Welcome to mirror list, hosted at ThFree Co, Russian Federation.

ec_test.cc « ec « crypto - github.com/mono/boringssl.git - Unnamed repository; edit this file 'description' to name the repository.
summaryrefslogtreecommitdiff
blob: 7572434722ea0b610d06a2a41b404e1d9f05767a (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
/* Copyright (c) 2014, Google Inc.
 *
 * Permission to use, copy, modify, and/or distribute this software for any
 * purpose with or without fee is hereby granted, provided that the above
 * copyright notice and this permission notice appear in all copies.
 *
 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY
 * SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN ACTION
 * OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF OR IN
 * CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. */

#include <stdio.h>
#include <string.h>

#include <vector>

#include <openssl/bn.h>
#include <openssl/bytestring.h>
#include <openssl/crypto.h>
#include <openssl/ec_key.h>
#include <openssl/err.h>
#include <openssl/mem.h>
#include <openssl/obj.h>


namespace bssl {

// kECKeyWithoutPublic is an ECPrivateKey with the optional publicKey field
// omitted.
static const uint8_t kECKeyWithoutPublic[] = {
  0x30, 0x31, 0x02, 0x01, 0x01, 0x04, 0x20, 0xc6, 0xc1, 0xaa, 0xda, 0x15, 0xb0,
  0x76, 0x61, 0xf8, 0x14, 0x2c, 0x6c, 0xaf, 0x0f, 0xdb, 0x24, 0x1a, 0xff, 0x2e,
  0xfe, 0x46, 0xc0, 0x93, 0x8b, 0x74, 0xf2, 0xbc, 0xc5, 0x30, 0x52, 0xb0, 0x77,
  0xa0, 0x0a, 0x06, 0x08, 0x2a, 0x86, 0x48, 0xce, 0x3d, 0x03, 0x01, 0x07,
};

// kECKeySpecifiedCurve is the above key with P-256's parameters explicitly
// spelled out rather than using a named curve.
static const uint8_t kECKeySpecifiedCurve[] = {
    0x30, 0x82, 0x01, 0x22, 0x02, 0x01, 0x01, 0x04, 0x20, 0xc6, 0xc1, 0xaa,
    0xda, 0x15, 0xb0, 0x76, 0x61, 0xf8, 0x14, 0x2c, 0x6c, 0xaf, 0x0f, 0xdb,
    0x24, 0x1a, 0xff, 0x2e, 0xfe, 0x46, 0xc0, 0x93, 0x8b, 0x74, 0xf2, 0xbc,
    0xc5, 0x30, 0x52, 0xb0, 0x77, 0xa0, 0x81, 0xfa, 0x30, 0x81, 0xf7, 0x02,
    0x01, 0x01, 0x30, 0x2c, 0x06, 0x07, 0x2a, 0x86, 0x48, 0xce, 0x3d, 0x01,
    0x01, 0x02, 0x21, 0x00, 0xff, 0xff, 0xff, 0xff, 0x00, 0x00, 0x00, 0x01,
    0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
    0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
    0x30, 0x5b, 0x04, 0x20, 0xff, 0xff, 0xff, 0xff, 0x00, 0x00, 0x00, 0x01,
    0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
    0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xfc,
    0x04, 0x20, 0x5a, 0xc6, 0x35, 0xd8, 0xaa, 0x3a, 0x93, 0xe7, 0xb3, 0xeb,
    0xbd, 0x55, 0x76, 0x98, 0x86, 0xbc, 0x65, 0x1d, 0x06, 0xb0, 0xcc, 0x53,
    0xb0, 0xf6, 0x3b, 0xce, 0x3c, 0x3e, 0x27, 0xd2, 0x60, 0x4b, 0x03, 0x15,
    0x00, 0xc4, 0x9d, 0x36, 0x08, 0x86, 0xe7, 0x04, 0x93, 0x6a, 0x66, 0x78,
    0xe1, 0x13, 0x9d, 0x26, 0xb7, 0x81, 0x9f, 0x7e, 0x90, 0x04, 0x41, 0x04,
    0x6b, 0x17, 0xd1, 0xf2, 0xe1, 0x2c, 0x42, 0x47, 0xf8, 0xbc, 0xe6, 0xe5,
    0x63, 0xa4, 0x40, 0xf2, 0x77, 0x03, 0x7d, 0x81, 0x2d, 0xeb, 0x33, 0xa0,
    0xf4, 0xa1, 0x39, 0x45, 0xd8, 0x98, 0xc2, 0x96, 0x4f, 0xe3, 0x42, 0xe2,
    0xfe, 0x1a, 0x7f, 0x9b, 0x8e, 0xe7, 0xeb, 0x4a, 0x7c, 0x0f, 0x9e, 0x16,
    0x2b, 0xce, 0x33, 0x57, 0x6b, 0x31, 0x5e, 0xce, 0xcb, 0xb6, 0x40, 0x68,
    0x37, 0xbf, 0x51, 0xf5, 0x02, 0x21, 0x00, 0xff, 0xff, 0xff, 0xff, 0x00,
    0x00, 0x00, 0x00, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xbc,
    0xe6, 0xfa, 0xad, 0xa7, 0x17, 0x9e, 0x84, 0xf3, 0xb9, 0xca, 0xc2, 0xfc,
    0x63, 0x25, 0x51, 0x02, 0x01, 0x01,
};

// kECKeyMissingZeros is an ECPrivateKey containing a degenerate P-256 key where
// the private key is one. The private key is incorrectly encoded without zero
// padding.
static const uint8_t kECKeyMissingZeros[] = {
  0x30, 0x58, 0x02, 0x01, 0x01, 0x04, 0x01, 0x01, 0xa0, 0x0a, 0x06, 0x08, 0x2a,
  0x86, 0x48, 0xce, 0x3d, 0x03, 0x01, 0x07, 0xa1, 0x44, 0x03, 0x42, 0x00, 0x04,
  0x6b, 0x17, 0xd1, 0xf2, 0xe1, 0x2c, 0x42, 0x47, 0xf8, 0xbc, 0xe6, 0xe5, 0x63,
  0xa4, 0x40, 0xf2, 0x77, 0x03, 0x7d, 0x81, 0x2d, 0xeb, 0x33, 0xa0, 0xf4, 0xa1,
  0x39, 0x45, 0xd8, 0x98, 0xc2, 0x96, 0x4f, 0xe3, 0x42, 0xe2, 0xfe, 0x1a, 0x7f,
  0x9b, 0x8e, 0xe7, 0xeb, 0x4a, 0x7c, 0x0f, 0x9e, 0x16, 0x2b, 0xce, 0x33, 0x57,
  0x6b, 0x31, 0x5e, 0xce, 0xcb, 0xb6, 0x40, 0x68, 0x37, 0xbf, 0x51, 0xf5,
};

// kECKeyMissingZeros is an ECPrivateKey containing a degenerate P-256 key where
// the private key is one. The private key is encoded with the required zero
// padding.
static const uint8_t kECKeyWithZeros[] = {
  0x30, 0x77, 0x02, 0x01, 0x01, 0x04, 0x20, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
  0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
  0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x01,
  0xa0, 0x0a, 0x06, 0x08, 0x2a, 0x86, 0x48, 0xce, 0x3d, 0x03, 0x01, 0x07, 0xa1,
  0x44, 0x03, 0x42, 0x00, 0x04, 0x6b, 0x17, 0xd1, 0xf2, 0xe1, 0x2c, 0x42, 0x47,
  0xf8, 0xbc, 0xe6, 0xe5, 0x63, 0xa4, 0x40, 0xf2, 0x77, 0x03, 0x7d, 0x81, 0x2d,
  0xeb, 0x33, 0xa0, 0xf4, 0xa1, 0x39, 0x45, 0xd8, 0x98, 0xc2, 0x96, 0x4f, 0xe3,
  0x42, 0xe2, 0xfe, 0x1a, 0x7f, 0x9b, 0x8e, 0xe7, 0xeb, 0x4a, 0x7c, 0x0f, 0x9e,
  0x16, 0x2b, 0xce, 0x33, 0x57, 0x6b, 0x31, 0x5e, 0xce, 0xcb, 0xb6, 0x40, 0x68,
  0x37, 0xbf, 0x51, 0xf5,
};

// DecodeECPrivateKey decodes |in| as an ECPrivateKey structure and returns the
// result or nullptr on error.
static ScopedEC_KEY DecodeECPrivateKey(const uint8_t *in, size_t in_len) {
  CBS cbs;
  CBS_init(&cbs, in, in_len);
  ScopedEC_KEY ret(EC_KEY_parse_private_key(&cbs, NULL));
  if (!ret || CBS_len(&cbs) != 0) {
    return nullptr;
  }
  return ret;
}

// EncodeECPrivateKey encodes |key| as an ECPrivateKey structure into |*out|. It
// returns true on success or false on error.
static bool EncodeECPrivateKey(std::vector<uint8_t> *out, const EC_KEY *key) {
  ScopedCBB cbb;
  uint8_t *der;
  size_t der_len;
  if (!CBB_init(cbb.get(), 0) ||
      !EC_KEY_marshal_private_key(cbb.get(), key, EC_KEY_get_enc_flags(key)) ||
      !CBB_finish(cbb.get(), &der, &der_len)) {
    return false;
  }
  out->assign(der, der + der_len);
  OPENSSL_free(der);
  return true;
}

static bool Testd2i_ECPrivateKey() {
  ScopedEC_KEY key = DecodeECPrivateKey(kECKeyWithoutPublic,
                                        sizeof(kECKeyWithoutPublic));
  if (!key) {
    fprintf(stderr, "Failed to parse private key.\n");
    ERR_print_errors_fp(stderr);
    return false;
  }

  std::vector<uint8_t> out;
  if (!EncodeECPrivateKey(&out, key.get())) {
    fprintf(stderr, "Failed to serialize private key.\n");
    ERR_print_errors_fp(stderr);
    return false;
  }

  if (std::vector<uint8_t>(kECKeyWithoutPublic,
                           kECKeyWithoutPublic + sizeof(kECKeyWithoutPublic)) !=
      out) {
    fprintf(stderr, "Serialisation of key doesn't match original.\n");
    return false;
  }

  const EC_POINT *pub_key = EC_KEY_get0_public_key(key.get());
  if (pub_key == NULL) {
    fprintf(stderr, "Public key missing.\n");
    return false;
  }

  ScopedBIGNUM x(BN_new());
  ScopedBIGNUM y(BN_new());
  if (!x || !y) {
    return false;
  }
  if (!EC_POINT_get_affine_coordinates_GFp(EC_KEY_get0_group(key.get()),
                                           pub_key, x.get(), y.get(), NULL)) {
    fprintf(stderr, "Failed to get public key in affine coordinates.\n");
    return false;
  }
  ScopedString x_hex(BN_bn2hex(x.get()));
  ScopedString y_hex(BN_bn2hex(y.get()));
  if (!x_hex || !y_hex) {
    return false;
  }
  if (0 != strcmp(
          x_hex.get(),
          "c81561ecf2e54edefe6617db1c7a34a70744ddb261f269b83dacfcd2ade5a681") ||
      0 != strcmp(
          y_hex.get(),
          "e0e2afa3f9b6abe4c698ef6495f1be49a3196c5056acb3763fe4507eec596e88")) {
    fprintf(stderr, "Incorrect public key: %s %s\n", x_hex.get(), y_hex.get());
    return false;
  }

  return true;
}

static bool TestZeroPadding() {
  // Check that the correct encoding round-trips.
  ScopedEC_KEY key = DecodeECPrivateKey(kECKeyWithZeros,
                                        sizeof(kECKeyWithZeros));
  std::vector<uint8_t> out;
  if (!key || !EncodeECPrivateKey(&out, key.get())) {
    ERR_print_errors_fp(stderr);
    return false;
  }

  if (std::vector<uint8_t>(kECKeyWithZeros,
                           kECKeyWithZeros + sizeof(kECKeyWithZeros)) != out) {
    fprintf(stderr, "Serialisation of key was incorrect.\n");
    return false;
  }

  // Keys without leading zeros also parse, but they encode correctly.
  key = DecodeECPrivateKey(kECKeyMissingZeros, sizeof(kECKeyMissingZeros));
  if (!key || !EncodeECPrivateKey(&out, key.get())) {
    ERR_print_errors_fp(stderr);
    return false;
  }

  if (std::vector<uint8_t>(kECKeyWithZeros,
                           kECKeyWithZeros + sizeof(kECKeyWithZeros)) != out) {
    fprintf(stderr, "Serialisation of key was incorrect.\n");
    return false;
  }

  return true;
}

static bool TestSpecifiedCurve() {
  // Test keys with specified curves may be decoded.
  ScopedEC_KEY key =
      DecodeECPrivateKey(kECKeySpecifiedCurve, sizeof(kECKeySpecifiedCurve));
  if (!key) {
    ERR_print_errors_fp(stderr);
    return false;
  }

  // The group should have been interpreted as P-256.
  if (EC_GROUP_get_curve_name(EC_KEY_get0_group(key.get())) !=
      NID_X9_62_prime256v1) {
    fprintf(stderr, "Curve name incorrect.\n");
    return false;
  }

  // Encoding the key should still use named form.
  std::vector<uint8_t> out;
  if (!EncodeECPrivateKey(&out, key.get())) {
    ERR_print_errors_fp(stderr);
    return false;
  }
  if (std::vector<uint8_t>(kECKeyWithoutPublic,
                           kECKeyWithoutPublic + sizeof(kECKeyWithoutPublic)) !=
      out) {
    fprintf(stderr, "Serialisation of key was incorrect.\n");
    return false;
  }

  return true;
}

static bool TestSetAffine(const int nid) {
  ScopedEC_KEY key(EC_KEY_new_by_curve_name(nid));
  if (!key) {
    return false;
  }

  const EC_GROUP *const group = EC_KEY_get0_group(key.get());

  if (!EC_KEY_generate_key(key.get())) {
    fprintf(stderr, "EC_KEY_generate_key failed with nid %d\n", nid);
    ERR_print_errors_fp(stderr);
    return false;
  }

  if (!EC_POINT_is_on_curve(group, EC_KEY_get0_public_key(key.get()),
                            nullptr)) {
    fprintf(stderr, "generated point is not on curve with nid %d", nid);
    ERR_print_errors_fp(stderr);
    return false;
  }

  ScopedBIGNUM x(BN_new());
  ScopedBIGNUM y(BN_new());
  if (!EC_POINT_get_affine_coordinates_GFp(group,
                                           EC_KEY_get0_public_key(key.get()),
                                           x.get(), y.get(), nullptr)) {
    fprintf(stderr, "EC_POINT_get_affine_coordinates_GFp failed with nid %d\n",
            nid);
    ERR_print_errors_fp(stderr);
    return false;
  }

  ScopedEC_POINT point(EC_POINT_new(group));
  if (!point) {
    return false;
  }

  if (!EC_POINT_set_affine_coordinates_GFp(group, point.get(), x.get(), y.get(),
                                           nullptr)) {
    fprintf(stderr, "EC_POINT_set_affine_coordinates_GFp failed with nid %d\n",
            nid);
    ERR_print_errors_fp(stderr);
    return false;
  }

  // Subtract one from |y| to make the point no longer on the curve.
  if (!BN_sub(y.get(), y.get(), BN_value_one())) {
    return false;
  }

  ScopedEC_POINT invalid_point(EC_POINT_new(group));
  if (!invalid_point) {
    return false;
  }

  if (EC_POINT_set_affine_coordinates_GFp(group, invalid_point.get(), x.get(),
                                          y.get(), nullptr)) {
    fprintf(stderr,
            "EC_POINT_set_affine_coordinates_GFp succeeded with invalid "
            "coordinates with nid %d\n",
            nid);
    ERR_print_errors_fp(stderr);
    return false;
  }

  return true;
}

static bool TestArbitraryCurve() {
  // Make a P-256 key and extract the affine coordinates.
  ScopedEC_KEY key(EC_KEY_new_by_curve_name(NID_X9_62_prime256v1));
  if (!key || !EC_KEY_generate_key(key.get())) {
    return false;
  }

  // Make an arbitrary curve which is identical to P-256.
  static const uint8_t kP[] = {
      0xff, 0xff, 0xff, 0xff, 0x00, 0x00, 0x00, 0x01, 0x00, 0x00, 0x00,
      0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0xff, 0xff,
      0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
  };
  static const uint8_t kA[] = {
      0xff, 0xff, 0xff, 0xff, 0x00, 0x00, 0x00, 0x01, 0x00, 0x00, 0x00,
      0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0xff, 0xff,
      0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xfc,
  };
  static const uint8_t kB[] = {
      0x5a, 0xc6, 0x35, 0xd8, 0xaa, 0x3a, 0x93, 0xe7, 0xb3, 0xeb, 0xbd,
      0x55, 0x76, 0x98, 0x86, 0xbc, 0x65, 0x1d, 0x06, 0xb0, 0xcc, 0x53,
      0xb0, 0xf6, 0x3b, 0xce, 0x3c, 0x3e, 0x27, 0xd2, 0x60, 0x4b,
  };
  static const uint8_t kX[] = {
      0x6b, 0x17, 0xd1, 0xf2, 0xe1, 0x2c, 0x42, 0x47, 0xf8, 0xbc, 0xe6,
      0xe5, 0x63, 0xa4, 0x40, 0xf2, 0x77, 0x03, 0x7d, 0x81, 0x2d, 0xeb,
      0x33, 0xa0, 0xf4, 0xa1, 0x39, 0x45, 0xd8, 0x98, 0xc2, 0x96,
  };
  static const uint8_t kY[] = {
      0x4f, 0xe3, 0x42, 0xe2, 0xfe, 0x1a, 0x7f, 0x9b, 0x8e, 0xe7, 0xeb,
      0x4a, 0x7c, 0x0f, 0x9e, 0x16, 0x2b, 0xce, 0x33, 0x57, 0x6b, 0x31,
      0x5e, 0xce, 0xcb, 0xb6, 0x40, 0x68, 0x37, 0xbf, 0x51, 0xf5,
  };
  static const uint8_t kOrder[] = {
      0xff, 0xff, 0xff, 0xff, 0x00, 0x00, 0x00, 0x00, 0xff, 0xff, 0xff,
      0xff, 0xff, 0xff, 0xff, 0xff, 0xbc, 0xe6, 0xfa, 0xad, 0xa7, 0x17,
      0x9e, 0x84, 0xf3, 0xb9, 0xca, 0xc2, 0xfc, 0x63, 0x25, 0x51,
  };
  ScopedBN_CTX ctx(BN_CTX_new());
  ScopedBIGNUM p(BN_bin2bn(kP, sizeof(kP), nullptr));
  ScopedBIGNUM a(BN_bin2bn(kA, sizeof(kA), nullptr));
  ScopedBIGNUM b(BN_bin2bn(kB, sizeof(kB), nullptr));
  ScopedBIGNUM gx(BN_bin2bn(kX, sizeof(kX), nullptr));
  ScopedBIGNUM gy(BN_bin2bn(kY, sizeof(kY), nullptr));
  ScopedBIGNUM order(BN_bin2bn(kOrder, sizeof(kOrder), nullptr));
  ScopedBIGNUM cofactor(BN_new());
  if (!ctx || !p || !a || !b || !gx || !gy || !order || !cofactor ||
      !BN_set_word(cofactor.get(), 1)) {
    return false;
  }

  ScopedEC_GROUP group(
      EC_GROUP_new_curve_GFp(p.get(), a.get(), b.get(), ctx.get()));
  if (!group) {
    return false;
  }
  ScopedEC_POINT generator(EC_POINT_new(group.get()));
  if (!generator ||
      !EC_POINT_set_affine_coordinates_GFp(group.get(), generator.get(),
                                           gx.get(), gy.get(), ctx.get()) ||
      !EC_GROUP_set_generator(group.get(), generator.get(), order.get(),
                              cofactor.get())) {
    return false;
  }

  // |group| should not have a curve name.
  if (EC_GROUP_get_curve_name(group.get()) != NID_undef) {
    return false;
  }

  // Copy |key| to |key2| using |group|.
  ScopedEC_KEY key2(EC_KEY_new());
  ScopedEC_POINT point(EC_POINT_new(group.get()));
  ScopedBIGNUM x(BN_new()), y(BN_new());
  if (!key2 || !point || !x || !y ||
      !EC_KEY_set_group(key2.get(), group.get()) ||
      !EC_KEY_set_private_key(key2.get(), EC_KEY_get0_private_key(key.get())) ||
      !EC_POINT_get_affine_coordinates_GFp(EC_KEY_get0_group(key.get()),
                                           EC_KEY_get0_public_key(key.get()),
                                           x.get(), y.get(), nullptr) ||
      !EC_POINT_set_affine_coordinates_GFp(group.get(), point.get(), x.get(),
                                           y.get(), nullptr) ||
      !EC_KEY_set_public_key(key2.get(), point.get())) {
    fprintf(stderr, "Could not copy key.\n");
    return false;
  }

  // The key must be valid according to the new group too.
  if (!EC_KEY_check_key(key2.get())) {
    fprintf(stderr, "Copied key is not valid.\n");
    return false;
  }

  return true;
}

static bool TestAddingEqualPoints(int nid) {
  ScopedEC_KEY key(EC_KEY_new_by_curve_name(nid));
  if (!key) {
    return false;
  }

  const EC_GROUP *const group = EC_KEY_get0_group(key.get());

  if (!EC_KEY_generate_key(key.get())) {
    fprintf(stderr, "EC_KEY_generate_key failed with nid %d\n", nid);
    ERR_print_errors_fp(stderr);
    return false;
  }

  ScopedEC_POINT p1(EC_POINT_new(group));
  ScopedEC_POINT p2(EC_POINT_new(group));
  ScopedEC_POINT double_p1(EC_POINT_new(group));
  ScopedEC_POINT p1_plus_p2(EC_POINT_new(group));
  if (!p1 || !p2 || !double_p1 || !p1_plus_p2) {
    return false;
  }

  if (!EC_POINT_copy(p1.get(), EC_KEY_get0_public_key(key.get())) ||
      !EC_POINT_copy(p2.get(), EC_KEY_get0_public_key(key.get()))) {
    fprintf(stderr, "EC_POINT_COPY failed with nid %d\n", nid);
    ERR_print_errors_fp(stderr);
    return false;
  }

  ScopedBN_CTX ctx(BN_CTX_new());
  if (!ctx) {
    return false;
  }

  if (!EC_POINT_dbl(group, double_p1.get(), p1.get(), ctx.get()) ||
      !EC_POINT_add(group, p1_plus_p2.get(), p1.get(), p2.get(), ctx.get())) {
    fprintf(stderr, "Point operation failed with nid %d\n", nid);
    ERR_print_errors_fp(stderr);
    return false;
  }

  if (EC_POINT_cmp(group, double_p1.get(), p1_plus_p2.get(), ctx.get()) != 0) {
    fprintf(stderr, "A+A != 2A for nid %d", nid);
    return false;
  }

  return true;
}

static bool ForEachCurve(bool (*test_func)(int nid)) {
  const size_t num_curves = EC_get_builtin_curves(nullptr, 0);
  std::vector<EC_builtin_curve> curves(num_curves);
  EC_get_builtin_curves(curves.data(), num_curves);

  for (const auto& curve : curves) {
    if (!test_func(curve.nid)) {
      fprintf(stderr, "Test failed for %s\n", curve.comment);
      return false;
    }
  }

  return true;
}

}  // namespace bssl

int main(void) {
  CRYPTO_library_init();

  if (!bssl::Testd2i_ECPrivateKey() ||
      !bssl::TestZeroPadding() ||
      !bssl::TestSpecifiedCurve() ||
      !bssl::ForEachCurve(bssl::TestSetAffine) ||
      !bssl::ForEachCurve(bssl::TestAddingEqualPoints) ||
      !bssl::TestArbitraryCurve()) {
    fprintf(stderr, "failed\n");
    return 1;
  }

  printf("PASS\n");
  return 0;
}