// Licensed to the .NET Foundation under one or more agreements. // The .NET Foundation licenses this file to you under the MIT license. // See the LICENSE file in the project root for more information. /*============================================================ ** ** ** ** Purpose: A representation of an IEEE double precision ** floating point number. ** ** ===========================================================*/ using System.Globalization; using System.Runtime.CompilerServices; using System.Runtime.InteropServices; using System.Runtime.Versioning; namespace System { [Serializable] [StructLayout(LayoutKind.Sequential)] [TypeForwardedFrom("mscorlib, Version=4.0.0.0, Culture=neutral, PublicKeyToken=b77a5c561934e089")] public struct Double : IComparable, IConvertible, IFormattable, IComparable, IEquatable, ISpanFormattable { private double m_value; // Do not rename (binary serialization) // // Public Constants // public const double MinValue = -1.7976931348623157E+308; public const double MaxValue = 1.7976931348623157E+308; // Note Epsilon should be a double whose hex representation is 0x1 // on little endian machines. public const double Epsilon = 4.9406564584124654E-324; public const double NegativeInfinity = (double)-1.0 / (double)(0.0); public const double PositiveInfinity = (double)1.0 / (double)(0.0); public const double NaN = (double)0.0 / (double)0.0; // We use this explicit definition to avoid the confusion between 0.0 and -0.0. internal const double NegativeZero = -0.0; /// Determines whether the specified value is finite (zero, subnormal, or normal). [NonVersionable] [MethodImpl(MethodImplOptions.AggressiveInlining)] public unsafe static bool IsFinite(double d) { var bits = BitConverter.DoubleToInt64Bits(d); return (bits & 0x7FFFFFFFFFFFFFFF) < 0x7FF0000000000000; } /// Determines whether the specified value is infinite. [NonVersionable] [MethodImpl(MethodImplOptions.AggressiveInlining)] public unsafe static bool IsInfinity(double d) { var bits = BitConverter.DoubleToInt64Bits(d); return (bits & 0x7FFFFFFFFFFFFFFF) == 0x7FF0000000000000; } /// Determines whether the specified value is NaN. [NonVersionable] [MethodImpl(MethodImplOptions.AggressiveInlining)] public unsafe static bool IsNaN(double d) { var bits = BitConverter.DoubleToInt64Bits(d); return (bits & 0x7FFFFFFFFFFFFFFF) > 0x7FF0000000000000; } /// Determines whether the specified value is negative. [NonVersionable] [MethodImpl(MethodImplOptions.AggressiveInlining)] public unsafe static bool IsNegative(double d) { var bits = unchecked((ulong)BitConverter.DoubleToInt64Bits(d)); return (bits & 0x8000000000000000) == 0x8000000000000000; } /// Determines whether the specified value is negative infinity. [NonVersionable] [MethodImpl(MethodImplOptions.AggressiveInlining)] public static bool IsNegativeInfinity(double d) { return (d == double.NegativeInfinity); } /// Determines whether the specified value is normal. [NonVersionable] // This is probably not worth inlining, it has branches and should be rarely called public unsafe static bool IsNormal(double d) { var bits = BitConverter.DoubleToInt64Bits(d); bits &= 0x7FFFFFFFFFFFFFFF; return (bits < 0x7FF0000000000000) && (bits != 0) && ((bits & 0x7FF0000000000000) != 0); } /// Determines whether the specified value is positive infinity. [NonVersionable] [MethodImpl(MethodImplOptions.AggressiveInlining)] public static bool IsPositiveInfinity(double d) { return (d == double.PositiveInfinity); } /// Determines whether the specified value is subnormal. [NonVersionable] // This is probably not worth inlining, it has branches and should be rarely called public unsafe static bool IsSubnormal(double d) { var bits = BitConverter.DoubleToInt64Bits(d); bits &= 0x7FFFFFFFFFFFFFFF; return (bits < 0x7FF0000000000000) && (bits != 0) && ((bits & 0x7FF0000000000000) == 0); } // Compares this object to another object, returning an instance of System.Relation. // Null is considered less than any instance. // // If object is not of type Double, this method throws an ArgumentException. // // Returns a value less than zero if this object // public int CompareTo(Object value) { if (value == null) { return 1; } if (value is Double) { double d = (double)value; if (m_value < d) return -1; if (m_value > d) return 1; if (m_value == d) return 0; // At least one of the values is NaN. if (IsNaN(m_value)) return (IsNaN(d) ? 0 : -1); else return 1; } throw new ArgumentException(SR.Arg_MustBeDouble); } public int CompareTo(Double value) { if (m_value < value) return -1; if (m_value > value) return 1; if (m_value == value) return 0; // At least one of the values is NaN. if (IsNaN(m_value)) return (IsNaN(value) ? 0 : -1); else return 1; } // True if obj is another Double with the same value as the current instance. This is // a method of object equality, that only returns true if obj is also a double. public override bool Equals(Object obj) { if (!(obj is Double)) { return false; } double temp = ((Double)obj).m_value; // This code below is written this way for performance reasons i.e the != and == check is intentional. if (temp == m_value) { return true; } return IsNaN(temp) && IsNaN(m_value); } [NonVersionable] public static bool operator ==(Double left, Double right) { return left == right; } [NonVersionable] public static bool operator !=(Double left, Double right) { return left != right; } [NonVersionable] public static bool operator <(Double left, Double right) { return left < right; } [NonVersionable] public static bool operator >(Double left, Double right) { return left > right; } [NonVersionable] public static bool operator <=(Double left, Double right) { return left <= right; } [NonVersionable] public static bool operator >=(Double left, Double right) { return left >= right; } public bool Equals(Double obj) { if (obj == m_value) { return true; } return IsNaN(obj) && IsNaN(m_value); } //The hashcode for a double is the absolute value of the integer representation //of that double. // public unsafe override int GetHashCode() { double d = m_value; if (d == 0) { // Ensure that 0 and -0 have the same hash code return 0; } long value = *(long*)(&d); return unchecked((int)value) ^ ((int)(value >> 32)); } public override String ToString() { return Number.FormatDouble(m_value, null, NumberFormatInfo.CurrentInfo); } public String ToString(String format) { return Number.FormatDouble(m_value, format, NumberFormatInfo.CurrentInfo); } public String ToString(IFormatProvider provider) { return Number.FormatDouble(m_value, null, NumberFormatInfo.GetInstance(provider)); } public String ToString(String format, IFormatProvider provider) { return Number.FormatDouble(m_value, format, NumberFormatInfo.GetInstance(provider)); } public bool TryFormat(Span destination, out int charsWritten, ReadOnlySpan format = default, IFormatProvider provider = null) { return Number.TryFormatDouble(m_value, format, NumberFormatInfo.GetInstance(provider), destination, out charsWritten); } public static double Parse(String s) { if (s == null) ThrowHelper.ThrowArgumentNullException(ExceptionArgument.s); return Number.ParseDouble(s, NumberStyles.Float | NumberStyles.AllowThousands, NumberFormatInfo.CurrentInfo); } public static double Parse(String s, NumberStyles style) { NumberFormatInfo.ValidateParseStyleFloatingPoint(style); if (s == null) ThrowHelper.ThrowArgumentNullException(ExceptionArgument.s); return Number.ParseDouble(s, style, NumberFormatInfo.CurrentInfo); } public static double Parse(String s, IFormatProvider provider) { if (s == null) ThrowHelper.ThrowArgumentNullException(ExceptionArgument.s); return Number.ParseDouble(s, NumberStyles.Float | NumberStyles.AllowThousands, NumberFormatInfo.GetInstance(provider)); } public static double Parse(String s, NumberStyles style, IFormatProvider provider) { NumberFormatInfo.ValidateParseStyleFloatingPoint(style); if (s == null) ThrowHelper.ThrowArgumentNullException(ExceptionArgument.s); return Number.ParseDouble(s, style, NumberFormatInfo.GetInstance(provider)); } // Parses a double from a String in the given style. If // a NumberFormatInfo isn't specified, the current culture's // NumberFormatInfo is assumed. // // This method will not throw an OverflowException, but will return // PositiveInfinity or NegativeInfinity for a number that is too // large or too small. public static double Parse(ReadOnlySpan s, NumberStyles style = NumberStyles.Integer, IFormatProvider provider = null) { NumberFormatInfo.ValidateParseStyleFloatingPoint(style); return Number.ParseDouble(s, style, NumberFormatInfo.GetInstance(provider)); } public static bool TryParse(String s, out double result) { if (s == null) { result = 0; return false; } return TryParse((ReadOnlySpan)s, NumberStyles.Float | NumberStyles.AllowThousands, NumberFormatInfo.CurrentInfo, out result); } public static bool TryParse(ReadOnlySpan s, out double result) { return TryParse(s, NumberStyles.Float | NumberStyles.AllowThousands, NumberFormatInfo.CurrentInfo, out result); } public static bool TryParse(String s, NumberStyles style, IFormatProvider provider, out double result) { NumberFormatInfo.ValidateParseStyleFloatingPoint(style); if (s == null) { result = 0; return false; } return TryParse((ReadOnlySpan)s, style, NumberFormatInfo.GetInstance(provider), out result); } public static bool TryParse(ReadOnlySpan s, NumberStyles style, IFormatProvider provider, out double result) { NumberFormatInfo.ValidateParseStyleFloatingPoint(style); return TryParse(s, style, NumberFormatInfo.GetInstance(provider), out result); } private static bool TryParse(ReadOnlySpan s, NumberStyles style, NumberFormatInfo info, out double result) { bool success = Number.TryParseDouble(s, style, info, out result); if (!success) { ReadOnlySpan sTrim = StringSpanHelpers.Trim(s); if (StringSpanHelpers.Equals(sTrim, info.PositiveInfinitySymbol)) { result = PositiveInfinity; } else if (StringSpanHelpers.Equals(sTrim, info.NegativeInfinitySymbol)) { result = NegativeInfinity; } else if (StringSpanHelpers.Equals(sTrim, info.NaNSymbol)) { result = NaN; } else { return false; // We really failed } } return true; } // // IConvertible implementation // public TypeCode GetTypeCode() { return TypeCode.Double; } bool IConvertible.ToBoolean(IFormatProvider provider) { return Convert.ToBoolean(m_value); } char IConvertible.ToChar(IFormatProvider provider) { throw new InvalidCastException(SR.Format(SR.InvalidCast_FromTo, "Double", "Char")); } sbyte IConvertible.ToSByte(IFormatProvider provider) { return Convert.ToSByte(m_value); } byte IConvertible.ToByte(IFormatProvider provider) { return Convert.ToByte(m_value); } short IConvertible.ToInt16(IFormatProvider provider) { return Convert.ToInt16(m_value); } ushort IConvertible.ToUInt16(IFormatProvider provider) { return Convert.ToUInt16(m_value); } int IConvertible.ToInt32(IFormatProvider provider) { return Convert.ToInt32(m_value); } uint IConvertible.ToUInt32(IFormatProvider provider) { return Convert.ToUInt32(m_value); } long IConvertible.ToInt64(IFormatProvider provider) { return Convert.ToInt64(m_value); } ulong IConvertible.ToUInt64(IFormatProvider provider) { return Convert.ToUInt64(m_value); } float IConvertible.ToSingle(IFormatProvider provider) { return Convert.ToSingle(m_value); } double IConvertible.ToDouble(IFormatProvider provider) { return m_value; } Decimal IConvertible.ToDecimal(IFormatProvider provider) { return Convert.ToDecimal(m_value); } DateTime IConvertible.ToDateTime(IFormatProvider provider) { throw new InvalidCastException(SR.Format(SR.InvalidCast_FromTo, "Double", "DateTime")); } Object IConvertible.ToType(Type type, IFormatProvider provider) { return Convert.DefaultToType((IConvertible)this, type, provider); } } }