "MD5"; break; case SSL_SHA1: mac = "SHA1"; break; case SSL_SHA256: mac = "SHA256"; break; case SSL_SHA384: mac = "SHA384"; break; case SSL_AEAD: mac = "AEAD"; break; default: mac = "unknown"; break; } if (buf == NULL) { len = 128; buf = OPENSSL_malloc(len); if (buf == NULL) return "OPENSSL_malloc Error"; } else if (len < 128) { return "Buffer too small"; } BIO_snprintf(buf, len, format, cipher->name, ver, kx, au, enc, mac); return buf; } int SSL_CIPHER_is_AES(const SSL_CIPHER *c) { return (c->algorithm_enc & SSL_AES) != 0; } int SSL_CIPHER_has_MD5_HMAC(const SSL_CIPHER *c) { return (c->algorithm_mac & SSL_MD5) != 0; } int SSL_CIPHER_is_AESGCM(const SSL_CIPHER *c) { return (c->algorithm_mac & (SSL_AES128GCM | SSL_AES256GCM)) != 0; } int SSL_CIPHER_is_CHACHA20POLY1305(const SSL_CIPHER *c) { return (c->algorithm_enc & SSL_CHACHA20POLY1305) != 0; } const char *SSL_CIPHER_get_version(const SSL_CIPHER *c) { int i; if (c == NULL) { return "(NONE)"; } i = (int)(c->id >> 24L); if (i == 3) { return "TLSv1/SSLv3"; } else if (i == 2) { return "SSLv2"; } else { return "unknown"; } } /* return the actual cipher being used */ const char *SSL_CIPHER_get_name(const SSL_CIPHER *c) { if (c != NULL) { return c->name; } return "(NONE)"; } const char *SSL_CIPHER_get_kx_name(const SSL_CIPHER *cipher) { if (cipher == NULL) { return ""; } switch (cipher->algorithm_mkey) { case SSL_kRSA: return SSL_TXT_RSA; case SSL_kEDH: switch (cipher->algorithm_auth) { case SSL_aRSA: return "DHE_" SSL_TXT_RSA; case SSL_aNULL: return SSL_TXT_DH "_anon"; default: return "UNKNOWN"; } case SSL_kEECDH: switch (cipher->algorithm_auth) { case SSL_aECDSA: return "ECDHE_" SSL_TXT_ECDSA; case SSL_aRSA: return "ECDHE_" SSL_TXT_RSA; case SSL_aNULL: return SSL_TXT_ECDH "_anon"; default: return "UNKNOWN"; } default: return "UNKNOWN"; } } /* number of bits for symmetric cipher */ int SSL_CIPHER_get_bits(const SSL_CIPHER *c, int *alg_bits) { int ret = 0; if (c != NULL) { if (alg_bits != NULL) { *alg_bits = c->alg_bits; } ret = c->strength_bits; } return ret; } unsigned long SSL_CIPHER_get_id(const SSL_CIPHER *c) { return c->id; } void *SSL_COMP_get_compression_methods(void) { return NULL; } int SSL_COMP_add_compression_method(int id, void *cm) { return 1; } const char *SSL_COMP_get_name(const void *comp) { return NULL; } /* For a cipher return the index corresponding to the certificate type */ int ssl_cipher_get_cert_index(const SSL_CIPHER *c) { unsigned long alg_a = c->algorithm_auth; if (alg_a & SSL_aECDSA) { return SSL_PKEY_ECC; } else if (alg_a & SSL_aRSA) { return SSL_PKEY_RSA_ENC; } return -1; } /* ssl_cipher_has_server_public_key returns 1 if |cipher| involves a server * public key in the key exchange, sent in a server Certificate message. * Otherwise it returns 0. */ int ssl_cipher_has_server_public_key(const SSL_CIPHER *cipher) { /* Anonymous ciphers do not include a server certificate. */ if (cipher->algorithm_auth & SSL_aNULL) { return 0; } /* Neither do PSK ciphers, except for RSA_PSK. */ if ((cipher->algorithm_auth & SSL_aPSK) && !(cipher->algorithm_mkey & SSL_kRSA)) { return 0; } /* All other ciphers include it. */ return 1; } /* ssl_cipher_requires_server_key_exchange returns 1 if |cipher| requires a * ServerKeyExchange message. Otherwise it returns 0. * * Unlike ssl_cipher_has_server_public_key, some ciphers take optional * ServerKeyExchanges. PSK and RSA_PSK only use the ServerKeyExchange to * communicate a psk_identity_hint, so it is optional. */ int ssl_cipher_requires_server_key_exchange(const SSL_CIPHER *cipher) { /* Ephemeral Diffie-Hellman key exchanges require a ServerKeyExchange. */ if (cipher->algorithm_mkey & SSL_kEDH || cipher->algorithm_mkey & SSL_kEECDH) { return 1; } /* It is optional in all others. */ return 0; }