/* Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com) * All rights reserved. * * This package is an SSL implementation written * by Eric Young (eay@cryptsoft.com). * The implementation was written so as to conform with Netscapes SSL. * * This library is free for commercial and non-commercial use as long as * the following conditions are aheared to. The following conditions * apply to all code found in this distribution, be it the RC4, RSA, * lhash, DES, etc., code; not just the SSL code. The SSL documentation * included with this distribution is covered by the same copyright terms * except that the holder is Tim Hudson (tjh@cryptsoft.com). * * Copyright remains Eric Young's, and as such any Copyright notices in * the code are not to be removed. * If this package is used in a product, Eric Young should be given attribution * as the author of the parts of the library used. * This can be in the form of a textual message at program startup or * in documentation (online or textual) provided with the package. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. All advertising materials mentioning features or use of this software * must display the following acknowledgement: * "This product includes cryptographic software written by * Eric Young (eay@cryptsoft.com)" * The word 'cryptographic' can be left out if the rouines from the library * being used are not cryptographic related :-). * 4. If you include any Windows specific code (or a derivative thereof) from * the apps directory (application code) you must include an acknowledgement: * "This product includes software written by Tim Hudson (tjh@cryptsoft.com)" * * THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. * * The licence and distribution terms for any publically available version or * derivative of this code cannot be changed. i.e. this code cannot simply be * copied and put under another distribution licence * [including the GNU Public Licence.] */ /* ==================================================================== * Copyright (c) 1998-2007 The OpenSSL Project. All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in * the documentation and/or other materials provided with the * distribution. * * 3. All advertising materials mentioning features or use of this * software must display the following acknowledgment: * "This product includes software developed by the OpenSSL Project * for use in the OpenSSL Toolkit. (http://www.openssl.org/)" * * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to * endorse or promote products derived from this software without * prior written permission. For written permission, please contact * openssl-core@openssl.org. * * 5. Products derived from this software may not be called "OpenSSL" * nor may "OpenSSL" appear in their names without prior written * permission of the OpenSSL Project. * * 6. Redistributions of any form whatsoever must retain the following * acknowledgment: * "This product includes software developed by the OpenSSL Project * for use in the OpenSSL Toolkit (http://www.openssl.org/)" * * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ``AS IS'' AND ANY * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED * OF THE POSSIBILITY OF SUCH DAMAGE. * ==================================================================== * * This product includes cryptographic software written by Eric Young * (eay@cryptsoft.com). This product includes software written by Tim * Hudson (tjh@cryptsoft.com). * */ /* ==================================================================== * Copyright 2002 Sun Microsystems, Inc. ALL RIGHTS RESERVED. * ECC cipher suite support in OpenSSL originally developed by * SUN MICROSYSTEMS, INC., and contributed to the OpenSSL project. */ /* ==================================================================== * Copyright 2005 Nokia. All rights reserved. * * The portions of the attached software ("Contribution") is developed by * Nokia Corporation and is licensed pursuant to the OpenSSL open source * license. * * The Contribution, originally written by Mika Kousa and Pasi Eronen of * Nokia Corporation, consists of the "PSK" (Pre-Shared Key) ciphersuites * support (see RFC 4279) to OpenSSL. * * No patent licenses or other rights except those expressly stated in * the OpenSSL open source license shall be deemed granted or received * expressly, by implication, estoppel, or otherwise. * * No assurances are provided by Nokia that the Contribution does not * infringe the patent or other intellectual property rights of any third * party or that the license provides you with all the necessary rights * to make use of the Contribution. * * THE SOFTWARE IS PROVIDED "AS IS" WITHOUT WARRANTY OF ANY KIND. IN * ADDITION TO THE DISCLAIMERS INCLUDED IN THE LICENSE, NOKIA * SPECIFICALLY DISCLAIMS ANY LIABILITY FOR CLAIMS BROUGHT BY YOU OR ANY * OTHER ENTITY BASED ON INFRINGEMENT OF INTELLECTUAL PROPERTY RIGHTS OR * OTHERWISE. */ #include #include #include #include #include #include #include #include #include #include #include #include "internal.h" #include "../crypto/internal.h" #if defined(OPENSSL_WINDOWS) #include #else #include #include #endif /* |SSL_R_UNKNOWN_PROTOCOL| is no longer emitted, but continue to define it * to avoid downstream churn. */ OPENSSL_DECLARE_ERROR_REASON(SSL, UNKNOWN_PROTOCOL) /* Some error codes are special. Ensure the make_errors.go script never * regresses this. */ OPENSSL_COMPILE_ASSERT(SSL_R_TLSV1_ALERT_NO_RENEGOTIATION == SSL_AD_NO_RENEGOTIATION + SSL_AD_REASON_OFFSET, ssl_alert_reason_code_mismatch); /* kMaxHandshakeSize is the maximum size, in bytes, of a handshake message. */ static const size_t kMaxHandshakeSize = (1u << 24) - 1; static CRYPTO_EX_DATA_CLASS g_ex_data_class_ssl = CRYPTO_EX_DATA_CLASS_INIT_WITH_APP_DATA; static CRYPTO_EX_DATA_CLASS g_ex_data_class_ssl_ctx = CRYPTO_EX_DATA_CLASS_INIT_WITH_APP_DATA; int SSL_library_init(void) { CRYPTO_library_init(); return 1; } static uint32_t ssl_session_hash(const SSL_SESSION *sess) { const uint8_t *session_id = sess->session_id; uint8_t tmp_storage[sizeof(uint32_t)]; if (sess->session_id_length < sizeof(tmp_storage)) { memset(tmp_storage, 0, sizeof(tmp_storage)); memcpy(tmp_storage, sess->session_id, sess->session_id_length); session_id = tmp_storage; } uint32_t hash = ((uint32_t)session_id[0]) | ((uint32_t)session_id[1] << 8) | ((uint32_t)session_id[2] << 16) | ((uint32_t)session_id[3] << 24); return hash; } /* NB: If this function (or indeed the hash function which uses a sort of * coarser function than this one) is changed, ensure * SSL_CTX_has_matching_session_id() is checked accordingly. It relies on being * able to construct an SSL_SESSION that will collide with any existing session * with a matching session ID. */ static int ssl_session_cmp(const SSL_SESSION *a, const SSL_SESSION *b) { if (a->ssl_version != b->ssl_version) { return 1; } if (a->session_id_length != b->session_id_length) { return 1; } return memcmp(a->session_id, b->session_id, a->session_id_length); } SSL_CTX *SSL_CTX_new(const SSL_METHOD *method) { SSL_CTX *ret = NULL; if (method == NULL) { OPENSSL_PUT_ERROR(SSL, SSL_R_NULL_SSL_METHOD_PASSED); return NULL; } if (SSL_get_ex_data_X509_STORE_CTX_idx() < 0) { OPENSSL_PUT_ERROR(SSL, SSL_R_X509_VERIFICATION_SETUP_PROBLEMS); goto err; } ret = OPENSSL_malloc(sizeof(SSL_CTX)); if (ret == NULL) { goto err; } memset(ret, 0, sizeof(SSL_CTX)); ret->method = method->method; CRYPTO_MUTEX_init(&ret->lock); ret->session_cache_mode = SSL_SESS_CACHE_SERVER; ret->session_cache_size = SSL_SESSION_CACHE_MAX_SIZE_DEFAULT; /* We take the system default */ ret->session_timeout = SSL_DEFAULT_SESSION_TIMEOUT; ret->references = 1; ret->max_cert_list = SSL_MAX_CERT_LIST_DEFAULT; ret->verify_mode = SSL_VERIFY_NONE; ret->cert = ssl_cert_new(); if (ret->cert == NULL) { goto err; } ret->sessions = lh_SSL_SESSION_new(ssl_session_hash, ssl_session_cmp); if (ret->sessions == NULL) { goto err; } ret->cert_store = X509_STORE_new(); if (ret->cert_store == NULL) { goto err; } ssl_create_cipher_list(ret->method, &ret->cipher_list, &ret->cipher_list_by_id, SSL_DEFAULT_CIPHER_LIST); if (ret->cipher_list == NULL || sk_SSL_CIPHER_num(ret->cipher_list->ciphers) <= 0) { OPENSSL_PUT_ERROR(SSL, SSL_R_LIBRARY_HAS_NO_CIPHERS); goto err2; } ret->param = X509_VERIFY_PARAM_new(); if (!ret->param) { goto err; } ret->client_CA = sk_X509_NAME_new_null(); if (ret->client_CA == NULL) { goto err; } CRYPTO_new_ex_data(&ret->ex_data); ret->max_send_fragment = SSL3_RT_MAX_PLAIN_LENGTH; /* Setup RFC4507 ticket keys */ if (!RAND_bytes(ret->tlsext_tick_key_name, 16) || !RAND_bytes(ret->tlsext_tick_hmac_key, 16) || !RAND_bytes(ret->tlsext_tick_aes_key, 16)) { ret->options |= SSL_OP_NO_TICKET; } ret->min_version = ret->method->min_version; ret->max_version = ret->method->max_version; /* Lock the SSL_CTX to the specified version, for compatibility with legacy * uses of SSL_METHOD. */ if (method->version != 0) { SSL_CTX_set_max_version(ret, method->version); SSL_CTX_set_min_version(ret, method->version); } else if (!method->method->is_dtls) { /* TODO(svaldez): Enable TLS 1.3 by default once fully implemented. */ SSL_CTX_set_max_version(ret, TLS1_2_VERSION); } return ret; err: OPENSSL_PUT_ERROR(SSL, ERR_R_MALLOC_FAILURE); err2: SSL_CTX_free(ret); return NULL; } int SSL_CTX_up_ref(SSL_CTX *ctx) { CRYPTO_refcount_inc(&ctx->references); return 1; } void SSL_CTX_free(SSL_CTX *ctx) { if (ctx == NULL || !CRYPTO_refcount_dec_and_test_zero(&ctx->references)) { return; } X509_VERIFY_PARAM_free(ctx->param); /* Free internal session cache. However: the remove_cb() may reference the * ex_data of SSL_CTX, thus the ex_data store can only be removed after the * sessions were flushed. As the ex_data handling routines might also touch * the session cache, the most secure solution seems to be: empty (flush) the * cache, then free ex_data, then finally free the cache. (See ticket * [openssl.org #212].) */ SSL_CTX_flush_sessions(ctx, 0); CRYPTO_free_ex_data(&g_ex_data_class_ssl_ctx, ctx, &ctx->ex_data); CRYPTO_MUTEX_cleanup(&ctx->lock); lh_SSL_SESSION_free(ctx->sessions); X509_STORE_free(ctx->cert_store); ssl_cipher_preference_list_free(ctx->cipher_list); sk_SSL_CIPHER_free(ctx->cipher_list_by_id); ssl_cipher_preference_list_free(ctx->cipher_list_tls10); ssl_cipher_preference_list_free(ctx->cipher_list_tls11); ssl_cert_free(ctx->cert); sk_SSL_CUSTOM_EXTENSION_pop_free(ctx->client_custom_extensions, SSL_CUSTOM_EXTENSION_free); sk_SSL_CUSTOM_EXTENSION_pop_free(ctx->server_custom_extensions, SSL_CUSTOM_EXTENSION_free); sk_X509_NAME_pop_free(ctx->client_CA, X509_NAME_free); sk_SRTP_PROTECTION_PROFILE_free(ctx->srtp_profiles); OPENSSL_free(ctx->psk_identity_hint); OPENSSL_free(ctx->supported_group_list); OPENSSL_free(ctx->alpn_client_proto_list); OPENSSL_free(ctx->ocsp_response); OPENSSL_free(ctx->signed_cert_timestamp_list); EVP_PKEY_free(ctx->tlsext_channel_id_private); OPENSSL_free(ctx); } SSL *SSL_new(SSL_CTX *ctx) { if (ctx == NULL) { OPENSSL_PUT_ERROR(SSL, SSL_R_NULL_SSL_CTX); return NULL; } if (ctx->method == NULL) { OPENSSL_PUT_ERROR(SSL, SSL_R_SSL_CTX_HAS_NO_DEFAULT_SSL_VERSION); return NULL; } SSL *ssl = OPENSSL_malloc(sizeof(SSL)); if (ssl == NULL) { goto err; } memset(ssl, 0, sizeof(SSL)); ssl->min_version = ctx->min_version; ssl->max_version = ctx->max_version; /* RFC 6347 states that implementations SHOULD use an initial timer value of * 1 second. */ ssl->initial_timeout_duration_ms = 1000; ssl->options = ctx->options; ssl->mode = ctx->mode; ssl->max_cert_list = ctx->max_cert_list; ssl->cert = ssl_cert_dup(ctx->cert); if (ssl->cert == NULL) { goto err; } ssl->msg_callback = ctx->msg_callback; ssl->msg_callback_arg = ctx->msg_callback_arg; ssl->verify_mode = ctx->verify_mode; ssl->sid_ctx_length = ctx->sid_ctx_length; assert(ssl->sid_ctx_length <= sizeof ssl->sid_ctx); memcpy(&ssl->sid_ctx, &ctx->sid_ctx, sizeof(ssl->sid_ctx)); ssl->verify_callback = ctx->default_verify_callback; ssl->param = X509_VERIFY_PARAM_new(); if (!ssl->param) { goto err; } X509_VERIFY_PARAM_inherit(ssl->param, ctx->param); ssl->quiet_shutdown = ctx->quiet_shutdown; ssl->max_send_fragment = ctx->max_send_fragment; CRYPTO_refcount_inc(&ctx->references); ssl->ctx = ctx; CRYPTO_refcount_inc(&ctx->references); ssl->initial_ctx = ctx; if (ctx->supported_group_list) { ssl->supported_group_list = BUF_memdup(ctx->supported_group_list, ctx->supported_group_list_len * 2); if (!ssl->supported_group_list) { goto err; } ssl->supported_group_list_len = ctx->supported_group_list_len; } if (ssl->ctx->alpn_client_proto_list) { ssl->alpn_client_proto_list = BUF_memdup( ssl->ctx->alpn_client_proto_list, ssl->ctx->alpn_client_proto_list_len); if (ssl->alpn_client_proto_list == NULL) { goto err; } ssl->alpn_client_proto_list_len = ssl->ctx->alpn_client_proto_list_len; } ssl->verify_result = X509_V_ERR_INVALID_CALL; ssl->method = ctx->method; if (!ssl->method->ssl_new(ssl)) { goto err; } ssl->rwstate = SSL_NOTHING; CRYPTO_new_ex_data(&ssl->ex_data); ssl->psk_identity_hint = NULL; if (ctx->psk_identity_hint) { ssl->psk_identity_hint = BUF_strdup(ctx->psk_identity_hint); if (ssl->psk_identity_hint == NULL) { goto err; } } ssl->psk_client_callback = ctx->psk_client_callback; ssl->psk_server_callback = ctx->psk_server_callback; ssl->tlsext_channel_id_enabled = ctx->tlsext_channel_id_enabled; if (ctx->tlsext_channel_id_private) { EVP_PKEY_up_ref(ctx->tlsext_channel_id_private); ssl->tlsext_channel_id_private = ctx->tlsext_channel_id_private; } ssl->signed_cert_timestamps_enabled = ssl->ctx->signed_cert_timestamps_enabled; ssl->ocsp_stapling_enabled = ssl->ctx->ocsp_stapling_enabled; return ssl; err: SSL_free(ssl); OPENSSL_PUT_ERROR(SSL, ERR_R_MALLOC_FAILURE); return NULL; } void SSL_free(SSL *ssl) { if (ssl == NULL) { return; } X509_VERIFY_PARAM_free(ssl->param); CRYPTO_free_ex_data(&g_ex_data_class_ssl, ssl, &ssl->ex_data); ssl_free_wbio_buffer(ssl); assert(ssl->bbio == NULL); BIO_free_all(ssl->rbio); BIO_free_all(ssl->wbio); BUF_MEM_free(ssl->init_buf); /* add extra stuff */ ssl_cipher_preference_list_free(ssl->cipher_list); sk_SSL_CIPHER_free(ssl->cipher_list_by_id); SSL_SESSION_free(ssl->session); ssl_cert_free(ssl->cert); OPENSSL_free(ssl->tlsext_hostname); SSL_CTX_free(ssl->initial_ctx); OPENSSL_free(ssl->supported_group_list); OPENSSL_free(ssl->alpn_client_proto_list); EVP_PKEY_free(ssl->tlsext_channel_id_private); OPENSSL_free(ssl->psk_identity_hint); sk_X509_NAME_pop_free(ssl->client_CA, X509_NAME_free); sk_SRTP_PROTECTION_PROFILE_free(ssl->srtp_profiles); if (ssl->method != NULL) { ssl->method->ssl_free(ssl); } SSL_CTX_free(ssl->ctx); OPENSSL_free(ssl); } void SSL_set_connect_state(SSL *ssl) { ssl->server = 0; ssl->state = SSL_ST_CONNECT; ssl->handshake_func = ssl3_connect; } void SSL_set_accept_state(SSL *ssl) { ssl->server = 1; ssl->state = SSL_ST_ACCEPT; ssl->handshake_func = ssl3_accept; } void SSL_set0_rbio(SSL *ssl, BIO *rbio) { BIO_free_all(ssl->rbio); ssl->rbio = rbio; } void SSL_set0_wbio(SSL *ssl, BIO *wbio) { /* If the output buffering BIO is still in place, remove it. */ if (ssl->bbio != NULL) { ssl->wbio = BIO_pop(ssl->wbio); } BIO_free_all(ssl->wbio); ssl->wbio = wbio; /* Re-attach |bbio| to the new |wbio|. */ if (ssl->bbio != NULL) { ssl->wbio = BIO_push(ssl->bbio, ssl->wbio); } } void SSL_set_bio(SSL *ssl, BIO *rbio, BIO *wbio) { /* For historical reasons, this function has many different cases in ownership * handling. */ /* If nothing has changed, do nothing */ if (rbio == SSL_get_rbio(ssl) && wbio == SSL_get_wbio(ssl)) { return; } /* If the two arguments are equal, one fewer reference is granted than * taken. */ if (rbio != NULL && rbio == wbio) { BIO_up_ref(rbio); } /* If only the wbio is changed, adopt only one reference. */ if (rbio == SSL_get_rbio(ssl)) { SSL_set0_wbio(ssl, wbio); return; } /* There is an asymmetry here for historical reasons. If only the rbio is * changed AND the rbio and wbio were originally different, then we only adopt * one reference. */ if (wbio == SSL_get_wbio(ssl) && SSL_get_rbio(ssl) != SSL_get_wbio(ssl)) { SSL_set0_rbio(ssl, rbio); return; } /* Otherwise, adopt both references. */ SSL_set0_rbio(ssl, rbio); SSL_set0_wbio(ssl, wbio); } BIO *SSL_get_rbio(const SSL *ssl) { return ssl->rbio; } BIO *SSL_get_wbio(const SSL *ssl) { if (ssl->bbio != NULL) { /* If |bbio| is active, the true caller-configured BIO is its |next_bio|. */ assert(ssl->bbio == ssl->wbio); return ssl->bbio->next_bio; } return ssl->wbio; } int SSL_do_handshake(SSL *ssl) { ssl->rwstate = SSL_NOTHING; /* Functions which use SSL_get_error must clear the error queue on entry. */ ERR_clear_error(); ERR_clear_system_error(); if (ssl->handshake_func == NULL) { OPENSSL_PUT_ERROR(SSL, SSL_R_CONNECTION_TYPE_NOT_SET); return -1; } if (!SSL_in_init(ssl)) { return 1; } return ssl->handshake_func(ssl); } int SSL_connect(SSL *ssl) { if (ssl->handshake_func == NULL) { /* Not properly initialized yet */ SSL_set_connect_state(ssl); } return SSL_do_handshake(ssl); } int SSL_accept(SSL *ssl) { if (ssl->handshake_func == NULL) { /* Not properly initialized yet */ SSL_set_accept_state(ssl); } return SSL_do_handshake(ssl); } static int ssl_do_renegotiate(SSL *ssl) { /* We do not accept renegotiations as a server. */ if (ssl->server) { goto no_renegotiation; } if (ssl->s3->tmp.message_type != SSL3_MT_HELLO_REQUEST || ssl->init_num != 0) { ssl3_send_alert(ssl, SSL3_AL_FATAL, SSL_AD_DECODE_ERROR); OPENSSL_PUT_ERROR(SSL, SSL_R_BAD_HELLO_REQUEST); return 0; } switch (ssl->renegotiate_mode) { case ssl_renegotiate_ignore: /* Ignore the HelloRequest. */ return 1; case ssl_renegotiate_once: if (ssl->s3->total_renegotiations != 0) { goto no_renegotiation; } break; case ssl_renegotiate_never: goto no_renegotiation; case ssl_renegotiate_freely: break; } /* Renegotiation is only supported at quiescent points in the application * protocol, namely in HTTPS, just before reading the HTTP response. Require * the record-layer be idle and avoid complexities of sending a handshake * record while an application_data record is being written. */ if (ssl_write_buffer_is_pending(ssl)) { goto no_renegotiation; } /* Begin a new handshake. */ ssl->s3->total_renegotiations++; ssl->state = SSL_ST_CONNECT; return 1; no_renegotiation: ssl3_send_alert(ssl, SSL3_AL_FATAL, SSL_AD_NO_RENEGOTIATION); OPENSSL_PUT_ERROR(SSL, SSL_R_NO_RENEGOTIATION); return 0; } static int ssl_do_post_handshake(SSL *ssl) { if (ssl3_protocol_version(ssl) < TLS1_3_VERSION) { return ssl_do_renegotiate(ssl); } return tls13_post_handshake(ssl); } static int ssl_read_impl(SSL *ssl, void *buf, int num, int peek) { ssl->rwstate = SSL_NOTHING; /* Functions which use SSL_get_error must clear the error queue on entry. */ ERR_clear_error(); ERR_clear_system_error(); if (ssl->handshake_func == NULL) { OPENSSL_PUT_ERROR(SSL, SSL_R_UNINITIALIZED); return -1; } for (;;) { /* Complete the current handshake, if any. False Start will cause * |SSL_do_handshake| to return mid-handshake, so this may require multiple * iterations. */ while (SSL_in_init(ssl)) { int ret = SSL_do_handshake(ssl); if (ret < 0) { return ret; } if (ret == 0) { OPENSSL_PUT_ERROR(SSL, SSL_R_SSL_HANDSHAKE_FAILURE); return -1; } } int got_handshake; int ret = ssl->method->read_app_data(ssl, &got_handshake, buf, num, peek); if (ret > 0 || !got_handshake) { return ret; } /* Handle the post-handshake message and try again. */ if (!ssl_do_post_handshake(ssl)) { return -1; } ssl->method->release_current_message(ssl, 1 /* free buffer */); } } int SSL_read(SSL *ssl, void *buf, int num) { return ssl_read_impl(ssl, buf, num, 0 /* consume bytes */); } int SSL_peek(SSL *ssl, void *buf, int num) { return ssl_read_impl(ssl, buf, num, 1 /* peek */); } int SSL_write(SSL *ssl, const void *buf, int num) { ssl->rwstate = SSL_NOTHING; /* Functions which use SSL_get_error must clear the error queue on entry. */ ERR_clear_error(); ERR_clear_system_error(); if (ssl->handshake_func == NULL) { OPENSSL_PUT_ERROR(SSL, SSL_R_UNINITIALIZED); return -1; } if (ssl->s3->send_shutdown != ssl_shutdown_none) { OPENSSL_PUT_ERROR(SSL, SSL_R_PROTOCOL_IS_SHUTDOWN); return -1; } /* If necessary, complete the handshake implicitly. */ if (SSL_in_init(ssl) && !SSL_in_false_start(ssl)) { int ret = SSL_do_handshake(ssl); if (ret < 0) { return ret; } if (ret == 0) { OPENSSL_PUT_ERROR(SSL, SSL_R_SSL_HANDSHAKE_FAILURE); return -1; } } return ssl->method->write_app_data(ssl, buf, num); } int SSL_shutdown(SSL *ssl) { ssl->rwstate = SSL_NOTHING; /* Functions which use SSL_get_error must clear the error queue on entry. */ ERR_clear_error(); ERR_clear_system_error(); if (ssl->handshake_func == NULL) { OPENSSL_PUT_ERROR(SSL, SSL_R_UNINITIALIZED); return -1; } /* We can't shutdown properly if we are in the middle of a handshake. */ if (SSL_in_init(ssl)) { OPENSSL_PUT_ERROR(SSL, SSL_R_SHUTDOWN_WHILE_IN_INIT); return -1; } if (ssl->quiet_shutdown) { /* Do nothing if configured not to send a close_notify. */ ssl->s3->send_shutdown = ssl_shutdown_close_notify; ssl->s3->recv_shutdown = ssl_shutdown_close_notify; return 1; } /* This function completes in two stages. It sends a close_notify and then it * waits for a close_notify to come in. Perform exactly one action and return * whether or not it succeeds. */ if (ssl->s3->send_shutdown != ssl_shutdown_close_notify) { /* Send a close_notify. */ if (ssl3_send_alert(ssl, SSL3_AL_WARNING, SSL_AD_CLOSE_NOTIFY) <= 0) { return -1; } } else if (ssl->s3->alert_dispatch) { /* Finish sending the close_notify. */ if (ssl->method->dispatch_alert(ssl) <= 0) { return -1; } } else if (ssl->s3->recv_shutdown != ssl_shutdown_close_notify) { /* Wait for the peer's close_notify. */ ssl->method->read_close_notify(ssl); if (ssl->s3->recv_shutdown != ssl_shutdown_close_notify) { return -1; } } /* Return 0 for unidirectional shutdown and 1 for bidirectional shutdown. */ return ssl->s3->recv_shutdown == ssl_shutdown_close_notify; } int SSL_send_fatal_alert(SSL *ssl, uint8_t alert) { if (ssl->s3->alert_dispatch) { if (ssl->s3->send_alert[0] != SSL3_AL_FATAL || ssl->s3->send_alert[1] != alert) { /* We are already attempting to write a different alert. */ OPENSSL_PUT_ERROR(SSL, SSL_R_PROTOCOL_IS_SHUTDOWN); return -1; } return ssl->method->dispatch_alert(ssl); } return ssl3_send_alert(ssl, SSL3_AL_FATAL, alert); } int SSL_get_error(const SSL *ssl, int ret_code) { int reason; uint32_t err; BIO *bio; if (ret_code > 0) { return SSL_ERROR_NONE; } /* Make things return SSL_ERROR_SYSCALL when doing SSL_do_handshake etc, * where we do encode the error */ err = ERR_peek_error(); if (err != 0) { if (ERR_GET_LIB(err) == ERR_LIB_SYS) { return SSL_ERROR_SYSCALL; } return SSL_ERROR_SSL; } if (ret_code == 0) { if (ssl->s3->recv_shutdown == ssl_shutdown_close_notify) { return SSL_ERROR_ZERO_RETURN; } /* An EOF was observed which violates the protocol, and the underlying * transport does not participate in the error queue. Bubble up to the * caller. */ return SSL_ERROR_SYSCALL; } if (SSL_want_session(ssl)) { return SSL_ERROR_PENDING_SESSION; } if (SSL_want_certificate(ssl)) { return SSL_ERROR_PENDING_CERTIFICATE; } if (SSL_want_read(ssl)) { bio = SSL_get_rbio(ssl); if (BIO_should_read(bio)) { return SSL_ERROR_WANT_READ; } if (BIO_should_write(bio)) { /* This one doesn't make too much sense ... We never try to write to the * rbio, and an application program where rbio and wbio are separate * couldn't even know what it should wait for. However if we ever set * ssl->rwstate incorrectly (so that we have SSL_want_read(ssl) instead of * SSL_want_write(ssl)) and rbio and wbio *are* the same, this test works * around that bug; so it might be safer to keep it. */ return SSL_ERROR_WANT_WRITE; } if (BIO_should_io_special(bio)) { reason = BIO_get_retry_reason(bio); if (reason == BIO_RR_CONNECT) { return SSL_ERROR_WANT_CONNECT; } if (reason == BIO_RR_ACCEPT) { return SSL_ERROR_WANT_ACCEPT; } return SSL_ERROR_SYSCALL; /* unknown */ } } if (SSL_want_write(ssl)) { bio = SSL_get_wbio(ssl); if (BIO_should_write(bio)) { return SSL_ERROR_WANT_WRITE; } if (BIO_should_read(bio)) { /* See above (SSL_want_read(ssl) with BIO_should_write(bio)) */ return SSL_ERROR_WANT_READ; } if (BIO_should_io_special(bio)) { reason = BIO_get_retry_reason(bio); if (reason == BIO_RR_CONNECT) { return SSL_ERROR_WANT_CONNECT; } if (reason == BIO_RR_ACCEPT) { return SSL_ERROR_WANT_ACCEPT; } return SSL_ERROR_SYSCALL; } } if (SSL_want_x509_lookup(ssl)) { return SSL_ERROR_WANT_X509_LOOKUP; } if (SSL_want_channel_id_lookup(ssl)) { return SSL_ERROR_WANT_CHANNEL_ID_LOOKUP; } if (SSL_want_private_key_operation(ssl)) { return SSL_ERROR_WANT_PRIVATE_KEY_OPERATION; } return SSL_ERROR_SYSCALL; } void SSL_CTX_set_min_version(SSL_CTX *ctx, uint16_t version) { ctx->min_version = ctx->method->version_from_wire(version); } void SSL_CTX_set_max_version(SSL_CTX *ctx, uint16_t version) { ctx->max_version = ctx->method->version_from_wire(version); } void SSL_set_min_version(SSL *ssl, uint16_t version) { ssl->min_version = ssl->method->version_from_wire(version); } void SSL_set_max_version(SSL *ssl, uint16_t version) { ssl->max_version = ssl->method->version_from_wire(version); } void SSL_set_fallback_version(SSL *ssl, uint16_t version) { ssl->fallback_version = ssl->method->version_from_wire(version); } uint32_t SSL_CTX_set_options(SSL_CTX *ctx, uint32_t options) { ctx->options |= options; return ctx->options; } uint32_t SSL_CTX_clear_options(SSL_CTX *ctx, uint32_t options) { ctx->options &= ~options; return ctx->options; } uint32_t SSL_CTX_get_options(const SSL_CTX *ctx) { return ctx->options; } uint32_t SSL_set_options(SSL *ssl, uint32_t options) { ssl->options |= options; return ssl->options; } uint32_t SSL_clear_options(SSL *ssl, uint32_t options) { ssl->options &= ~options; return ssl->options; } uint32_t SSL_get_options(const SSL *ssl) { return ssl->options; } uint32_t SSL_CTX_set_mode(SSL_CTX *ctx, uint32_t mode) { ctx->mode |= mode; return ctx->mode; } uint32_t SSL_CTX_clear_mode(SSL_CTX *ctx, uint32_t mode) { ctx->mode &= ~mode; return ctx->mode; } uint32_t SSL_CTX_get_mode(const SSL_CTX *ctx) { return ctx->mode; } uint32_t SSL_set_mode(SSL *ssl, uint32_t mode) { ssl->mode |= mode; return ssl->mode; } uint32_t SSL_clear_mode(SSL *ssl, uint32_t mode) { ssl->mode &= ~mode; return ssl->mode; } uint32_t SSL_get_mode(const SSL *ssl) { return ssl->mode; } X509 *SSL_get_peer_certificate(const SSL *ssl) { if (ssl == NULL) { return NULL; } SSL_SESSION *session = SSL_get_session(ssl); if (session == NULL || session->peer == NULL) { return NULL; } return X509_up_ref(session->peer); } STACK_OF(X509) *SSL_get_peer_cert_chain(const SSL *ssl) { if (ssl == NULL) { return NULL; } SSL_SESSION *session = SSL_get_session(ssl); if (session == NULL) { return NULL; } return session->cert_chain; } int SSL_get_tls_unique(const SSL *ssl, uint8_t *out, size_t *out_len, size_t max_out) { /* The tls-unique value is the first Finished message in the handshake, which * is the client's in a full handshake and the server's for a resumption. See * https://tools.ietf.org/html/rfc5929#section-3.1. */ const uint8_t *finished = ssl->s3->previous_client_finished; size_t finished_len = ssl->s3->previous_client_finished_len; if (ssl->session != NULL) { /* tls-unique is broken for resumed sessions unless EMS is used. */ if (!ssl->session->extended_master_secret) { goto err; } finished = ssl->s3->previous_server_finished; finished_len = ssl->s3->previous_server_finished_len; } if (!ssl->s3->initial_handshake_complete || ssl->version < TLS1_VERSION) { goto err; } *out_len = finished_len; if (finished_len > max_out) { *out_len = max_out; } memcpy(out, finished, *out_len); return 1; err: *out_len = 0; memset(out, 0, max_out); return 0; } int SSL_CTX_set_session_id_context(SSL_CTX *ctx, const uint8_t *sid_ctx, unsigned sid_ctx_len) { if (sid_ctx_len > sizeof(ctx->sid_ctx)) { OPENSSL_PUT_ERROR(SSL, SSL_R_SSL_SESSION_ID_CONTEXT_TOO_LONG); return 0; } ctx->sid_ctx_length = sid_ctx_len; memcpy(ctx->sid_ctx, sid_ctx, sid_ctx_len); return 1; } int SSL_set_session_id_context(SSL *ssl, const uint8_t *sid_ctx, unsigned sid_ctx_len) { if (sid_ctx_len > SSL_MAX_SID_CTX_LENGTH) { OPENSSL_PUT_ERROR(SSL, SSL_R_SSL_SESSION_ID_CONTEXT_TOO_LONG); return 0; } ssl->sid_ctx_length = sid_ctx_len; memcpy(ssl->sid_ctx, sid_ctx, sid_ctx_len); return 1; } int SSL_CTX_set_purpose(SSL_CTX *ctx, int purpose) { return X509_VERIFY_PARAM_set_purpose(ctx->param, purpose); } int SSL_set_purpose(SSL *ssl, int purpose) { return X509_VERIFY_PARAM_set_purpose(ssl->param, purpose); } int SSL_CTX_set_trust(SSL_CTX *ctx, int trust) { return X509_VERIFY_PARAM_set_trust(ctx->param, trust); } int SSL_set_trust(SSL *ssl, int trust) { return X509_VERIFY_PARAM_set_trust(ssl->param, trust); } int SSL_CTX_set1_param(SSL_CTX *ctx, const X509_VERIFY_PARAM *param) { return X509_VERIFY_PARAM_set1(ctx->param, param); } int SSL_set1_param(SSL *ssl, const X509_VERIFY_PARAM *param) { return X509_VERIFY_PARAM_set1(ssl->param, param); } void ssl_cipher_preference_list_free( struct ssl_cipher_preference_list_st *cipher_list) { if (cipher_list == NULL) { return; } sk_SSL_CIPHER_free(cipher_list->ciphers); OPENSSL_free(cipher_list->in_group_flags); OPENSSL_free(cipher_list); } X509_VERIFY_PARAM *SSL_CTX_get0_param(SSL_CTX *ctx) { return ctx->param; } X509_VERIFY_PARAM *SSL_get0_param(SSL *ssl) { return ssl->param; } void SSL_certs_clear(SSL *ssl) { ssl_cert_clear_certs(ssl->cert); } int SSL_get_fd(const SSL *ssl) { return SSL_get_rfd(ssl); } int SSL_get_rfd(const SSL *ssl) { int ret = -1; BIO *b = BIO_find_type(SSL_get_rbio(ssl), BIO_TYPE_DESCRIPTOR); if (b != NULL) { BIO_get_fd(b, &ret); } return ret; } int SSL_get_wfd(const SSL *ssl) { int ret = -1; BIO *b = BIO_find_type(SSL_get_wbio(ssl), BIO_TYPE_DESCRIPTOR); if (b != NULL) { BIO_get_fd(b, &ret); } return ret; } int SSL_set_fd(SSL *ssl, int fd) { BIO *bio = BIO_new(BIO_s_socket()); if (bio == NULL) { OPENSSL_PUT_ERROR(SSL, ERR_R_BUF_LIB); return 0; } BIO_set_fd(bio, fd, BIO_NOCLOSE); SSL_set_bio(ssl, bio, bio); return 1; } int SSL_set_wfd(SSL *ssl, int fd) { BIO *rbio = SSL_get_rbio(ssl); if (rbio == NULL || BIO_method_type(rbio) != BIO_TYPE_SOCKET || BIO_get_fd(rbio, NULL) != fd) { BIO *bio = BIO_new(BIO_s_socket()); if (bio == NULL) { OPENSSL_PUT_ERROR(SSL, ERR_R_BUF_LIB); return 0; } BIO_set_fd(bio, fd, BIO_NOCLOSE); SSL_set0_wbio(ssl, bio); } else { /* Copy the rbio over to the wbio. */ BIO_up_ref(rbio); SSL_set0_wbio(ssl, rbio); } return 1; } int SSL_set_rfd(SSL *ssl, int fd) { BIO *wbio = SSL_get_wbio(ssl); if (wbio == NULL || BIO_method_type(wbio) != BIO_TYPE_SOCKET || BIO_get_fd(wbio, NULL) != fd) { BIO *bio = BIO_new(BIO_s_socket()); if (bio == NULL) { OPENSSL_PUT_ERROR(SSL, ERR_R_BUF_LIB); return 0; } BIO_set_fd(bio, fd, BIO_NOCLOSE); SSL_set0_rbio(ssl, bio); } else { /* Copy the wbio over to the rbio. */ BIO_up_ref(wbio); SSL_set0_rbio(ssl, wbio); } return 1; } size_t SSL_get_finished(const SSL *ssl, void *buf, size_t count) { size_t ret = 0; if (ssl->s3 != NULL) { ret = ssl->s3->tmp.finish_md_len; if (count > ret) { count = ret; } memcpy(buf, ssl->s3->tmp.finish_md, count); } return ret; } size_t SSL_get_peer_finished(const SSL *ssl, void *buf, size_t count) { size_t ret = 0; if (ssl->s3 != NULL) { ret = ssl->s3->tmp.peer_finish_md_len; if (count > ret) { count = ret; } memcpy(buf, ssl->s3->tmp.peer_finish_md, count); } return ret; } int SSL_get_verify_mode(const SSL *ssl) { return ssl->verify_mode; } int SSL_get_verify_depth(const SSL *ssl) { return X509_VERIFY_PARAM_get_depth(ssl->param); } int SSL_get_extms_support(const SSL *ssl) { if (!ssl->s3->have_version) { return 0; } return ssl3_protocol_version(ssl) >= TLS1_3_VERSION || ssl->s3->tmp.extended_master_secret == 1; } int (*SSL_get_verify_callback(const SSL *ssl))(int, X509_STORE_CTX *) { return ssl->verify_callback; } int SSL_CTX_get_verify_mode(const SSL_CTX *ctx) { return ctx->verify_mode; } int SSL_CTX_get_verify_depth(const SSL_CTX *ctx) { return X509_VERIFY_PARAM_get_depth(ctx->param); } int (*SSL_CTX_get_verify_callback(const SSL_CTX *ctx))( int ok, X509_STORE_CTX *store_ctx) { return ctx->default_verify_callback; } void SSL_set_verify(SSL *ssl, int mode, int (*callback)(int ok, X509_STORE_CTX *store_ctx)) { ssl->verify_mode = mode; if (callback != NULL) { ssl->verify_callback = callback; } } void SSL_set_verify_depth(SSL *ssl, int depth) { X509_VERIFY_PARAM_set_depth(ssl->param, depth); } int SSL_CTX_get_read_ahead(const SSL_CTX *ctx) { return 0; } int SSL_get_read_ahead(const SSL *ssl) { return 0; } void SSL_CTX_set_read_ahead(SSL_CTX *ctx, int yes) { } void SSL_set_read_ahead(SSL *ssl, int yes) { } int SSL_pending(const SSL *ssl) { if (ssl->s3->rrec.type != SSL3_RT_APPLICATION_DATA) { return 0; } return ssl->s3->rrec.length; } /* Fix this so it checks all the valid key/cert options */ int SSL_CTX_check_private_key(const SSL_CTX *ctx) { if (ctx->cert->x509 == NULL) { OPENSSL_PUT_ERROR(SSL, SSL_R_NO_CERTIFICATE_ASSIGNED); return 0; } if (ctx->cert->privatekey == NULL) { OPENSSL_PUT_ERROR(SSL, SSL_R_NO_PRIVATE_KEY_ASSIGNED); return 0; } return X509_check_private_key(ctx->cert->x509, ctx->cert->privatekey); } /* Fix this function so that it takes an optional type parameter */ int SSL_check_private_key(const SSL *ssl) { if (ssl->cert->x509 == NULL) { OPENSSL_PUT_ERROR(SSL, SSL_R_NO_CERTIFICATE_ASSIGNED); return 0; } if (ssl->cert->privatekey == NULL) { OPENSSL_PUT_ERROR(SSL, SSL_R_NO_PRIVATE_KEY_ASSIGNED); return 0; } return X509_check_private_key(ssl->cert->x509, ssl->cert->privatekey); } long SSL_get_default_timeout(const SSL *ssl) { return SSL_DEFAULT_SESSION_TIMEOUT; } int SSL_renegotiate(SSL *ssl) { /* Caller-initiated renegotiation is not supported. */ OPENSSL_PUT_ERROR(SSL, ERR_R_SHOULD_NOT_HAVE_BEEN_CALLED); return 0; } int SSL_renegotiate_pending(SSL *ssl) { return SSL_in_init(ssl) && ssl->s3->initial_handshake_complete; } int SSL_total_renegotiations(const SSL *ssl) { return ssl->s3->total_renegotiations; } size_t SSL_CTX_get_max_cert_list(const SSL_CTX *ctx) { return ctx->max_cert_list; } void SSL_CTX_set_max_cert_list(SSL_CTX *ctx, size_t max_cert_list) { if (max_cert_list > kMaxHandshakeSize) { max_cert_list = kMaxHandshakeSize; } ctx->max_cert_list = (uint32_t)max_cert_list; } size_t SSL_get_max_cert_list(const SSL *ssl) { return ssl->max_cert_list; } void SSL_set_max_cert_list(SSL *ssl, size_t max_cert_list) { if (max_cert_list > kMaxHandshakeSize) { max_cert_list = kMaxHandshakeSize; } ssl->max_cert_list = (uint32_t)max_cert_list; } int SSL_CTX_set_max_send_fragment(SSL_CTX *ctx, size_t max_send_fragment) { if (max_send_fragment < 512) { max_send_fragment = 512; } if (max_send_fragment > SSL3_RT_MAX_PLAIN_LENGTH) { max_send_fragment = SSL3_RT_MAX_PLAIN_LENGTH; } ctx->max_send_fragment = (uint16_t)max_send_fragment; return 1; } int SSL_set_max_send_fragment(SSL *ssl, size_t max_send_fragment) { if (max_send_fragment < 512) { max_send_fragment = 512; } if (max_send_fragment > SSL3_RT_MAX_PLAIN_LENGTH) { max_send_fragment = SSL3_RT_MAX_PLAIN_LENGTH; } ssl->max_send_fragment = (uint16_t)max_send_fragment; return 1; } int SSL_set_mtu(SSL *ssl, unsigned mtu) { if (!SSL_is_dtls(ssl) || mtu < dtls1_min_mtu()) { return 0; } ssl->d1->mtu = mtu; return 1; } int SSL_get_secure_renegotiation_support(const SSL *ssl) { return ssl->s3->send_connection_binding; } LHASH_OF(SSL_SESSION) *SSL_CTX_sessions(SSL_CTX *ctx) { return ctx->sessions; } size_t SSL_CTX_sess_number(const SSL_CTX *ctx) { return lh_SSL_SESSION_num_items(ctx->sessions); } unsigned long SSL_CTX_sess_set_cache_size(SSL_CTX *ctx, unsigned long size) { unsigned long ret = ctx->session_cache_size; ctx->session_cache_size = size; return ret; } unsigned long SSL_CTX_sess_get_cache_size(const SSL_CTX *ctx) { return ctx->session_cache_size; } int SSL_CTX_set_session_cache_mode(SSL_CTX *ctx, int mode) { int ret = ctx->session_cache_mode; ctx->session_cache_mode = mode; return ret; } int SSL_CTX_get_session_cache_mode(const SSL_CTX *ctx) { return ctx->session_cache_mode; } int SSL_CTX_get_tlsext_ticket_keys(SSL_CTX *ctx, void *out, size_t len) { if (out == NULL) { return 48; } if (len != 48) { OPENSSL_PUT_ERROR(SSL, SSL_R_INVALID_TICKET_KEYS_LENGTH); return 0; } uint8_t *out_bytes = out; memcpy(out_bytes, ctx->tlsext_tick_key_name, 16); memcpy(out_bytes + 16, ctx->tlsext_tick_hmac_key, 16); memcpy(out_bytes + 32, ctx->tlsext_tick_aes_key, 16); return 1; } int SSL_CTX_set_tlsext_ticket_keys(SSL_CTX *ctx, const void *in, size_t len) { if (in == NULL) { return 48; } if (len != 48) { OPENSSL_PUT_ERROR(SSL, SSL_R_INVALID_TICKET_KEYS_LENGTH); return 0; } const uint8_t *in_bytes = in; memcpy(ctx->tlsext_tick_key_name, in_bytes, 16); memcpy(ctx->tlsext_tick_hmac_key, in_bytes + 16, 16); memcpy(ctx->tlsext_tick_aes_key, in_bytes + 32, 16); return 1; } int SSL_CTX_set_tlsext_ticket_key_cb( SSL_CTX *ctx, int (*callback)(SSL *ssl, uint8_t *key_name, uint8_t *iv, EVP_CIPHER_CTX *ctx, HMAC_CTX *hmac_ctx, int encrypt)) { ctx->tlsext_ticket_key_cb = callback; return 1; } int SSL_CTX_set1_curves(SSL_CTX *ctx, const int *curves, size_t curves_len) { return tls1_set_curves(&ctx->supported_group_list, &ctx->supported_group_list_len, curves, curves_len); } int SSL_set1_curves(SSL *ssl, const int *curves, size_t curves_len) { return tls1_set_curves(&ssl->supported_group_list, &ssl->supported_group_list_len, curves, curves_len); } uint16_t SSL_get_curve_id(const SSL *ssl) { /* TODO(davidben): This checks the wrong session if there is a renegotiation in * progress. */ SSL_SESSION *session = SSL_get_session(ssl); if (session == NULL || session->cipher == NULL || !SSL_CIPHER_is_ECDHE(session->cipher)) { return 0; } return (uint16_t)session->key_exchange_info; } int SSL_CTX_set_tmp_dh(SSL_CTX *ctx, const DH *dh) { DH_free(ctx->cert->dh_tmp); ctx->cert->dh_tmp = DHparams_dup(dh); if (ctx->cert->dh_tmp == NULL) { OPENSSL_PUT_ERROR(SSL, ERR_R_DH_LIB); return 0; } return 1; } int SSL_set_tmp_dh(SSL *ssl, const DH *dh) { DH_free(ssl->cert->dh_tmp); ssl->cert->dh_tmp = DHparams_dup(dh); if (ssl->cert->dh_tmp == NULL) { OPENSSL_PUT_ERROR(SSL, ERR_R_DH_LIB); return 0; } return 1; } STACK_OF(SSL_CIPHER) *SSL_get_ciphers(const SSL *ssl) { if (ssl == NULL) { return NULL; } if (ssl->cipher_list != NULL) { return ssl->cipher_list->ciphers; } if (ssl->version >= TLS1_1_VERSION && ssl->ctx->cipher_list_tls11 != NULL) { return ssl->ctx->cipher_list_tls11->ciphers; } if (ssl->version >= TLS1_VERSION && ssl->ctx->cipher_list_tls10 != NULL) { return ssl->ctx->cipher_list_tls10->ciphers; } if (ssl->ctx->cipher_list != NULL) { return ssl->ctx->cipher_list->ciphers; } return NULL; } /* return a STACK of the ciphers available for the SSL and in order of * algorithm id */ STACK_OF(SSL_CIPHER) *ssl_get_ciphers_by_id(SSL *ssl) { if (ssl == NULL) { return NULL; } if (ssl->cipher_list_by_id != NULL) { return ssl->cipher_list_by_id; } if (ssl->ctx->cipher_list_by_id != NULL) { return ssl->ctx->cipher_list_by_id; } return NULL; } const char *SSL_get_cipher_list(const SSL *ssl, int n) { const SSL_CIPHER *c; STACK_OF(SSL_CIPHER) *sk; if (ssl == NULL) { return NULL; } sk = SSL_get_ciphers(ssl); if (sk == NULL || n < 0 || (size_t)n >= sk_SSL_CIPHER_num(sk)) { return NULL; } c = sk_SSL_CIPHER_value(sk, n); if (c == NULL) { return NULL; } return c->name; } int SSL_CTX_set_cipher_list(SSL_CTX *ctx, const char *str) { STACK_OF(SSL_CIPHER) *cipher_list = ssl_create_cipher_list( ctx->method, &ctx->cipher_list, &ctx->cipher_list_by_id, str); if (cipher_list == NULL) { return 0; } /* |ssl_create_cipher_list| may succeed but return an empty cipher list. */ if (sk_SSL_CIPHER_num(cipher_list) == 0) { OPENSSL_PUT_ERROR(SSL, SSL_R_NO_CIPHER_MATCH); return 0; } return 1; } int SSL_CTX_set_cipher_list_tls10(SSL_CTX *ctx, const char *str) { STACK_OF(SSL_CIPHER) *cipher_list = ssl_create_cipher_list( ctx->method, &ctx->cipher_list_tls10, NULL, str); if (cipher_list == NULL) { return 0; } /* |ssl_create_cipher_list| may succeed but return an empty cipher list. */ if (sk_SSL_CIPHER_num(cipher_list) == 0) { OPENSSL_PUT_ERROR(SSL, SSL_R_NO_CIPHER_MATCH); return 0; } return 1; } int SSL_CTX_set_cipher_list_tls11(SSL_CTX *ctx, const char *str) { STACK_OF(SSL_CIPHER) *cipher_list = ssl_create_cipher_list( ctx->method, &ctx->cipher_list_tls11, NULL, str); if (cipher_list == NULL) { return 0; } /* |ssl_create_cipher_list| may succeed but return an empty cipher list. */ if (sk_SSL_CIPHER_num(cipher_list) == 0) { OPENSSL_PUT_ERROR(SSL, SSL_R_NO_CIPHER_MATCH); return 0; } return 1; } int SSL_set_cipher_list(SSL *ssl, const char *str) { STACK_OF(SSL_CIPHER) *cipher_list = ssl_create_cipher_list( ssl->ctx->method, &ssl->cipher_list, &ssl->cipher_list_by_id, str); if (cipher_list == NULL) { return 0; } /* |ssl_create_cipher_list| may succeed but return an empty cipher list. */ if (sk_SSL_CIPHER_num(cipher_list) == 0) { OPENSSL_PUT_ERROR(SSL, SSL_R_NO_CIPHER_MATCH); return 0; } return 1; } STACK_OF(SSL_CIPHER) * ssl_parse_client_cipher_list(const struct ssl_early_callback_ctx *ctx) { CBS cipher_suites; CBS_init(&cipher_suites, ctx->cipher_suites, ctx->cipher_suites_len); STACK_OF(SSL_CIPHER) *sk = sk_SSL_CIPHER_new_null(); if (sk == NULL) { OPENSSL_PUT_ERROR(SSL, ERR_R_MALLOC_FAILURE); goto err; } while (CBS_len(&cipher_suites) > 0) { uint16_t cipher_suite; if (!CBS_get_u16(&cipher_suites, &cipher_suite)) { OPENSSL_PUT_ERROR(SSL, SSL_R_ERROR_IN_RECEIVED_CIPHER_LIST); goto err; } const SSL_CIPHER *c = SSL_get_cipher_by_value(cipher_suite); if (c != NULL && !sk_SSL_CIPHER_push(sk, c)) { OPENSSL_PUT_ERROR(SSL, ERR_R_MALLOC_FAILURE); goto err; } } return sk; err: sk_SSL_CIPHER_free(sk); return NULL; } const char *SSL_get_servername(const SSL *ssl, const int type) { if (type != TLSEXT_NAMETYPE_host_name) { return NULL; } /* Historically, |SSL_get_servername| was also the configuration getter * corresponding to |SSL_set_tlsext_host_name|. */ if (ssl->tlsext_hostname != NULL) { return ssl->tlsext_hostname; } SSL_SESSION *session = SSL_get_session(ssl); if (session == NULL) { return NULL; } return session->tlsext_hostname; } int SSL_get_servername_type(const SSL *ssl) { SSL_SESSION *session = SSL_get_session(ssl); if (session == NULL || session->tlsext_hostname == NULL) { return -1; } return TLSEXT_NAMETYPE_host_name; } void SSL_CTX_enable_signed_cert_timestamps(SSL_CTX *ctx) { ctx->signed_cert_timestamps_enabled = 1; } int SSL_enable_signed_cert_timestamps(SSL *ssl) { ssl->signed_cert_timestamps_enabled = 1; return 1; } void SSL_CTX_enable_ocsp_stapling(SSL_CTX *ctx) { ctx->ocsp_stapling_enabled = 1; } int SSL_enable_ocsp_stapling(SSL *ssl) { ssl->ocsp_stapling_enabled = 1; return 1; } void SSL_get0_signed_cert_timestamp_list(const SSL *ssl, const uint8_t **out, size_t *out_len) { SSL_SESSION *session = SSL_get_session(ssl); *out_len = 0; *out = NULL; if (ssl->server || !session || !session->tlsext_signed_cert_timestamp_list) { return; } *out = session->tlsext_signed_cert_timestamp_list; *out_len = session->tlsext_signed_cert_timestamp_list_length; } void SSL_get0_ocsp_response(const SSL *ssl, const uint8_t **out, size_t *out_len) { SSL_SESSION *session = SSL_get_session(ssl); *out_len = 0; *out = NULL; if (ssl->server || !session || !session->ocsp_response) { return; } *out = session->ocsp_response; *out_len = session->ocsp_response_length; } int SSL_CTX_set_signed_cert_timestamp_list(SSL_CTX *ctx, const uint8_t *list, size_t list_len) { OPENSSL_free(ctx->signed_cert_timestamp_list); ctx->signed_cert_timestamp_list_length = 0; ctx->signed_cert_timestamp_list = BUF_memdup(list, list_len); if (ctx->signed_cert_timestamp_list == NULL) { return 0; } ctx->signed_cert_timestamp_list_length = list_len; return 1; } int SSL_CTX_set_ocsp_response(SSL_CTX *ctx, const uint8_t *response, size_t response_len) { OPENSSL_free(ctx->ocsp_response); ctx->ocsp_response_length = 0; ctx->ocsp_response = BUF_memdup(response, response_len); if (ctx->ocsp_response == NULL) { return 0; } ctx->ocsp_response_length = response_len; return 1; } int SSL_set_tlsext_host_name(SSL *ssl, const char *name) { OPENSSL_free(ssl->tlsext_hostname); ssl->tlsext_hostname = NULL; if (name == NULL) { return 1; } size_t len = strlen(name); if (len == 0 || len > TLSEXT_MAXLEN_host_name) { OPENSSL_PUT_ERROR(SSL, SSL_R_SSL3_EXT_INVALID_SERVERNAME); return 0; } ssl->tlsext_hostname = BUF_strdup(name); if (ssl->tlsext_hostname == NULL) { OPENSSL_PUT_ERROR(SSL, ERR_R_MALLOC_FAILURE); return 0; } return 1; } int SSL_CTX_set_tlsext_servername_callback( SSL_CTX *ctx, int (*callback)(SSL *ssl, int *out_alert, void *arg)) { ctx->tlsext_servername_callback = callback; return 1; } int SSL_CTX_set_tlsext_servername_arg(SSL_CTX *ctx, void *arg) { ctx->tlsext_servername_arg = arg; return 1; } int SSL_select_next_proto(uint8_t **out, uint8_t *out_len, const uint8_t *server, unsigned server_len, const uint8_t *client, unsigned client_len) { unsigned int i, j; const uint8_t *result; int status = OPENSSL_NPN_UNSUPPORTED; /* For each protocol in server preference order, see if we support it. */ for (i = 0; i < server_len;) { for (j = 0; j < client_len;) { if (server[i] == client[j] && memcmp(&server[i + 1], &client[j + 1], server[i]) == 0) { /* We found a match */ result = &server[i]; status = OPENSSL_NPN_NEGOTIATED; goto found; } j += client[j]; j++; } i += server[i]; i++; } /* There's no overlap between our protocols and the server's list. */ result = client; status = OPENSSL_NPN_NO_OVERLAP; found: *out = (uint8_t *)result + 1; *out_len = result[0]; return status; } void SSL_get0_next_proto_negotiated(const SSL *ssl, const uint8_t **out_data, unsigned *out_len) { *out_data = ssl->s3->next_proto_negotiated; if (*out_data == NULL) { *out_len = 0; } else { *out_len = ssl->s3->next_proto_negotiated_len; } } void SSL_CTX_set_next_protos_advertised_cb( SSL_CTX *ctx, int (*cb)(SSL *ssl, const uint8_t **out, unsigned *out_len, void *arg), void *arg) { ctx->next_protos_advertised_cb = cb; ctx->next_protos_advertised_cb_arg = arg; } void SSL_CTX_set_next_proto_select_cb( SSL_CTX *ctx, int (*cb)(SSL *ssl, uint8_t **out, uint8_t *out_len, const uint8_t *in, unsigned in_len, void *arg), void *arg) { ctx->next_proto_select_cb = cb; ctx->next_proto_select_cb_arg = arg; } int SSL_CTX_set_alpn_protos(SSL_CTX *ctx, const uint8_t *protos, unsigned protos_len) { OPENSSL_free(ctx->alpn_client_proto_list); ctx->alpn_client_proto_list = BUF_memdup(protos, protos_len); if (!ctx->alpn_client_proto_list) { return 1; } ctx->alpn_client_proto_list_len = protos_len; return 0; } int SSL_set_alpn_protos(SSL *ssl, const uint8_t *protos, unsigned protos_len) { OPENSSL_free(ssl->alpn_client_proto_list); ssl->alpn_client_proto_list = BUF_memdup(protos, protos_len); if (!ssl->alpn_client_proto_list) { return 1; } ssl->alpn_client_proto_list_len = protos_len; return 0; } void SSL_CTX_set_alpn_select_cb(SSL_CTX *ctx, int (*cb)(SSL *ssl, const uint8_t **out, uint8_t *out_len, const uint8_t *in, unsigned in_len, void *arg), void *arg) { ctx->alpn_select_cb = cb; ctx->alpn_select_cb_arg = arg; } void SSL_get0_alpn_selected(const SSL *ssl, const uint8_t **out_data, unsigned *out_len) { *out_data = NULL; if (ssl->s3) { *out_data = ssl->s3->alpn_selected; } if (*out_data == NULL) { *out_len = 0; } else { *out_len = ssl->s3->alpn_selected_len; } } int SSL_CTX_enable_tls_channel_id(SSL_CTX *ctx) { ctx->tlsext_channel_id_enabled = 1; return 1; } int SSL_enable_tls_channel_id(SSL *ssl) { ssl->tlsext_channel_id_enabled = 1; return 1; } static int is_p256_key(EVP_PKEY *private_key) { const EC_KEY *ec_key = EVP_PKEY_get0_EC_KEY(private_key); return ec_key != NULL && EC_GROUP_get_curve_name(EC_KEY_get0_group(ec_key)) == NID_X9_62_prime256v1; } int SSL_CTX_set1_tls_channel_id(SSL_CTX *ctx, EVP_PKEY *private_key) { if (!is_p256_key(private_key)) { OPENSSL_PUT_ERROR(SSL, SSL_R_CHANNEL_ID_NOT_P256); return 0; } EVP_PKEY_free(ctx->tlsext_channel_id_private); EVP_PKEY_up_ref(private_key); ctx->tlsext_channel_id_private = private_key; ctx->tlsext_channel_id_enabled = 1; return 1; } int SSL_set1_tls_channel_id(SSL *ssl, EVP_PKEY *private_key) { if (!is_p256_key(private_key)) { OPENSSL_PUT_ERROR(SSL, SSL_R_CHANNEL_ID_NOT_P256); return 0; } EVP_PKEY_free(ssl->tlsext_channel_id_private); EVP_PKEY_up_ref(private_key); ssl->tlsext_channel_id_private = private_key; ssl->tlsext_channel_id_enabled = 1; return 1; } size_t SSL_get_tls_channel_id(SSL *ssl, uint8_t *out, size_t max_out) { if (!ssl->s3->tlsext_channel_id_valid) { return 0; } memcpy(out, ssl->s3->tlsext_channel_id, (max_out < 64) ? max_out : 64); return 64; } void SSL_CTX_set_cert_verify_callback(SSL_CTX *ctx, int (*cb)(X509_STORE_CTX *store_ctx, void *arg), void *arg) { ctx->app_verify_callback = cb; ctx->app_verify_arg = arg; } void SSL_CTX_set_verify(SSL_CTX *ctx, int mode, int (*cb)(int, X509_STORE_CTX *)) { ctx->verify_mode = mode; ctx->default_verify_callback = cb; } void SSL_CTX_set_verify_depth(SSL_CTX *ctx, int depth) { X509_VERIFY_PARAM_set_depth(ctx->param, depth); } void SSL_CTX_set_cert_cb(SSL_CTX *ctx, int (*cb)(SSL *ssl, void *arg), void *arg) { ssl_cert_set_cert_cb(ctx->cert, cb, arg); } void SSL_set_cert_cb(SSL *ssl, int (*cb)(SSL *ssl, void *arg), void *arg) { ssl_cert_set_cert_cb(ssl->cert, cb, arg); } size_t SSL_get0_certificate_types(SSL *ssl, const uint8_t **out_types) { if (ssl->server) { *out_types = NULL; return 0; } *out_types = ssl->s3->tmp.certificate_types; return ssl->s3->tmp.num_certificate_types; } void ssl_get_compatible_server_ciphers(SSL *ssl, uint32_t *out_mask_k, uint32_t *out_mask_a) { uint32_t mask_k = 0; uint32_t mask_a = 0; if (ssl->cert->x509 != NULL && ssl_has_private_key(ssl)) { int type = ssl_private_key_type(ssl); if (type == NID_rsaEncryption) { mask_k |= SSL_kRSA; mask_a |= SSL_aRSA; } else if (ssl_is_ecdsa_key_type(type)) { /* An ECC certificate may be usable for ECDSA cipher suites depending on * the key usage extension and on the client's group preferences. */ X509 *x = ssl->cert->x509; /* This call populates extension flags (ex_flags). */ X509_check_purpose(x, -1, 0); int ecdsa_ok = (x->ex_flags & EXFLAG_KUSAGE) ? (x->ex_kusage & X509v3_KU_DIGITAL_SIGNATURE) : 1; if (ecdsa_ok && tls1_check_ec_cert(ssl, x)) { mask_a |= SSL_aECDSA; } } } if (ssl->cert->dh_tmp != NULL || ssl->cert->dh_tmp_cb != NULL) { mask_k |= SSL_kDHE; } /* Check for a shared group to consider ECDHE ciphers. */ uint16_t unused; if (tls1_get_shared_group(ssl, &unused)) { mask_k |= SSL_kECDHE; } /* CECPQ1 ciphers are always acceptable if supported by both sides. */ mask_k |= SSL_kCECPQ1; /* PSK requires a server callback. */ if (ssl->psk_server_callback != NULL) { mask_k |= SSL_kPSK; mask_a |= SSL_aPSK; } *out_mask_k = mask_k; *out_mask_a = mask_a; } void ssl_update_cache(SSL *ssl, int mode) { SSL_CTX *ctx = ssl->initial_ctx; /* Never cache sessions with empty session IDs. */ if (ssl->s3->established_session->session_id_length == 0 || (ctx->session_cache_mode & mode) != mode) { return; } /* Clients never use the internal session cache. */ int use_internal_cache = ssl->server && !(ctx->session_cache_mode & SSL_SESS_CACHE_NO_INTERNAL_STORE); /* A client may see new sessions on abbreviated handshakes if the server * decides to renew the ticket. Once the handshake is completed, it should be * inserted into the cache. */ if (ssl->s3->established_session != ssl->session || (!ssl->server && ssl->tlsext_ticket_expected)) { if (use_internal_cache) { SSL_CTX_add_session(ctx, ssl->s3->established_session); } if (ctx->new_session_cb != NULL) { SSL_SESSION_up_ref(ssl->s3->established_session); if (!ctx->new_session_cb(ssl, ssl->s3->established_session)) { /* |new_session_cb|'s return value signals whether it took ownership. */ SSL_SESSION_free(ssl->s3->established_session); } } } if (use_internal_cache && !(ctx->session_cache_mode & SSL_SESS_CACHE_NO_AUTO_CLEAR)) { /* Automatically flush the internal session cache every 255 connections. */ int flush_cache = 0; CRYPTO_MUTEX_lock_write(&ctx->lock); ctx->handshakes_since_cache_flush++; if (ctx->handshakes_since_cache_flush >= 255) { flush_cache = 1; ctx->handshakes_since_cache_flush = 0; } CRYPTO_MUTEX_unlock_write(&ctx->lock); if (flush_cache) { struct timeval now; ssl_get_current_time(ssl, &now); SSL_CTX_flush_sessions(ctx, (long)now.tv_sec); } } } static const char *ssl_get_version(int version) { switch (version) { case TLS1_3_VERSION: return "TLSv1.3"; case TLS1_2_VERSION: return "TLSv1.2"; case TLS1_1_VERSION: return "TLSv1.1"; case TLS1_VERSION: return "TLSv1"; case SSL3_VERSION: return "SSLv3"; case DTLS1_VERSION: return "DTLSv1"; case DTLS1_2_VERSION: return "DTLSv1.2"; default: return "unknown"; } } const char *SSL_get_version(const SSL *ssl) { return ssl_get_version(ssl->version); } const char *SSL_SESSION_get_version(const SSL_SESSION *session) { return ssl_get_version(session->ssl_version); } X509 *SSL_get_certificate(const SSL *ssl) { if (ssl->cert != NULL) { return ssl->cert->x509; } return NULL; } EVP_PKEY *SSL_get_privatekey(const SSL *ssl) { if (ssl->cert != NULL) { return ssl->cert->privatekey; } return NULL; } X509 *SSL_CTX_get0_certificate(const SSL_CTX *ctx) { if (ctx->cert != NULL) { return ctx->cert->x509; } return NULL; } EVP_PKEY *SSL_CTX_get0_privatekey(const SSL_CTX *ctx) { if (ctx->cert != NULL) { return ctx->cert->privatekey; } return NULL; } const SSL_CIPHER *SSL_get_current_cipher(const SSL *ssl) { if (ssl->s3->aead_write_ctx == NULL) { return NULL; } return ssl->s3->aead_write_ctx->cipher; } int SSL_session_reused(const SSL *ssl) { return ssl->session != NULL; } const COMP_METHOD *SSL_get_current_compression(SSL *ssl) { return NULL; } const COMP_METHOD *SSL_get_current_expansion(SSL *ssl) { return NULL; } int *SSL_get_server_tmp_key(SSL *ssl, EVP_PKEY **out_key) { return 0; } int ssl_is_wbio_buffered(const SSL *ssl) { return ssl->bbio != NULL; } int ssl_init_wbio_buffer(SSL *ssl) { if (ssl->bbio != NULL) { /* Already buffered. */ assert(ssl->bbio == ssl->wbio); return 1; } BIO *bbio = BIO_new(BIO_f_buffer()); if (bbio == NULL || !BIO_set_read_buffer_size(bbio, 1)) { BIO_free(bbio); return 0; } ssl->bbio = bbio; ssl->wbio = BIO_push(bbio, ssl->wbio); return 1; } void ssl_free_wbio_buffer(SSL *ssl) { if (ssl->bbio == NULL) { return; } assert(ssl->bbio == ssl->wbio); ssl->wbio = BIO_pop(ssl->wbio); BIO_free(ssl->bbio); ssl->bbio = NULL; } void SSL_CTX_set_quiet_shutdown(SSL_CTX *ctx, int mode) { ctx->quiet_shutdown = (mode != 0); } int SSL_CTX_get_quiet_shutdown(const SSL_CTX *ctx) { return ctx->quiet_shutdown; } void SSL_set_quiet_shutdown(SSL *ssl, int mode) { ssl->quiet_shutdown = (mode != 0); } int SSL_get_quiet_shutdown(const SSL *ssl) { return ssl->quiet_shutdown; } void SSL_set_shutdown(SSL *ssl, int mode) { /* It is an error to clear any bits that have already been set. (We can't try * to get a second close_notify or send two.) */ assert((SSL_get_shutdown(ssl) & mode) == SSL_get_shutdown(ssl)); if (mode & SSL_RECEIVED_SHUTDOWN && ssl->s3->recv_shutdown == ssl_shutdown_none) { ssl->s3->recv_shutdown = ssl_shutdown_close_notify; } if (mode & SSL_SENT_SHUTDOWN && ssl->s3->send_shutdown == ssl_shutdown_none) { ssl->s3->send_shutdown = ssl_shutdown_close_notify; } } int SSL_get_shutdown(const SSL *ssl) { int ret = 0; if (ssl->s3->recv_shutdown != ssl_shutdown_none) { /* Historically, OpenSSL set |SSL_RECEIVED_SHUTDOWN| on both close_notify * and fatal alert. */ ret |= SSL_RECEIVED_SHUTDOWN; } if (ssl->s3->send_shutdown == ssl_shutdown_close_notify) { /* Historically, OpenSSL set |SSL_SENT_SHUTDOWN| on only close_notify. */ ret |= SSL_SENT_SHUTDOWN; } return ret; } int SSL_version(const SSL *ssl) { return ssl->version; } SSL_CTX *SSL_get_SSL_CTX(const SSL *ssl) { return ssl->ctx; } SSL_CTX *SSL_set_SSL_CTX(SSL *ssl, SSL_CTX *ctx) { if (ssl->ctx == ctx) { return ssl->ctx; } if (ctx == NULL) { ctx = ssl->initial_ctx; } ssl_cert_free(ssl->cert); ssl->cert = ssl_cert_dup(ctx->cert); CRYPTO_refcount_inc(&ctx->references); SSL_CTX_free(ssl->ctx); /* decrement reference count */ ssl->ctx = ctx; ssl->sid_ctx_length = ctx->sid_ctx_length; assert(ssl->sid_ctx_length <= sizeof(ssl->sid_ctx)); memcpy(ssl->sid_ctx, ctx->sid_ctx, sizeof(ssl->sid_ctx)); return ssl->ctx; } int SSL_CTX_set_default_verify_paths(SSL_CTX *ctx) { return X509_STORE_set_default_paths(ctx->cert_store); } int SSL_CTX_load_verify_locations(SSL_CTX *ctx, const char *ca_file, const char *ca_dir) { return X509_STORE_load_locations(ctx->cert_store, ca_file, ca_dir); } void SSL_set_info_callback(SSL *ssl, void (*cb)(const SSL *ssl, int type, int value)) { ssl->info_callback = cb; } void (*SSL_get_info_callback(const SSL *ssl))(const SSL *ssl, int type, int value) { return ssl->info_callback; } int SSL_state(const SSL *ssl) { return ssl->state; } void SSL_set_state(SSL *ssl, int state) { } char *SSL_get_shared_ciphers(const SSL *ssl, char *buf, int len) { if (len <= 0) { return NULL; } buf[0] = '\0'; return buf; } void SSL_set_verify_result(SSL *ssl, long result) { ssl->verify_result = result; } long SSL_get_verify_result(const SSL *ssl) { return ssl->verify_result; } int SSL_get_ex_new_index(long argl, void *argp, CRYPTO_EX_unused *unused, CRYPTO_EX_dup *dup_func, CRYPTO_EX_free *free_func) { int index; if (!CRYPTO_get_ex_new_index(&g_ex_data_class_ssl, &index, argl, argp, dup_func, free_func)) { return -1; } return index; } int SSL_set_ex_data(SSL *ssl, int idx, void *arg) { return CRYPTO_set_ex_data(&ssl->ex_data, idx, arg); } void *SSL_get_ex_data(const SSL *ssl, int idx) { return CRYPTO_get_ex_data(&ssl->ex_data, idx); } int SSL_CTX_get_ex_new_index(long argl, void *argp, CRYPTO_EX_unused *unused, CRYPTO_EX_dup *dup_func, CRYPTO_EX_free *free_func) { int index; if (!CRYPTO_get_ex_new_index(&g_ex_data_class_ssl_ctx, &index, argl, argp, dup_func, free_func)) { return -1; } return index; } int SSL_CTX_set_ex_data(SSL_CTX *ctx, int idx, void *arg) { return CRYPTO_set_ex_data(&ctx->ex_data, idx, arg); } void *SSL_CTX_get_ex_data(const SSL_CTX *ctx, int idx) { return CRYPTO_get_ex_data(&ctx->ex_data, idx); } X509_STORE *SSL_CTX_get_cert_store(const SSL_CTX *ctx) { return ctx->cert_store; } void SSL_CTX_set_cert_store(SSL_CTX *ctx, X509_STORE *store) { X509_STORE_free(ctx->cert_store); ctx->cert_store = store; } int SSL_want(const SSL *ssl) { return ssl->rwstate; } void SSL_CTX_set_tmp_rsa_callback(SSL_CTX *ctx, RSA *(*cb)(SSL *ssl, int is_export, int keylength)) { } void SSL_set_tmp_rsa_callback(SSL *ssl, RSA *(*cb)(SSL *ssl, int is_export, int keylength)) { } void SSL_CTX_set_tmp_dh_callback(SSL_CTX *ctx, DH *(*callback)(SSL *ssl, int is_export, int keylength)) { ctx->cert->dh_tmp_cb = callback; } void SSL_set_tmp_dh_callback(SSL *ssl, DH *(*callback)(SSL *ssl, int is_export, int keylength)) { ssl->cert->dh_tmp_cb = callback; } unsigned SSL_get_dhe_group_size(const SSL *ssl) { /* TODO(davidben): This checks the wrong session if there is a renegotiation in * progress. */ SSL_SESSION *session = SSL_get_session(ssl); if (session == NULL || session->cipher == NULL || !SSL_CIPHER_is_DHE(session->cipher)) { return 0; } return session->key_exchange_info; } int SSL_CTX_use_psk_identity_hint(SSL_CTX *ctx, const char *identity_hint) { if (identity_hint != NULL && strlen(identity_hint) > PSK_MAX_IDENTITY_LEN) { OPENSSL_PUT_ERROR(SSL, SSL_R_DATA_LENGTH_TOO_LONG); return 0; } OPENSSL_free(ctx->psk_identity_hint); if (identity_hint != NULL) { ctx->psk_identity_hint = BUF_strdup(identity_hint); if (ctx->psk_identity_hint == NULL) { return 0; } } else { ctx->psk_identity_hint = NULL; } return 1; } int SSL_use_psk_identity_hint(SSL *ssl, const char *identity_hint) { if (ssl == NULL) { return 0; } if (identity_hint != NULL && strlen(identity_hint) > PSK_MAX_IDENTITY_LEN) { OPENSSL_PUT_ERROR(SSL, SSL_R_DATA_LENGTH_TOO_LONG); return 0; } /* Clear currently configured hint, if any. */ OPENSSL_free(ssl->psk_identity_hint); ssl->psk_identity_hint = NULL; if (identity_hint != NULL) { ssl->psk_identity_hint = BUF_strdup(identity_hint); if (ssl->psk_identity_hint == NULL) { return 0; } } return 1; } const char *SSL_get_psk_identity_hint(const SSL *ssl) { if (ssl == NULL) { return NULL; } return ssl->psk_identity_hint; } const char *SSL_get_psk_identity(const SSL *ssl) { if (ssl == NULL) { return NULL; } SSL_SESSION *session = SSL_get_session(ssl); if (session == NULL) { return NULL; } return session->psk_identity; } void SSL_set_psk_client_callback( SSL *ssl, unsigned (*cb)(SSL *ssl, const char *hint, char *identity, unsigned max_identity_len, uint8_t *psk, unsigned max_psk_len)) { ssl->psk_client_callback = cb; } void SSL_CTX_set_psk_client_callback( SSL_CTX *ctx, unsigned (*cb)(SSL *ssl, const char *hint, char *identity, unsigned max_identity_len, uint8_t *psk, unsigned max_psk_len)) { ctx->psk_client_callback = cb; } void SSL_set_psk_server_callback( SSL *ssl, unsigned (*cb)(SSL *ssl, const char *identity, uint8_t *psk, unsigned max_psk_len)) { ssl->psk_server_callback = cb; } void SSL_CTX_set_psk_server_callback( SSL_CTX *ctx, unsigned (*cb)(SSL *ssl, const char *identity, uint8_t *psk, unsigned max_psk_len)) { ctx->psk_server_callback = cb; } void SSL_CTX_set_msg_callback(SSL_CTX *ctx, void (*cb)(int write_p, int version, int content_type, const void *buf, size_t len, SSL *ssl, void *arg)) { ctx->msg_callback = cb; } void SSL_CTX_set_msg_callback_arg(SSL_CTX *ctx, void *arg) { ctx->msg_callback_arg = arg; } void SSL_set_msg_callback(SSL *ssl, void (*cb)(int write_p, int version, int content_type, const void *buf, size_t len, SSL *ssl, void *arg)) { ssl->msg_callback = cb; } void SSL_set_msg_callback_arg(SSL *ssl, void *arg) { ssl->msg_callback_arg = arg; } void SSL_CTX_set_keylog_callback(SSL_CTX *ctx, void (*cb)(const SSL *ssl, const char *line)) { ctx->keylog_callback = cb; } void SSL_CTX_set_current_time_cb(SSL_CTX *ctx, void (*cb)(const SSL *ssl, struct timeval *out_clock)) { ctx->current_time_cb = cb; } static int cbb_add_hex(CBB *cbb, const uint8_t *in, size_t in_len) { static const char hextable[] = "0123456789abcdef"; uint8_t *out; size_t i; if (!CBB_add_space(cbb, &out, in_len * 2)) { return 0; } for (i = 0; i < in_len; i++) { *(out++) = (uint8_t)hextable[in[i] >> 4]; *(out++) = (uint8_t)hextable[in[i] & 0xf]; } return 1; } int ssl_log_rsa_client_key_exchange(const SSL *ssl, const uint8_t *encrypted_premaster, size_t encrypted_premaster_len, const uint8_t *premaster, size_t premaster_len) { if (ssl->ctx->keylog_callback == NULL) { return 1; } if (encrypted_premaster_len < 8) { OPENSSL_PUT_ERROR(SSL, ERR_R_INTERNAL_ERROR); return 0; } CBB cbb; uint8_t *out; size_t out_len; if (!CBB_init(&cbb, 4 + 16 + 1 + premaster_len * 2 + 1) || !CBB_add_bytes(&cbb, (const uint8_t *)"RSA ", 4) || /* Only the first 8 bytes of the encrypted premaster secret are * logged. */ !cbb_add_hex(&cbb, encrypted_premaster, 8) || !CBB_add_bytes(&cbb, (const uint8_t *)" ", 1) || !cbb_add_hex(&cbb, premaster, premaster_len) || !CBB_add_u8(&cbb, 0 /* NUL */) || !CBB_finish(&cbb, &out, &out_len)) { CBB_cleanup(&cbb); return 0; } ssl->ctx->keylog_callback(ssl, (const char *)out); OPENSSL_free(out); return 1; } int ssl_log_secret(const SSL *ssl, const char *label, const uint8_t *secret, size_t secret_len) { if (ssl->ctx->keylog_callback == NULL) { return 1; } CBB cbb; uint8_t *out; size_t out_len; if (!CBB_init(&cbb, strlen(label) + 1 + SSL3_RANDOM_SIZE * 2 + 1 + secret_len * 2 + 1) || !CBB_add_bytes(&cbb, (const uint8_t *)label, strlen(label)) || !CBB_add_bytes(&cbb, (const uint8_t *)" ", 1) || !cbb_add_hex(&cbb, ssl->s3->client_random, SSL3_RANDOM_SIZE) || !CBB_add_bytes(&cbb, (const uint8_t *)" ", 1) || !cbb_add_hex(&cbb, secret, secret_len) || !CBB_add_u8(&cbb, 0 /* NUL */) || !CBB_finish(&cbb, &out, &out_len)) { CBB_cleanup(&cbb); return 0; } ssl->ctx->keylog_callback(ssl, (const char *)out); OPENSSL_free(out); return 1; } int SSL_is_init_finished(const SSL *ssl) { return ssl->state == SSL_ST_OK; } int SSL_in_init(const SSL *ssl) { return (ssl->state & SSL_ST_INIT) != 0; } int SSL_in_false_start(const SSL *ssl) { return ssl->s3->tmp.in_false_start; } int SSL_cutthrough_complete(const SSL *ssl) { return SSL_in_false_start(ssl); } void SSL_get_structure_sizes(size_t *ssl_size, size_t *ssl_ctx_size, size_t *ssl_session_size) { *ssl_size = sizeof(SSL); *ssl_ctx_size = sizeof(SSL_CTX); *ssl_session_size = sizeof(SSL_SESSION); } int ssl3_can_false_start(const SSL *ssl) { const SSL_CIPHER *const cipher = SSL_get_current_cipher(ssl); /* False Start only for TLS 1.2 with an ECDHE+AEAD cipher and ALPN or NPN. */ return !SSL_is_dtls(ssl) && SSL_version(ssl) == TLS1_2_VERSION && (ssl->s3->alpn_selected || ssl->s3->next_proto_neg_seen) && cipher != NULL && (cipher->algorithm_mkey == SSL_kECDHE || cipher->algorithm_mkey == SSL_kCECPQ1) && cipher->algorithm_mac == SSL_AEAD; } const SSL3_ENC_METHOD *ssl3_get_enc_method(uint16_t version) { switch (version) { case SSL3_VERSION: return &SSLv3_enc_data; case TLS1_VERSION: case TLS1_1_VERSION: case TLS1_2_VERSION: case TLS1_3_VERSION: return &TLSv1_enc_data; default: return NULL; } } const struct { uint16_t version; uint32_t flag; } kVersions[] = { {SSL3_VERSION, SSL_OP_NO_SSLv3}, {TLS1_VERSION, SSL_OP_NO_TLSv1}, {TLS1_1_VERSION, SSL_OP_NO_TLSv1_1}, {TLS1_2_VERSION, SSL_OP_NO_TLSv1_2}, {TLS1_3_VERSION, SSL_OP_NO_TLSv1_3}, }; static const size_t kVersionsLen = sizeof(kVersions) / sizeof(kVersions[0]); int ssl_get_full_version_range(const SSL *ssl, uint16_t *out_min_version, uint16_t *out_fallback_version, uint16_t *out_max_version) { /* For historical reasons, |SSL_OP_NO_DTLSv1| aliases |SSL_OP_NO_TLSv1|, but * DTLS 1.0 should be mapped to TLS 1.1. */ uint32_t options = ssl->options; if (SSL_is_dtls(ssl)) { options &= ~SSL_OP_NO_TLSv1_1; if (options & SSL_OP_NO_DTLSv1) { options |= SSL_OP_NO_TLSv1_1; } } uint16_t min_version = ssl->min_version; uint16_t max_version = ssl->max_version; /* Bound the range to only those implemented in this protocol. */ if (min_version < ssl->method->min_version) { min_version = ssl->method->min_version; } if (max_version > ssl->method->max_version) { max_version = ssl->method->max_version; } /* OpenSSL's API for controlling versions entails blacklisting individual * protocols. This has two problems. First, on the client, the protocol can * only express a contiguous range of versions. Second, a library consumer * trying to set a maximum version cannot disable protocol versions that get * added in a future version of the library. * * To account for both of these, OpenSSL interprets the client-side bitmask * as a min/max range by picking the lowest contiguous non-empty range of * enabled protocols. Note that this means it is impossible to set a maximum * version of the higest supported TLS version in a future-proof way. */ size_t i; int any_enabled = 0; for (i = 0; i < kVersionsLen; i++) { /* Only look at the versions already enabled. */ if (min_version > kVersions[i].version) { continue; } if (max_version < kVersions[i].version) { break; } if (!(options & kVersions[i].flag)) { /* The minimum version is the first enabled version. */ if (!any_enabled) { any_enabled = 1; min_version = kVersions[i].version; } continue; } /* If there is a disabled version after the first enabled one, all versions * after it are implicitly disabled. */ if (any_enabled) { max_version = kVersions[i-1].version; break; } } uint16_t fallback_version = max_version; if (ssl->fallback_version != 0 && ssl->fallback_version < fallback_version) { fallback_version = ssl->fallback_version; } if (!any_enabled || fallback_version < min_version) { OPENSSL_PUT_ERROR(SSL, SSL_R_WRONG_SSL_VERSION); return 0; } *out_min_version = min_version; *out_fallback_version = fallback_version; *out_max_version = max_version; return 1; } int ssl_get_version_range(const SSL *ssl, uint16_t *out_min_version, uint16_t *out_effective_max_version) { /* This function returns the effective maximum version and not the fallback * version. */ uint16_t real_max_version_unused; return ssl_get_full_version_range(ssl, out_min_version, out_effective_max_version, &real_max_version_unused); } uint16_t ssl3_protocol_version(const SSL *ssl) { assert(ssl->s3->have_version); return ssl->method->version_from_wire(ssl->version); } int SSL_is_server(const SSL *ssl) { return ssl->server; } int SSL_is_dtls(const SSL *ssl) { return ssl->method->is_dtls; } void SSL_CTX_set_select_certificate_cb( SSL_CTX *ctx, int (*cb)(const struct ssl_early_callback_ctx *)) { ctx->select_certificate_cb = cb; } void SSL_CTX_set_dos_protection_cb( SSL_CTX *ctx, int (*cb)(const struct ssl_early_callback_ctx *)) { ctx->dos_protection_cb = cb; } void SSL_set_renegotiate_mode(SSL *ssl, enum ssl_renegotiate_mode_t mode) { ssl->renegotiate_mode = mode; } void SSL_set_reject_peer_renegotiations(SSL *ssl, int reject) { SSL_set_renegotiate_mode( ssl, reject ? ssl_renegotiate_never : ssl_renegotiate_freely); } int SSL_get_rc4_state(const SSL *ssl, const RC4_KEY **read_key, const RC4_KEY **write_key) { if (ssl->s3->aead_read_ctx == NULL || ssl->s3->aead_write_ctx == NULL) { return 0; } return EVP_AEAD_CTX_get_rc4_state(&ssl->s3->aead_read_ctx->ctx, read_key) && EVP_AEAD_CTX_get_rc4_state(&ssl->s3->aead_write_ctx->ctx, write_key); } int SSL_get_ivs(const SSL *ssl, const uint8_t **out_read_iv, const uint8_t **out_write_iv, size_t *out_iv_len) { if (ssl->s3->aead_read_ctx == NULL || ssl->s3->aead_write_ctx == NULL) { return 0; } size_t write_iv_len; if (!EVP_AEAD_CTX_get_iv(&ssl->s3->aead_read_ctx->ctx, out_read_iv, out_iv_len) || !EVP_AEAD_CTX_get_iv(&ssl->s3->aead_write_ctx->ctx, out_write_iv, &write_iv_len) || *out_iv_len != write_iv_len) { return 0; } return 1; } static uint64_t be_to_u64(const uint8_t in[8]) { return (((uint64_t)in[0]) << 56) | (((uint64_t)in[1]) << 48) | (((uint64_t)in[2]) << 40) | (((uint64_t)in[3]) << 32) | (((uint64_t)in[4]) << 24) | (((uint64_t)in[5]) << 16) | (((uint64_t)in[6]) << 8) | ((uint64_t)in[7]); } uint64_t SSL_get_read_sequence(const SSL *ssl) { /* TODO(davidben): Internally represent sequence numbers as uint64_t. */ if (SSL_is_dtls(ssl)) { /* max_seq_num already includes the epoch. */ assert(ssl->d1->r_epoch == (ssl->d1->bitmap.max_seq_num >> 48)); return ssl->d1->bitmap.max_seq_num; } return be_to_u64(ssl->s3->read_sequence); } uint64_t SSL_get_write_sequence(const SSL *ssl) { uint64_t ret = be_to_u64(ssl->s3->write_sequence); if (SSL_is_dtls(ssl)) { assert((ret >> 48) == 0); ret |= ((uint64_t)ssl->d1->w_epoch) << 48; } return ret; } uint16_t SSL_get_peer_signature_algorithm(const SSL *ssl) { return ssl->s3->tmp.peer_signature_algorithm; } size_t SSL_get_client_random(const SSL *ssl, uint8_t *out, size_t max_out) { if (max_out == 0) { return sizeof(ssl->s3->client_random); } if (max_out > sizeof(ssl->s3->client_random)) { max_out = sizeof(ssl->s3->client_random); } memcpy(out, ssl->s3->client_random, max_out); return max_out; } size_t SSL_get_server_random(const SSL *ssl, uint8_t *out, size_t max_out) { if (max_out == 0) { return sizeof(ssl->s3->server_random); } if (max_out > sizeof(ssl->s3->server_random)) { max_out = sizeof(ssl->s3->server_random); } memcpy(out, ssl->s3->server_random, max_out); return max_out; } const SSL_CIPHER *SSL_get_pending_cipher(const SSL *ssl) { if (!SSL_in_init(ssl)) { return NULL; } return ssl->s3->tmp.new_cipher; } void SSL_CTX_set_retain_only_sha256_of_client_certs(SSL_CTX *ctx, int enabled) { ctx->retain_only_sha256_of_client_certs = !!enabled; } int SSL_clear(SSL *ssl) { if (ssl->method == NULL) { OPENSSL_PUT_ERROR(SSL, SSL_R_NO_METHOD_SPECIFIED); return 0; } /* SSL_clear may be called before or after the |ssl| is initialized in either * accept or connect state. In the latter case, SSL_clear should preserve the * half and reset |ssl->state| accordingly. */ if (ssl->handshake_func != NULL) { if (ssl->server) { SSL_set_accept_state(ssl); } else { SSL_set_connect_state(ssl); } } else { assert(ssl->state == 0); } /* TODO(davidben): Some state on |ssl| is reset both in |SSL_new| and * |SSL_clear| because it is per-connection state rather than configuration * state. Per-connection state should be on |ssl->s3| and |ssl->d1| so it is * naturally reset at the right points between |SSL_new|, |SSL_clear|, and * |ssl3_new|. */ ssl->rwstate = SSL_NOTHING; BUF_MEM_free(ssl->init_buf); ssl->init_buf = NULL; ssl->init_msg = NULL; ssl->init_num = 0; /* The ssl->d1->mtu is simultaneously configuration (preserved across * clear) and connection-specific state (gets reset). * * TODO(davidben): Avoid this. */ unsigned mtu = 0; if (ssl->d1 != NULL) { mtu = ssl->d1->mtu; } ssl->method->ssl_free(ssl); if (!ssl->method->ssl_new(ssl)) { return 0; } if (SSL_is_dtls(ssl) && (SSL_get_options(ssl) & SSL_OP_NO_QUERY_MTU)) { ssl->d1->mtu = mtu; } ssl->client_version = ssl->version; return 1; } void ssl_do_info_callback(const SSL *ssl, int type, int value) { void (*cb)(const SSL *ssl, int type, int value) = NULL; if (ssl->info_callback != NULL) { cb = ssl->info_callback; } else if (ssl->ctx->info_callback != NULL) { cb = ssl->ctx->info_callback; } if (cb != NULL) { cb(ssl, type, value); } } void ssl_do_msg_callback(SSL *ssl, int is_write, int version, int content_type, const void *buf, size_t len) { if (ssl->msg_callback != NULL) { ssl->msg_callback(is_write, version, content_type, buf, len, ssl, ssl->msg_callback_arg); } } int SSL_CTX_sess_connect(const SSL_CTX *ctx) { return 0; } int SSL_CTX_sess_connect_good(const SSL_CTX *ctx) { return 0; } int SSL_CTX_sess_connect_renegotiate(const SSL_CTX *ctx) { return 0; } int SSL_CTX_sess_accept(const SSL_CTX *ctx) { return 0; } int SSL_CTX_sess_accept_renegotiate(const SSL_CTX *ctx) { return 0; } int SSL_CTX_sess_accept_good(const SSL_CTX *ctx) { return 0; } int SSL_CTX_sess_hits(const SSL_CTX *ctx) { return 0; } int SSL_CTX_sess_cb_hits(const SSL_CTX *ctx) { return 0; } int SSL_CTX_sess_misses(const SSL_CTX *ctx) { return 0; } int SSL_CTX_sess_timeouts(const SSL_CTX *ctx) { return 0; } int SSL_CTX_sess_cache_full(const SSL_CTX *ctx) { return 0; } int SSL_num_renegotiations(const SSL *ssl) { return SSL_total_renegotiations(ssl); } int SSL_CTX_need_tmp_RSA(const SSL_CTX *ctx) { return 0; } int SSL_need_tmp_RSA(const SSL *ssl) { return 0; } int SSL_CTX_set_tmp_rsa(SSL_CTX *ctx, const RSA *rsa) { return 1; } int SSL_set_tmp_rsa(SSL *ssl, const RSA *rsa) { return 1; } void ERR_load_SSL_strings(void) {} void SSL_load_error_strings(void) {} int SSL_cache_hit(SSL *ssl) { return SSL_session_reused(ssl); } int SSL_CTX_set_tmp_ecdh(SSL_CTX *ctx, const EC_KEY *ec_key) { if (ec_key == NULL || EC_KEY_get0_group(ec_key) == NULL) { OPENSSL_PUT_ERROR(SSL, ERR_R_PASSED_NULL_PARAMETER); return 0; } int nid = EC_GROUP_get_curve_name(EC_KEY_get0_group(ec_key)); return SSL_CTX_set1_curves(ctx, &nid, 1); } int SSL_set_tmp_ecdh(SSL *ssl, const EC_KEY *ec_key) { if (ec_key == NULL || EC_KEY_get0_group(ec_key) == NULL) { OPENSSL_PUT_ERROR(SSL, ERR_R_PASSED_NULL_PARAMETER); return 0; } int nid = EC_GROUP_get_curve_name(EC_KEY_get0_group(ec_key)); return SSL_set1_curves(ssl, &nid, 1); } void ssl_get_current_time(const SSL *ssl, struct timeval *out_clock) { if (ssl->ctx->current_time_cb != NULL) { ssl->ctx->current_time_cb(ssl, out_clock); return; } #if defined(OPENSSL_WINDOWS) struct _timeb time; _ftime(&time); out_clock->tv_sec = time.time; out_clock->tv_usec = time.millitm * 1000; #else gettimeofday(out_clock, NULL); #endif }