// Licensed to the .NET Foundation under one or more agreements. // The .NET Foundation licenses this file to you under the MIT license. // See the LICENSE file in the project root for more information. using System.Diagnostics; using System.Globalization; using System.Runtime.CompilerServices; using System.Text; namespace System { // The Format methods provided by the numeric classes convert // the numeric value to a string using the format string given by the // format parameter. If the format parameter is null or // an empty string, the number is formatted as if the string "G" (general // format) was specified. The info parameter specifies the // NumberFormatInfo instance to use when formatting the number. If the // info parameter is null or omitted, the numeric formatting information // is obtained from the current culture. The NumberFormatInfo supplies // such information as the characters to use for decimal and thousand // separators, and the spelling and placement of currency symbols in monetary // values. // // Format strings fall into two categories: Standard format strings and // user-defined format strings. A format string consisting of a single // alphabetic character (A-Z or a-z), optionally followed by a sequence of // digits (0-9), is a standard format string. All other format strings are // used-defined format strings. // // A standard format string takes the form Axx, where A is an // alphabetic character called the format specifier and xx is a // sequence of digits called the precision specifier. The format // specifier controls the type of formatting applied to the number and the // precision specifier controls the number of significant digits or decimal // places of the formatting operation. The following table describes the // supported standard formats. // // C c - Currency format. The number is // converted to a string that represents a currency amount. The conversion is // controlled by the currency format information of the NumberFormatInfo // used to format the number. The precision specifier indicates the desired // number of decimal places. If the precision specifier is omitted, the default // currency precision given by the NumberFormatInfo is used. // // D d - Decimal format. This format is // supported for integral types only. The number is converted to a string of // decimal digits, prefixed by a minus sign if the number is negative. The // precision specifier indicates the minimum number of digits desired in the // resulting string. If required, the number will be left-padded with zeros to // produce the number of digits given by the precision specifier. // // E e Engineering (scientific) format. // The number is converted to a string of the form // "-d.ddd...E+ddd" or "-d.ddd...e+ddd", where each // 'd' indicates a digit (0-9). The string starts with a minus sign if the // number is negative, and one digit always precedes the decimal point. The // precision specifier indicates the desired number of digits after the decimal // point. If the precision specifier is omitted, a default of 6 digits after // the decimal point is used. The format specifier indicates whether to prefix // the exponent with an 'E' or an 'e'. The exponent is always consists of a // plus or minus sign and three digits. // // F f Fixed point format. The number is // converted to a string of the form "-ddd.ddd....", where each // 'd' indicates a digit (0-9). The string starts with a minus sign if the // number is negative. The precision specifier indicates the desired number of // decimal places. If the precision specifier is omitted, the default numeric // precision given by the NumberFormatInfo is used. // // G g - General format. The number is // converted to the shortest possible decimal representation using fixed point // or scientific format. The precision specifier determines the number of // significant digits in the resulting string. If the precision specifier is // omitted, the number of significant digits is determined by the type of the // number being converted (10 for int, 19 for long, 7 for // float, 15 for double, 19 for Currency, and 29 for // Decimal). Trailing zeros after the decimal point are removed, and the // resulting string contains a decimal point only if required. The resulting // string uses fixed point format if the exponent of the number is less than // the number of significant digits and greater than or equal to -4. Otherwise, // the resulting string uses scientific format, and the case of the format // specifier controls whether the exponent is prefixed with an 'E' or an 'e'. // // N n Number format. The number is // converted to a string of the form "-d,ddd,ddd.ddd....", where // each 'd' indicates a digit (0-9). The string starts with a minus sign if the // number is negative. Thousand separators are inserted between each group of // three digits to the left of the decimal point. The precision specifier // indicates the desired number of decimal places. If the precision specifier // is omitted, the default numeric precision given by the // NumberFormatInfo is used. // // X x - Hexadecimal format. This format is // supported for integral types only. The number is converted to a string of // hexadecimal digits. The format specifier indicates whether to use upper or // lower case characters for the hexadecimal digits above 9 ('X' for 'ABCDEF', // and 'x' for 'abcdef'). The precision specifier indicates the minimum number // of digits desired in the resulting string. If required, the number will be // left-padded with zeros to produce the number of digits given by the // precision specifier. // // Some examples of standard format strings and their results are shown in the // table below. (The examples all assume a default NumberFormatInfo.) // // Value Format Result // 12345.6789 C $12,345.68 // -12345.6789 C ($12,345.68) // 12345 D 12345 // 12345 D8 00012345 // 12345.6789 E 1.234568E+004 // 12345.6789 E10 1.2345678900E+004 // 12345.6789 e4 1.2346e+004 // 12345.6789 F 12345.68 // 12345.6789 F0 12346 // 12345.6789 F6 12345.678900 // 12345.6789 G 12345.6789 // 12345.6789 G7 12345.68 // 123456789 G7 1.234568E8 // 12345.6789 N 12,345.68 // 123456789 N4 123,456,789.0000 // 0x2c45e x 2c45e // 0x2c45e X 2C45E // 0x2c45e X8 0002C45E // // Format strings that do not start with an alphabetic character, or that start // with an alphabetic character followed by a non-digit, are called // user-defined format strings. The following table describes the formatting // characters that are supported in user defined format strings. // // // 0 - Digit placeholder. If the value being // formatted has a digit in the position where the '0' appears in the format // string, then that digit is copied to the output string. Otherwise, a '0' is // stored in that position in the output string. The position of the leftmost // '0' before the decimal point and the rightmost '0' after the decimal point // determines the range of digits that are always present in the output // string. // // # - Digit placeholder. If the value being // formatted has a digit in the position where the '#' appears in the format // string, then that digit is copied to the output string. Otherwise, nothing // is stored in that position in the output string. // // . - Decimal point. The first '.' character // in the format string determines the location of the decimal separator in the // formatted value; any additional '.' characters are ignored. The actual // character used as a the decimal separator in the output string is given by // the NumberFormatInfo used to format the number. // // , - Thousand separator and number scaling. // The ',' character serves two purposes. First, if the format string contains // a ',' character between two digit placeholders (0 or #) and to the left of // the decimal point if one is present, then the output will have thousand // separators inserted between each group of three digits to the left of the // decimal separator. The actual character used as a the decimal separator in // the output string is given by the NumberFormatInfo used to format the // number. Second, if the format string contains one or more ',' characters // immediately to the left of the decimal point, or after the last digit // placeholder if there is no decimal point, then the number will be divided by // 1000 times the number of ',' characters before it is formatted. For example, // the format string '0,,' will represent 100 million as just 100. Use of the // ',' character to indicate scaling does not also cause the formatted number // to have thousand separators. Thus, to scale a number by 1 million and insert // thousand separators you would use the format string '#,##0,,'. // // % - Percentage placeholder. The presence of // a '%' character in the format string causes the number to be multiplied by // 100 before it is formatted. The '%' character itself is inserted in the // output string where it appears in the format string. // // E+ E- e+ e- - Scientific notation. // If any of the strings 'E+', 'E-', 'e+', or 'e-' are present in the format // string and are immediately followed by at least one '0' character, then the // number is formatted using scientific notation with an 'E' or 'e' inserted // between the number and the exponent. The number of '0' characters following // the scientific notation indicator determines the minimum number of digits to // output for the exponent. The 'E+' and 'e+' formats indicate that a sign // character (plus or minus) should always precede the exponent. The 'E-' and // 'e-' formats indicate that a sign character should only precede negative // exponents. // // \ - Literal character. A backslash character // causes the next character in the format string to be copied to the output // string as-is. The backslash itself isn't copied, so to place a backslash // character in the output string, use two backslashes (\\) in the format // string. // // 'ABC' "ABC" - Literal string. Characters // enclosed in single or double quotation marks are copied to the output string // as-is and do not affect formatting. // // ; - Section separator. The ';' character is // used to separate sections for positive, negative, and zero numbers in the // format string. // // Other - All other characters are copied to // the output string in the position they appear. // // For fixed point formats (formats not containing an 'E+', 'E-', 'e+', or // 'e-'), the number is rounded to as many decimal places as there are digit // placeholders to the right of the decimal point. If the format string does // not contain a decimal point, the number is rounded to the nearest // integer. If the number has more digits than there are digit placeholders to // the left of the decimal point, the extra digits are copied to the output // string immediately before the first digit placeholder. // // For scientific formats, the number is rounded to as many significant digits // as there are digit placeholders in the format string. // // To allow for different formatting of positive, negative, and zero values, a // user-defined format string may contain up to three sections separated by // semicolons. The results of having one, two, or three sections in the format // string are described in the table below. // // Sections: // // One - The format string applies to all values. // // Two - The first section applies to positive values // and zeros, and the second section applies to negative values. If the number // to be formatted is negative, but becomes zero after rounding according to // the format in the second section, then the resulting zero is formatted // according to the first section. // // Three - The first section applies to positive // values, the second section applies to negative values, and the third section // applies to zeros. The second section may be left empty (by having no // characters between the semicolons), in which case the first section applies // to all non-zero values. If the number to be formatted is non-zero, but // becomes zero after rounding according to the format in the first or second // section, then the resulting zero is formatted according to the third // section. // // For both standard and user-defined formatting operations on values of type // float and double, if the value being formatted is a NaN (Not // a Number) or a positive or negative infinity, then regardless of the format // string, the resulting string is given by the NaNSymbol, // PositiveInfinitySymbol, or NegativeInfinitySymbol property of // the NumberFormatInfo used to format the number. internal static partial class Number { internal const int DecimalPrecision = 29; // Decimal.DecCalc also uses this value private const int FloatPrecision = 7; private const int DoublePrecision = 15; private const int ScaleNAN = unchecked((int)0x80000000); private const int ScaleINF = 0x7FFFFFFF; private const int MaxUInt32HexDigits = 8; private const int MaxUInt32DecDigits = 10; private const int MaxUInt64DecDigits = 20; private const int CharStackBufferSize = 32; private const string PosNumberFormat = "#"; private static readonly string[] s_posCurrencyFormats = { "$#", "#$", "$ #", "# $" }; private static readonly string[] s_negCurrencyFormats = { "($#)", "-$#", "$-#", "$#-", "(#$)", "-#$", "#-$", "#$-", "-# $", "-$ #", "# $-", "$ #-", "$ -#", "#- $", "($ #)", "(# $)" }; private static readonly string[] s_posPercentFormats = { "# %", "#%", "%#", "% #" }; private static readonly string[] s_negPercentFormats = { "-# %", "-#%", "-%#", "%-#", "%#-", "#-%", "#%-", "-% #", "# %-", "% #-", "% -#", "#- %" }; private static readonly string[] s_negNumberFormats = { "(#)", "-#", "- #", "#-", "# -", }; public static string FormatDecimal(decimal value, ReadOnlySpan format, NumberFormatInfo info) { char fmt = ParseFormatSpecifier(format, out int digits); NumberBuffer number = default; DecimalToNumber(value, ref number); ValueStringBuilder sb; unsafe { char* stackPtr = stackalloc char[CharStackBufferSize]; sb = new ValueStringBuilder(new Span(stackPtr, CharStackBufferSize)); } if (fmt != 0) { NumberToString(ref sb, ref number, fmt, digits, info, isDecimal:true); } else { NumberToStringFormat(ref sb, ref number, format, info); } return sb.ToString(); } public static bool TryFormatDecimal(decimal value, ReadOnlySpan format, NumberFormatInfo info, Span destination, out int charsWritten) { char fmt = ParseFormatSpecifier(format, out int digits); NumberBuffer number = default; DecimalToNumber(value, ref number); ValueStringBuilder sb; unsafe { char* stackPtr = stackalloc char[CharStackBufferSize]; sb = new ValueStringBuilder(new Span(stackPtr, CharStackBufferSize)); } if (fmt != 0) { NumberToString(ref sb, ref number, fmt, digits, info, isDecimal: true); } else { NumberToStringFormat(ref sb, ref number, format, info); } return sb.TryCopyTo(destination, out charsWritten); } private static unsafe void DecimalToNumber(decimal value, ref NumberBuffer number) { decimal d = value; char* buffer = number.digits; number.precision = DecimalPrecision; number.sign = d.IsNegative; char* p = buffer + DecimalPrecision; while ((d.Mid | d.High) != 0) { p = UInt32ToDecChars(p, decimal.DecDivMod1E9(ref d), 9); } p = UInt32ToDecChars(p, d.Low, 0); int i = (int)(buffer + DecimalPrecision - p); number.scale = i - d.Scale; char* dst = number.digits; while (--i >= 0) { *dst++ = *p++; } *dst = '\0'; } public static string FormatDouble(double value, string format, NumberFormatInfo info) { Span stackBuffer = stackalloc char[CharStackBufferSize]; var sb = new ValueStringBuilder(stackBuffer); return FormatDouble(ref sb, value, format, info) ?? sb.ToString(); } public static bool TryFormatDouble(double value, ReadOnlySpan format, NumberFormatInfo info, Span destination, out int charsWritten) { Span stackBuffer = stackalloc char[CharStackBufferSize]; var sb = new ValueStringBuilder(stackBuffer); string s = FormatDouble(ref sb, value, format, info); return s != null ? TryCopyTo(s, destination, out charsWritten) : sb.TryCopyTo(destination, out charsWritten); } /// Formats the specified value according to the specified format and info. /// /// Non-null if an existing string can be returned, in which case the builder will be unmodified. /// Null if no existing string was returned, in which case the formatted output is in the builder. /// private static string FormatDouble(ref ValueStringBuilder sb, double value, ReadOnlySpan format, NumberFormatInfo info) { char fmt = ParseFormatSpecifier(format, out int digits); int precision = DoublePrecision; NumberBuffer number = default; switch (fmt) { case 'R': case 'r': { // In order to give numbers that are both friendly to display and round-trippable, we parse the // number using 15 digits and then determine if it round trips to the same value. If it does, we // convert that NUMBER to a string, otherwise we reparse using 17 digits and display that. DoubleToNumber(value, DoublePrecision, ref number); if (number.scale == ScaleNAN) { return info.NaNSymbol; } else if (number.scale == ScaleINF) { return number.sign ? info.NegativeInfinitySymbol : info.PositiveInfinitySymbol; } if (NumberToDouble(ref number) == value) { NumberToString(ref sb, ref number, 'G', DoublePrecision, info, isDecimal: false); } else { DoubleToNumber(value, 17, ref number); NumberToString(ref sb, ref number, 'G', 17, info, isDecimal: false); } return null; } case 'E': case 'e': // Round values less than E14 to 15 digits if (digits > 14) { precision = 17; } break; case 'G': case 'g': // Round values less than G15 to 15 digits. G16 and G17 will not be touched. if (digits > 15) { precision = 17; } break; } DoubleToNumber(value, precision, ref number); if (number.scale == ScaleNAN) { return info.NaNSymbol; } else if (number.scale == ScaleINF) { return number.sign ? info.NegativeInfinitySymbol : info.PositiveInfinitySymbol; } if (fmt != 0) { NumberToString(ref sb, ref number, fmt, digits, info, isDecimal: false); } else { NumberToStringFormat(ref sb, ref number, format, info); } return null; } public static string FormatSingle(float value, string format, NumberFormatInfo info) { Span stackBuffer = stackalloc char[CharStackBufferSize]; var sb = new ValueStringBuilder(stackBuffer); return FormatSingle(ref sb, value, format, info) ?? sb.ToString(); } public static bool TryFormatSingle(float value, ReadOnlySpan format, NumberFormatInfo info, Span destination, out int charsWritten) { Span stackBuffer = stackalloc char[CharStackBufferSize]; var sb = new ValueStringBuilder(stackBuffer); string s = FormatSingle(ref sb, value, format, info); return s != null ? TryCopyTo(s, destination, out charsWritten) : sb.TryCopyTo(destination, out charsWritten); } /// Formats the specified value according to the specified format and info. /// /// Non-null if an existing string can be returned, in which case the builder will be unmodified. /// Null if no existing string was returned, in which case the formatted output is in the builder. /// private static string FormatSingle(ref ValueStringBuilder sb, float value, ReadOnlySpan format, NumberFormatInfo info) { char fmt = ParseFormatSpecifier(format, out int digits); int precision = FloatPrecision; NumberBuffer number = default; switch (fmt) { case 'R': case 'r': { // In order to give numbers that are both friendly to display and round-trippable, we parse the // number using 7 digits and then determine if it round trips to the same value. If it does, we // convert that NUMBER to a string, otherwise we reparse using 9 digits and display that. DoubleToNumber(value, FloatPrecision, ref number); if (number.scale == ScaleNAN) { return info.NaNSymbol; } else if (number.scale == ScaleINF) { return number.sign ? info.NegativeInfinitySymbol : info.PositiveInfinitySymbol; } if ((float)NumberToDouble(ref number) == value) { NumberToString(ref sb, ref number, 'G', FloatPrecision, info, isDecimal: false); } else { DoubleToNumber(value, 9, ref number); NumberToString(ref sb, ref number, 'G', 9, info, isDecimal: false); } return null; } case 'E': case 'e': // Round values less than E14 to 15 digits. if (digits > 6) { precision = 9; } break; case 'G': case 'g': // Round values less than G15 to 15 digits. G16 and G17 will not be touched. if (digits > 7) { precision = 9; } break; } DoubleToNumber(value, precision, ref number); if (number.scale == ScaleNAN) { return info.NaNSymbol; } else if (number.scale == ScaleINF) { return number.sign ? info.NegativeInfinitySymbol : info.PositiveInfinitySymbol; } if (fmt != 0) { NumberToString(ref sb, ref number, fmt, digits, info, false); } else { NumberToStringFormat(ref sb, ref number, format, info); } return null; } private static bool TryCopyTo(string source, Span destination, out int charsWritten) { Debug.Assert(source != null); if (source.AsReadOnlySpan().TryCopyTo(destination)) { charsWritten = source.Length; return true; } charsWritten = 0; return false; } public static string FormatInt32(int value, ReadOnlySpan format, IFormatProvider provider) { // Fast path for default format with a non-negative value if (value >= 0 && format.Length == 0) { return UInt32ToDecStr((uint)value, digits: -1); } char fmt = ParseFormatSpecifier(format, out int digits); NumberFormatInfo info = NumberFormatInfo.GetInstance(provider); char fmtUpper = (char)(fmt & 0xFFDF); // ensure fmt is upper-cased for purposes of comparison if ((fmtUpper == 'G' && digits < 1) || fmtUpper == 'D') { return value >= 0 ? UInt32ToDecStr((uint)value, digits) : NegativeInt32ToDecStr(value, digits, info.NegativeSign); } else if (fmtUpper == 'X') { // The fmt-(X-A+10) hack has the effect of dictating whether we produce uppercase or lowercase // hex numbers for a-f. 'X' as the fmt code produces uppercase. 'x' as the format code produces lowercase. return Int32ToHexStr(value, (char)(fmt - ('X' - 'A' + 10)), digits); } else { NumberBuffer number = default; Int32ToNumber(value, ref number); ValueStringBuilder sb; unsafe { char* stackPtr = stackalloc char[CharStackBufferSize]; sb = new ValueStringBuilder(new Span(stackPtr, CharStackBufferSize)); } if (fmt != 0) { NumberToString(ref sb, ref number, fmt, digits, info, false); } else { NumberToStringFormat(ref sb, ref number, format, info); } return sb.ToString(); } } public static bool TryFormatInt32(int value, ReadOnlySpan format, IFormatProvider provider, Span destination, out int charsWritten) { // Fast path for default format with a non-negative value if (value >= 0 && format.Length == 0) { return TryUInt32ToDecStr((uint)value, digits: -1, destination, out charsWritten); } char fmt = ParseFormatSpecifier(format, out int digits); NumberFormatInfo info = NumberFormatInfo.GetInstance(provider); char fmtUpper = (char)(fmt & 0xFFDF); // ensure fmt is upper-cased for purposes of comparison if ((fmtUpper == 'G' && digits < 1) || fmtUpper == 'D') { return value >= 0 ? TryUInt32ToDecStr((uint)value, digits, destination, out charsWritten) : TryNegativeInt32ToDecStr(value, digits, info.NegativeSign, destination, out charsWritten); } else if (fmtUpper == 'X') { // The fmt-(X-A+10) hack has the effect of dictating whether we produce uppercase or lowercase // hex numbers for a-f. 'X' as the fmt code produces uppercase. 'x' as the format code produces lowercase. return TryInt32ToHexStr(value, (char)(fmt - ('X' - 'A' + 10)), digits, destination, out charsWritten); } else { NumberBuffer number = default; Int32ToNumber(value, ref number); ValueStringBuilder sb; unsafe { char* stackPtr = stackalloc char[CharStackBufferSize]; sb = new ValueStringBuilder(new Span(stackPtr, CharStackBufferSize)); } if (fmt != 0) { NumberToString(ref sb, ref number, fmt, digits, info, false); } else { NumberToStringFormat(ref sb, ref number, format, info); } return sb.TryCopyTo(destination, out charsWritten); } } public static string FormatUInt32(uint value, ReadOnlySpan format, IFormatProvider provider) { // Fast path for default format if (format.Length == 0) { return UInt32ToDecStr(value, digits: -1); } char fmt = ParseFormatSpecifier(format, out int digits); NumberFormatInfo info = NumberFormatInfo.GetInstance(provider); char fmtUpper = (char)(fmt & 0xFFDF); // ensure fmt is upper-cased for purposes of comparison if ((fmtUpper == 'G' && digits < 1) || fmtUpper == 'D') { return UInt32ToDecStr(value, digits); } else if (fmtUpper == 'X') { // The fmt-(X-A+10) hack has the effect of dictating whether we produce uppercase or lowercase // hex numbers for a-f. 'X' as the fmt code produces uppercase. 'x' as the format code produces lowercase. return Int32ToHexStr((int)value, (char)(fmt - ('X' - 'A' + 10)), digits); } else { NumberBuffer number = default; UInt32ToNumber(value, ref number); ValueStringBuilder sb; unsafe { char* stackPtr = stackalloc char[CharStackBufferSize]; sb = new ValueStringBuilder(new Span(stackPtr, CharStackBufferSize)); } if (fmt != 0) { NumberToString(ref sb, ref number, fmt, digits, info, false); } else { NumberToStringFormat(ref sb, ref number, format, info); } return sb.ToString(); } } public static bool TryFormatUInt32(uint value, ReadOnlySpan format, IFormatProvider provider, Span destination, out int charsWritten) { // Fast path for default format if (format.Length == 0) { return TryUInt32ToDecStr(value, digits: -1, destination, out charsWritten); } char fmt = ParseFormatSpecifier(format, out int digits); NumberFormatInfo info = NumberFormatInfo.GetInstance(provider); char fmtUpper = (char)(fmt & 0xFFDF); // ensure fmt is upper-cased for purposes of comparison if ((fmtUpper == 'G' && digits < 1) || fmtUpper == 'D') { return TryUInt32ToDecStr(value, digits, destination, out charsWritten); } else if (fmtUpper == 'X') { // The fmt-(X-A+10) hack has the effect of dictating whether we produce uppercase or lowercase // hex numbers for a-f. 'X' as the fmt code produces uppercase. 'x' as the format code produces lowercase. return TryInt32ToHexStr((int)value, (char)(fmt - ('X' - 'A' + 10)), digits, destination, out charsWritten); } else { NumberBuffer number = default; UInt32ToNumber(value, ref number); ValueStringBuilder sb; unsafe { char* stackPtr = stackalloc char[CharStackBufferSize]; sb = new ValueStringBuilder(new Span(stackPtr, CharStackBufferSize)); } if (fmt != 0) { NumberToString(ref sb, ref number, fmt, digits, info, false); } else { NumberToStringFormat(ref sb, ref number, format, info); } return sb.TryCopyTo(destination, out charsWritten); } } public static string FormatInt64(long value, ReadOnlySpan format, IFormatProvider provider) { // Fast path for default format with a non-negative value if (value >= 0 && format.Length == 0) { return UInt64ToDecStr((ulong)value, digits: -1); } char fmt = ParseFormatSpecifier(format, out int digits); NumberFormatInfo info = NumberFormatInfo.GetInstance(provider); char fmtUpper = (char)(fmt & 0xFFDF); // ensure fmt is upper-cased for purposes of comparison if ((fmtUpper == 'G' && digits < 1) || fmtUpper == 'D') { return value >= 0 ? UInt64ToDecStr((ulong)value, digits) : NegativeInt64ToDecStr(value, digits, info.NegativeSign); } else if (fmtUpper == 'X') { // The fmt-(X-A+10) hack has the effect of dictating whether we produce uppercase or lowercase // hex numbers for a-f. 'X' as the fmt code produces uppercase. 'x' as the format code // produces lowercase. return Int64ToHexStr(value, (char)(fmt - ('X' - 'A' + 10)), digits); } else { NumberBuffer number = default; Int64ToNumber(value, ref number); ValueStringBuilder sb; unsafe { char* stackPtr = stackalloc char[CharStackBufferSize]; sb = new ValueStringBuilder(new Span(stackPtr, CharStackBufferSize)); } if (fmt != 0) { NumberToString(ref sb, ref number, fmt, digits, info, false); } else { NumberToStringFormat(ref sb, ref number, format, info); } return sb.ToString(); } } public static bool TryFormatInt64(long value, ReadOnlySpan format, IFormatProvider provider, Span destination, out int charsWritten) { // Fast path for default format with a non-negative value if (value >= 0 && format.Length == 0) { return TryUInt64ToDecStr((ulong)value, digits: -1, destination, out charsWritten); } char fmt = ParseFormatSpecifier(format, out int digits); NumberFormatInfo info = NumberFormatInfo.GetInstance(provider); char fmtUpper = (char)(fmt & 0xFFDF); // ensure fmt is upper-cased for purposes of comparison if ((fmtUpper == 'G' && digits < 1) || fmtUpper == 'D') { return value >= 0 ? TryUInt64ToDecStr((ulong)value, digits, destination, out charsWritten) : TryNegativeInt64ToDecStr(value, digits, info.NegativeSign, destination, out charsWritten); } else if (fmtUpper == 'X') { // The fmt-(X-A+10) hack has the effect of dictating whether we produce uppercase or lowercase // hex numbers for a-f. 'X' as the fmt code produces uppercase. 'x' as the format code // produces lowercase. return TryInt64ToHexStr(value, (char)(fmt - ('X' - 'A' + 10)), digits, destination, out charsWritten); } else { NumberBuffer number = default; Int64ToNumber(value, ref number); ValueStringBuilder sb; unsafe { char* stackPtr = stackalloc char[CharStackBufferSize]; sb = new ValueStringBuilder(new Span(stackPtr, CharStackBufferSize)); } if (fmt != 0) { NumberToString(ref sb, ref number, fmt, digits, info, false); } else { NumberToStringFormat(ref sb, ref number, format, info); } return sb.TryCopyTo(destination, out charsWritten); } } public static string FormatUInt64(ulong value, ReadOnlySpan format, IFormatProvider provider) { // Fast path for default format if (format.Length == 0) { return UInt64ToDecStr(value, digits: -1); } char fmt = ParseFormatSpecifier(format, out int digits); NumberFormatInfo info = NumberFormatInfo.GetInstance(provider); char fmtUpper = (char)(fmt & 0xFFDF); // ensure fmt is upper-cased for purposes of comparison if ((fmtUpper == 'G' && digits < 1) || fmtUpper == 'D') { return UInt64ToDecStr(value, digits); } else if (fmtUpper == 'X') { // The fmt-(X-A+10) hack has the effect of dictating whether we produce uppercase or lowercase // hex numbers for a-f. 'X' as the fmt code produces uppercase. 'x' as the format code // produces lowercase. return Int64ToHexStr((long)value, (char)(fmt - ('X' - 'A' + 10)), digits); } else { NumberBuffer number = default; UInt64ToNumber(value, ref number); ValueStringBuilder sb; unsafe { char* stackPtr = stackalloc char[CharStackBufferSize]; sb = new ValueStringBuilder(new Span(stackPtr, CharStackBufferSize)); } if (fmt != 0) { NumberToString(ref sb, ref number, fmt, digits, info, false); } else { NumberToStringFormat(ref sb, ref number, format, info); } return sb.ToString(); } } public static bool TryFormatUInt64(ulong value, ReadOnlySpan format, IFormatProvider provider, Span destination, out int charsWritten) { // Fast path for default format if (format.Length == 0) { return TryUInt64ToDecStr(value, digits: -1, destination, out charsWritten); } char fmt = ParseFormatSpecifier(format, out int digits); NumberFormatInfo info = NumberFormatInfo.GetInstance(provider); char fmtUpper = (char)(fmt & 0xFFDF); // ensure fmt is upper-cased for purposes of comparison if ((fmtUpper == 'G' && digits < 1) || fmtUpper == 'D') { return TryUInt64ToDecStr(value, digits, destination, out charsWritten); } else if (fmtUpper == 'X') { // The fmt-(X-A+10) hack has the effect of dictating whether we produce uppercase or lowercase // hex numbers for a-f. 'X' as the fmt code produces uppercase. 'x' as the format code // produces lowercase. return TryInt64ToHexStr((long)value, (char)(fmt - ('X' - 'A' + 10)), digits, destination, out charsWritten); } else { NumberBuffer number = default; UInt64ToNumber(value, ref number); ValueStringBuilder sb; unsafe { char* stackPtr = stackalloc char[CharStackBufferSize]; sb = new ValueStringBuilder(new Span(stackPtr, CharStackBufferSize)); } if (fmt != 0) { NumberToString(ref sb, ref number, fmt, digits, info, false); } else { NumberToStringFormat(ref sb, ref number, format, info); } return sb.TryCopyTo(destination, out charsWritten); } } [MethodImpl(MethodImplOptions.AggressiveInlining)] // called from only one location private static unsafe void Int32ToNumber(int value, ref NumberBuffer number) { number.precision = Int32Precision; if (value >= 0) { number.sign = false; } else { number.sign = true; value = -value; } char* buffer = number.digits; char* p = UInt32ToDecChars(buffer + Int32Precision, (uint)value, 0); int i = (int)(buffer + Int32Precision - p); number.scale = i; char* dst = number.digits; while (--i >= 0) *dst++ = *p++; *dst = '\0'; } private static unsafe string NegativeInt32ToDecStr(int value, int digits, string sNegative) { Debug.Assert(value < 0); if (digits < 1) digits = 1; int bufferLength = Math.Max(digits, MaxUInt32DecDigits) + sNegative.Length; int index = bufferLength; char* buffer = stackalloc char[bufferLength]; char* p = UInt32ToDecChars(buffer + bufferLength, (uint)(-value), digits); for (int i = sNegative.Length - 1; i >= 0; i--) { *(--p) = sNegative[i]; } Debug.Assert(buffer + bufferLength - p >= 0 && buffer <= p); return new string(p, 0, (int)(buffer + bufferLength - p)); } private static unsafe bool TryNegativeInt32ToDecStr(int value, int digits, string sNegative, Span destination, out int charsWritten) { Debug.Assert(value < 0); if (digits < 1) digits = 1; int bufferLength = Math.Max(digits, MaxUInt32DecDigits) + sNegative.Length; int index = bufferLength; char* buffer = stackalloc char[bufferLength]; char* p = UInt32ToDecChars(buffer + bufferLength, (uint)(-value), digits); for (int i = sNegative.Length - 1; i >= 0; i--) { *(--p) = sNegative[i]; } Debug.Assert(buffer + bufferLength - p >= 0 && buffer <= p); return TryCopyTo(p, (int)(buffer + bufferLength - p), destination, out charsWritten); } private static unsafe string Int32ToHexStr(int value, char hexBase, int digits) { if (digits < 1) digits = 1; int bufferLength = Math.Max(digits, MaxUInt32HexDigits); char* buffer = stackalloc char[bufferLength]; char* p = Int32ToHexChars(buffer + bufferLength, (uint)value, hexBase, digits); return new string(p, 0, (int)(buffer + bufferLength - p)); } private static unsafe bool TryInt32ToHexStr(int value, char hexBase, int digits, Span destination, out int charsWritten) { if (digits < 1) digits = 1; int bufferLength = Math.Max(digits, MaxUInt32HexDigits); char* buffer = stackalloc char[bufferLength]; char* p = Int32ToHexChars(buffer + bufferLength, (uint)value, hexBase, digits); return TryCopyTo(p, (int)(buffer + bufferLength - p), destination, out charsWritten); } private static unsafe char* Int32ToHexChars(char* buffer, uint value, int hexBase, int digits) { while (--digits >= 0 || value != 0) { byte digit = (byte)(value & 0xF); *(--buffer) = (char)(digit + (digit < 10 ? (byte)'0' : hexBase)); value >>= 4; } return buffer; } [MethodImpl(MethodImplOptions.AggressiveInlining)] // called from only one location private static unsafe void UInt32ToNumber(uint value, ref NumberBuffer number) { number.precision = UInt32Precision; number.sign = false; char* buffer = number.digits; char* p = UInt32ToDecChars(buffer + UInt32Precision, value, 0); int i = (int)(buffer + UInt32Precision - p); number.scale = i; char* dst = number.digits; while (--i >= 0) *dst++ = *p++; *dst = '\0'; } internal static unsafe char* UInt32ToDecChars(char* bufferEnd, uint value, int digits) { while (--digits >= 0 || value != 0) { // TODO https://github.com/dotnet/coreclr/issues/3439 uint newValue = value / 10; *(--bufferEnd) = (char)(value - (newValue * 10) + '0'); value = newValue; } return bufferEnd; } private static unsafe string UInt32ToDecStr(uint value, int digits) { if (digits <= 1) { char* buffer = stackalloc char[MaxUInt32DecDigits]; char* start = buffer + MaxUInt32DecDigits; char* p = start; do { // TODO https://github.com/dotnet/coreclr/issues/3439 uint div = value / 10; *(--p) = (char)('0' + value - (div * 10)); value = div; } while (value != 0); return new string(p, 0, (int)(start - p)); } else { int bufferSize = Math.Max(digits, MaxUInt32DecDigits); char* buffer = stackalloc char[bufferSize]; char* p = UInt32ToDecChars(buffer + bufferSize, value, digits); return new string(p, 0, (int)(buffer + bufferSize - p)); } } private static unsafe bool TryUInt32ToDecStr(uint value, int digits, Span destination, out int charsWritten) { if (digits <= 1) { char* buffer = stackalloc char[MaxUInt32DecDigits]; char* start = buffer + MaxUInt32DecDigits; char* p = start; do { // TODO https://github.com/dotnet/coreclr/issues/3439 uint div = value / 10; *(--p) = (char)('0' + value - (div * 10)); value = div; } while (value != 0); return TryCopyTo(p, (int)(start - p), destination, out charsWritten); } else { int bufferSize = Math.Max(digits, MaxUInt32DecDigits); char* buffer = stackalloc char[bufferSize]; char* p = UInt32ToDecChars(buffer + bufferSize, value, digits); return TryCopyTo(p, (int)(buffer + bufferSize - p), destination, out charsWritten); } } [MethodImpl(MethodImplOptions.AggressiveInlining)] private static unsafe bool TryCopyTo(char* src, int length, Span destination, out int charsWritten) { if (length <= destination.Length) { bool copied = new ReadOnlySpan(src, length).TryCopyTo(destination); Debug.Assert(copied); charsWritten = length; return true; } else { charsWritten = 0; return false; } } private static unsafe void Int64ToNumber(long input, ref NumberBuffer number) { ulong value = (ulong)input; number.sign = input < 0; number.precision = Int64Precision; if (number.sign) { value = (ulong)(-input); } char* buffer = number.digits; char* p = buffer + Int64Precision; while (High32(value) != 0) p = UInt32ToDecChars(p, Int64DivMod1E9(ref value), 9); p = UInt32ToDecChars(p, Low32(value), 0); int i = (int)(buffer + Int64Precision - p); number.scale = i; char* dst = number.digits; while (--i >= 0) *dst++ = *p++; *dst = '\0'; } private static unsafe string NegativeInt64ToDecStr(long input, int digits, string sNegative) { Debug.Assert(input < 0); if (digits < 1) { digits = 1; } ulong value = (ulong)(-input); int bufferLength = Math.Max(digits, MaxUInt64DecDigits) + sNegative.Length; int index = bufferLength; char* buffer = stackalloc char[bufferLength]; char* p = buffer + bufferLength; while (High32(value) != 0) { p = UInt32ToDecChars(p, Int64DivMod1E9(ref value), 9); digits -= 9; } p = UInt32ToDecChars(p, Low32(value), digits); for (int i = sNegative.Length - 1; i >= 0; i--) { *(--p) = sNegative[i]; } return new string(p, 0, (int)(buffer + bufferLength - p)); } private static unsafe bool TryNegativeInt64ToDecStr(long input, int digits, string sNegative, Span destination, out int charsWritten) { Debug.Assert(input < 0); if (digits < 1) { digits = 1; } ulong value = (ulong)(-input); int bufferLength = Math.Max(digits, MaxUInt64DecDigits) + sNegative.Length; int index = bufferLength; char* buffer = stackalloc char[bufferLength]; char* p = buffer + bufferLength; while (High32(value) != 0) { p = UInt32ToDecChars(p, Int64DivMod1E9(ref value), 9); digits -= 9; } p = UInt32ToDecChars(p, Low32(value), digits); for (int i = sNegative.Length - 1; i >= 0; i--) { *(--p) = sNegative[i]; } return TryCopyTo(p, (int)(buffer + bufferLength - p), destination, out charsWritten); } private static unsafe string Int64ToHexStr(long value, char hexBase, int digits) { int bufferLength = Math.Max(digits, MaxUInt32HexDigits * 2); char* buffer = stackalloc char[bufferLength]; int index = bufferLength; char* p; if (High32((ulong)value) != 0) { p = Int32ToHexChars(buffer + index, Low32((ulong)value), hexBase, 8); p = Int32ToHexChars(p, High32((ulong)value), hexBase, digits - 8); } else { p = Int32ToHexChars(buffer + index, Low32((ulong)value), hexBase, Math.Max(digits, 1)); } return new string(p, 0, (int)(buffer + bufferLength - p)); } private static unsafe bool TryInt64ToHexStr(long value, char hexBase, int digits, Span destination, out int charsWritten) { int bufferLength = Math.Max(digits, MaxUInt32HexDigits * 2); char* buffer = stackalloc char[bufferLength]; int index = bufferLength; char* p; if (High32((ulong)value) != 0) { p = Int32ToHexChars(buffer + index, Low32((ulong)value), hexBase, 8); p = Int32ToHexChars(p, High32((ulong)value), hexBase, digits - 8); } else { p = Int32ToHexChars(buffer + index, Low32((ulong)value), hexBase, Math.Max(digits, 1)); } return TryCopyTo(p, (int)(buffer + bufferLength - p), destination, out charsWritten); } private static unsafe void UInt64ToNumber(ulong value, ref NumberBuffer number) { number.precision = UInt64Precision; number.sign = false; char* buffer = number.digits; char* p = buffer + UInt64Precision; while (High32(value) != 0) p = UInt32ToDecChars(p, Int64DivMod1E9(ref value), 9); p = UInt32ToDecChars(p, Low32(value), 0); int i = (int)(buffer + UInt64Precision - p); number.scale = i; char* dst = number.digits; while (--i >= 0) *dst++ = *p++; *dst = '\0'; } private static unsafe string UInt64ToDecStr(ulong value, int digits) { if (digits < 1) digits = 1; int bufferSize = Math.Max(digits, MaxUInt64DecDigits); char* buffer = stackalloc char[bufferSize]; char* p = buffer + bufferSize; while (High32(value) != 0) { p = UInt32ToDecChars(p, Int64DivMod1E9(ref value), 9); digits -= 9; } p = UInt32ToDecChars(p, Low32(value), digits); return new string(p, 0, (int)(buffer + bufferSize - p)); } private static unsafe bool TryUInt64ToDecStr(ulong value, int digits, Span destination, out int charsWritten) { if (digits < 1) digits = 1; int bufferSize = Math.Max(digits, MaxUInt64DecDigits); char* buffer = stackalloc char[bufferSize]; char* p = buffer + bufferSize; while (High32(value) != 0) { p = UInt32ToDecChars(p, Int64DivMod1E9(ref value), 9); digits -= 9; } p = UInt32ToDecChars(p, Low32(value), digits); return TryCopyTo(p, (int)(buffer + bufferSize - p), destination, out charsWritten); } internal static unsafe char ParseFormatSpecifier(ReadOnlySpan format, out int digits) { char c = default; if (format.Length > 0) { // If the format begins with a symbol, see if it's a standard format // with or without a specified number of digits. c = format[0]; if ((uint)(c - 'A') <= 'Z' - 'A' || (uint)(c - 'a') <= 'z' - 'a') { // Fast path for sole symbol, e.g. "D" if (format.Length == 1) { digits = -1; return c; } if (format.Length == 2) { // Fast path for symbol and single digit, e.g. "X4" int d = format[1] - '0'; if ((uint)d < 10) { digits = d; return c; } } else if (format.Length == 3) { // Fast path for symbol and double digit, e.g. "F12" int d1 = format[1] - '0', d2 = format[2] - '0'; if ((uint)d1 < 10 && (uint)d2 < 10) { digits = d1 * 10 + d2; return c; } } // Fallback for symbol and any length digits. The digits value must be >= 0 && <= 99, // but it can begin with any number of 0s, and thus we may need to check more than two // digits. Further, for compat, we need to stop when we hit a null char. int n = 0; int i = 1; while (i < format.Length && (((uint)format[i] - '0') < 10) && n < 10) { n = (n * 10) + format[i++] - '0'; } // If we're at the end of the digits rather than having stopped because we hit something // other than a digit or overflowed, return the standard format info. if (i == format.Length || format[i] == '\0') { digits = n; return c; } } } // Default empty format to be "G"; custom format is signified with '\0'. digits = -1; return format.Length == 0 || c == '\0' ? // For compat, treat '\0' as the end of the specifier, even if the specifier extends beyond it. 'G' : '\0'; } internal static unsafe void NumberToString(ref ValueStringBuilder sb, ref NumberBuffer number, char format, int nMaxDigits, NumberFormatInfo info, bool isDecimal) { int nMinDigits = -1; switch (format) { case 'C': case 'c': { nMinDigits = nMaxDigits >= 0 ? nMaxDigits : info.CurrencyDecimalDigits; if (nMaxDigits < 0) nMaxDigits = info.CurrencyDecimalDigits; RoundNumber(ref number, number.scale + nMaxDigits); // Don't change this line to use digPos since digCount could have its sign changed. FormatCurrency(ref sb, ref number, nMinDigits, nMaxDigits, info); break; } case 'F': case 'f': { if (nMaxDigits < 0) nMaxDigits = nMinDigits = info.NumberDecimalDigits; else nMinDigits = nMaxDigits; RoundNumber(ref number, number.scale + nMaxDigits); if (number.sign) sb.Append(info.NegativeSign); FormatFixed(ref sb, ref number, nMinDigits, nMaxDigits, info, null, info.NumberDecimalSeparator, null); break; } case 'N': case 'n': { if (nMaxDigits < 0) nMaxDigits = nMinDigits = info.NumberDecimalDigits; // Since we are using digits in our calculation else nMinDigits = nMaxDigits; RoundNumber(ref number, number.scale + nMaxDigits); FormatNumber(ref sb, ref number, nMinDigits, nMaxDigits, info); break; } case 'E': case 'e': { if (nMaxDigits < 0) nMaxDigits = nMinDigits = 6; else nMinDigits = nMaxDigits; nMaxDigits++; RoundNumber(ref number, nMaxDigits); if (number.sign) sb.Append(info.NegativeSign); FormatScientific(ref sb, ref number, nMinDigits, nMaxDigits, info, format); break; } case 'G': case 'g': { bool enableRounding = true; if (nMaxDigits < 1) { if (isDecimal && (nMaxDigits == -1)) { // Default to 29 digits precision only for G formatting without a precision specifier // This ensures that the PAL code pads out to the correct place even when we use the default precision nMaxDigits = nMinDigits = DecimalPrecision; enableRounding = false; // Turn off rounding for ECMA compliance to output trailing 0's after decimal as significant } else { // This ensures that the PAL code pads out to the correct place even when we use the default precision nMaxDigits = nMinDigits = number.precision; } } else nMinDigits = nMaxDigits; if (enableRounding) // Don't round for G formatting without precision RoundNumber(ref number, nMaxDigits); // This also fixes up the minus zero case else { if (isDecimal && (number.digits[0] == 0)) { // Minus zero should be formatted as 0 number.sign = false; } } if (number.sign) sb.Append(info.NegativeSign); FormatGeneral(ref sb, ref number, nMinDigits, nMaxDigits, info, (char)(format - ('G' - 'E')), !enableRounding); break; } case 'P': case 'p': { if (nMaxDigits < 0) nMaxDigits = nMinDigits = info.PercentDecimalDigits; else nMinDigits = nMaxDigits; number.scale += 2; RoundNumber(ref number, number.scale + nMaxDigits); FormatPercent(ref sb, ref number, nMinDigits, nMaxDigits, info); break; } default: throw new FormatException(SR.Argument_BadFormatSpecifier); } } internal static unsafe void NumberToStringFormat(ref ValueStringBuilder sb, ref NumberBuffer number, ReadOnlySpan format, NumberFormatInfo info) { int digitCount; int decimalPos; int firstDigit; int lastDigit; int digPos; bool scientific; int thousandPos; int thousandCount = 0; bool thousandSeps; int scaleAdjust; int adjust; int section; int src; char* dig = number.digits; char ch; section = FindSection(format, dig[0] == 0 ? 2 : number.sign ? 1 : 0); while (true) { digitCount = 0; decimalPos = -1; firstDigit = 0x7FFFFFFF; lastDigit = 0; scientific = false; thousandPos = -1; thousandSeps = false; scaleAdjust = 0; src = section; fixed (char* pFormat = &format.DangerousGetPinnableReference()) { while (src < format.Length && (ch = pFormat[src++]) != 0 && ch != ';') { switch (ch) { case '#': digitCount++; break; case '0': if (firstDigit == 0x7FFFFFFF) firstDigit = digitCount; digitCount++; lastDigit = digitCount; break; case '.': if (decimalPos < 0) decimalPos = digitCount; break; case ',': if (digitCount > 0 && decimalPos < 0) { if (thousandPos >= 0) { if (thousandPos == digitCount) { thousandCount++; break; } thousandSeps = true; } thousandPos = digitCount; thousandCount = 1; } break; case '%': scaleAdjust += 2; break; case '\x2030': scaleAdjust += 3; break; case '\'': case '"': while (src < format.Length && pFormat[src] != 0 && pFormat[src++] != ch) ; break; case '\\': if (src < format.Length && pFormat[src] != 0) src++; break; case 'E': case 'e': if ((src < format.Length && pFormat[src] == '0') || (src + 1 < format.Length && (pFormat[src] == '+' || pFormat[src] == '-') && pFormat[src + 1] == '0')) { while (++src < format.Length && pFormat[src] == '0'); scientific = true; } break; } } } if (decimalPos < 0) decimalPos = digitCount; if (thousandPos >= 0) { if (thousandPos == decimalPos) scaleAdjust -= thousandCount * 3; else thousandSeps = true; } if (dig[0] != 0) { number.scale += scaleAdjust; int pos = scientific ? digitCount : number.scale + digitCount - decimalPos; RoundNumber(ref number, pos); if (dig[0] == 0) { src = FindSection(format, 2); if (src != section) { section = src; continue; } } } else { number.sign = false; // We need to format -0 without the sign set. number.scale = 0; // Decimals with scale ('0.00') should be rounded. } break; } firstDigit = firstDigit < decimalPos ? decimalPos - firstDigit : 0; lastDigit = lastDigit > decimalPos ? decimalPos - lastDigit : 0; if (scientific) { digPos = decimalPos; adjust = 0; } else { digPos = number.scale > decimalPos ? number.scale : decimalPos; adjust = number.scale - decimalPos; } src = section; // Adjust can be negative, so we make this an int instead of an unsigned int. // Adjust represents the number of characters over the formatting e.g. format string is "0000" and you are trying to // format 100000 (6 digits). Means adjust will be 2. On the other hand if you are trying to format 10 adjust will be // -2 and we'll need to fixup these digits with 0 padding if we have 0 formatting as in this example. Span thousandsSepPos = stackalloc int[4]; int thousandsSepCtr = -1; if (thousandSeps) { // We need to precompute this outside the number formatting loop if (info.NumberGroupSeparator.Length > 0) { // We need this array to figure out where to insert the thousands separator. We would have to traverse the string // backwards. PIC formatting always traverses forwards. These indices are precomputed to tell us where to insert // the thousands separator so we can get away with traversing forwards. Note we only have to compute up to digPos. // The max is not bound since you can have formatting strings of the form "000,000..", and this // should handle that case too. int[] groupDigits = info.numberGroupSizes; int groupSizeIndex = 0; // Index into the groupDigits array. int groupTotalSizeCount = 0; int groupSizeLen = groupDigits.Length; // The length of groupDigits array. if (groupSizeLen != 0) groupTotalSizeCount = groupDigits[groupSizeIndex]; // The current running total of group size. int groupSize = groupTotalSizeCount; int totalDigits = digPos + ((adjust < 0) ? adjust : 0); // Actual number of digits in o/p int numDigits = (firstDigit > totalDigits) ? firstDigit : totalDigits; while (numDigits > groupTotalSizeCount) { if (groupSize == 0) break; ++thousandsSepCtr; if (thousandsSepCtr >= thousandsSepPos.Length) { var newThousandsSepPos = new int[thousandsSepPos.Length * 2]; bool copied = thousandsSepPos.TryCopyTo(newThousandsSepPos); Debug.Assert(copied, "Expect copy to succeed, as the new array is larger than the original"); thousandsSepPos = newThousandsSepPos; } thousandsSepPos[thousandsSepCtr] = groupTotalSizeCount; if (groupSizeIndex < groupSizeLen - 1) { groupSizeIndex++; groupSize = groupDigits[groupSizeIndex]; } groupTotalSizeCount += groupSize; } } } if (number.sign && section == 0) sb.Append(info.NegativeSign); bool decimalWritten = false; fixed (char* pFormat = &format.DangerousGetPinnableReference()) { char* cur = dig; while (src < format.Length && (ch = pFormat[src++]) != 0 && ch != ';') { if (adjust > 0) { switch (ch) { case '#': case '0': case '.': while (adjust > 0) { // digPos will be one greater than thousandsSepPos[thousandsSepCtr] since we are at // the character after which the groupSeparator needs to be appended. sb.Append(*cur != 0 ? *cur++ : '0'); if (thousandSeps && digPos > 1 && thousandsSepCtr >= 0) { if (digPos == thousandsSepPos[thousandsSepCtr] + 1) { sb.Append(info.NumberGroupSeparator); thousandsSepCtr--; } } digPos--; adjust--; } break; } } switch (ch) { case '#': case '0': { if (adjust < 0) { adjust++; ch = digPos <= firstDigit ? '0' : '\0'; } else { ch = *cur != 0 ? *cur++ : digPos > lastDigit ? '0' : '\0'; } if (ch != 0) { sb.Append(ch); if (thousandSeps && digPos > 1 && thousandsSepCtr >= 0) { if (digPos == thousandsSepPos[thousandsSepCtr] + 1) { sb.Append(info.NumberGroupSeparator); thousandsSepCtr--; } } } digPos--; break; } case '.': { if (digPos != 0 || decimalWritten) { // For compatibility, don't echo repeated decimals break; } // If the format has trailing zeros or the format has a decimal and digits remain if (lastDigit < 0 || (decimalPos < digitCount && *cur != 0)) { sb.Append(info.NumberDecimalSeparator); decimalWritten = true; } break; } case '\x2030': sb.Append(info.PerMilleSymbol); break; case '%': sb.Append(info.PercentSymbol); break; case ',': break; case '\'': case '"': while (src < format.Length && pFormat[src] != 0 && pFormat[src] != ch) sb.Append(pFormat[src++]); if (src < format.Length && pFormat[src] != 0) src++; break; case '\\': if (src < format.Length && pFormat[src] != 0) sb.Append(pFormat[src++]); break; case 'E': case 'e': { bool positiveSign = false; int i = 0; if (scientific) { if (src < format.Length && pFormat[src] == '0') { // Handles E0, which should format the same as E-0 i++; } else if (src+1 < format.Length && pFormat[src] == '+' && pFormat[src + 1] == '0') { // Handles E+0 positiveSign = true; } else if (src+1 < format.Length && pFormat[src] == '-' && pFormat[src + 1] == '0') { // Handles E-0 // Do nothing, this is just a place holder s.t. we don't break out of the loop. } else { sb.Append(ch); break; } while (++src < format.Length && pFormat[src] == '0') i++; if (i > 10) i = 10; int exp = dig[0] == 0 ? 0 : number.scale - decimalPos; FormatExponent(ref sb, info, exp, ch, i, positiveSign); scientific = false; } else { sb.Append(ch); // Copy E or e to output if (src < format.Length) { if (pFormat[src] == '+' || pFormat[src] == '-') sb.Append(pFormat[src++]); while (src < format.Length && pFormat[src] == '0') sb.Append(pFormat[src++]); } } break; } default: sb.Append(ch); break; } } } } private static void FormatCurrency(ref ValueStringBuilder sb, ref NumberBuffer number, int nMinDigits, int nMaxDigits, NumberFormatInfo info) { string fmt = number.sign ? s_negCurrencyFormats[info.CurrencyNegativePattern] : s_posCurrencyFormats[info.CurrencyPositivePattern]; foreach (char ch in fmt) { switch (ch) { case '#': FormatFixed(ref sb, ref number, nMinDigits, nMaxDigits, info, info.currencyGroupSizes, info.CurrencyDecimalSeparator, info.CurrencyGroupSeparator); break; case '-': sb.Append(info.NegativeSign); break; case '$': sb.Append(info.CurrencySymbol); break; default: sb.Append(ch); break; } } } private static unsafe void FormatFixed(ref ValueStringBuilder sb, ref NumberBuffer number, int nMinDigits, int nMaxDigits, NumberFormatInfo info, int[] groupDigits, string sDecimal, string sGroup) { int digPos = number.scale; char* dig = number.digits; if (digPos > 0) { if (groupDigits != null) { int groupSizeIndex = 0; // Index into the groupDigits array. int groupSizeCount = groupDigits[groupSizeIndex]; // The current total of group size. int bufferSize = digPos; // The length of the result buffer string. int groupSize = 0; // The current group size. // Find out the size of the string buffer for the result. if (groupDigits.Length != 0) // You can pass in 0 length arrays { while (digPos > groupSizeCount) { groupSize = groupDigits[groupSizeIndex]; if (groupSize == 0) break; bufferSize += sGroup.Length; if (groupSizeIndex < groupDigits.Length - 1) groupSizeIndex++; groupSizeCount += groupDigits[groupSizeIndex]; if (groupSizeCount < 0 || bufferSize < 0) throw new ArgumentOutOfRangeException(); // If we overflow } groupSize = groupSizeCount == 0 ? 0 : groupDigits[0]; // If you passed in an array with one entry as 0, groupSizeCount == 0 } groupSizeIndex = 0; int digitCount = 0; int digLength = string.wcslen(dig); int digStart = (digPos < digLength) ? digPos : digLength; fixed (char* spanPtr = &sb.AppendSpan(bufferSize).DangerousGetPinnableReference()) { char* p = spanPtr + bufferSize - 1; for (int i = digPos - 1; i >= 0; i--) { *(p--) = (i < digStart) ? dig[i] : '0'; if (groupSize > 0) { digitCount++; if ((digitCount == groupSize) && (i != 0)) { for (int j = sGroup.Length - 1; j >= 0; j--) *(p--) = sGroup[j]; if (groupSizeIndex < groupDigits.Length - 1) { groupSizeIndex++; groupSize = groupDigits[groupSizeIndex]; } digitCount = 0; } } } Debug.Assert(p >= spanPtr - 1, "Underflow"); dig += digStart; } } else { do { sb.Append(*dig != 0 ? *dig++ : '0'); } while (--digPos > 0); } } else { sb.Append('0'); } if (nMaxDigits > 0) { sb.Append(sDecimal); if ((digPos < 0) && (nMaxDigits > 0)) { int zeroes = Math.Min(-digPos, nMaxDigits); sb.Append('0', zeroes); digPos += zeroes; nMaxDigits -= zeroes; } while (nMaxDigits > 0) { sb.Append((*dig != 0) ? *dig++ : '0'); nMaxDigits--; } } } private static void FormatNumber(ref ValueStringBuilder sb, ref NumberBuffer number, int nMinDigits, int nMaxDigits, NumberFormatInfo info) { string fmt = number.sign ? s_negNumberFormats[info.NumberNegativePattern] : PosNumberFormat; foreach (char ch in fmt) { switch (ch) { case '#': FormatFixed(ref sb, ref number, nMinDigits, nMaxDigits, info, info.numberGroupSizes, info.NumberDecimalSeparator, info.NumberGroupSeparator); break; case '-': sb.Append(info.NegativeSign); break; default: sb.Append(ch); break; } } } private static unsafe void FormatScientific(ref ValueStringBuilder sb, ref NumberBuffer number, int nMinDigits, int nMaxDigits, NumberFormatInfo info, char expChar) { char* dig = number.digits; sb.Append((*dig != 0) ? *dig++ : '0'); if (nMaxDigits != 1) // For E0 we would like to suppress the decimal point sb.Append(info.NumberDecimalSeparator); while (--nMaxDigits > 0) sb.Append((*dig != 0) ? *dig++ : '0'); int e = number.digits[0] == 0 ? 0 : number.scale - 1; FormatExponent(ref sb, info, e, expChar, 3, true); } private static unsafe void FormatExponent(ref ValueStringBuilder sb, NumberFormatInfo info, int value, char expChar, int minDigits, bool positiveSign) { sb.Append(expChar); if (value < 0) { sb.Append(info.NegativeSign); value = -value; } else { if (positiveSign) sb.Append(info.PositiveSign); } char* digits = stackalloc char[MaxUInt32DecDigits]; char* p = UInt32ToDecChars(digits + MaxUInt32DecDigits, (uint)value, minDigits); int i = (int)(digits + MaxUInt32DecDigits - p); sb.Append(p, (int)(digits + MaxUInt32DecDigits - p)); } private static unsafe void FormatGeneral(ref ValueStringBuilder sb, ref NumberBuffer number, int nMinDigits, int nMaxDigits, NumberFormatInfo info, char expChar, bool bSuppressScientific) { int digPos = number.scale; bool scientific = false; if (!bSuppressScientific) { // Don't switch to scientific notation if (digPos > nMaxDigits || digPos < -3) { digPos = 1; scientific = true; } } char* dig = number.digits; if (digPos > 0) { do { sb.Append((*dig != 0) ? *dig++ : '0'); } while (--digPos > 0); } else { sb.Append('0'); } if (*dig != 0 || digPos < 0) { sb.Append(info.NumberDecimalSeparator); while (digPos < 0) { sb.Append('0'); digPos++; } while (*dig != 0) sb.Append(*dig++); } if (scientific) FormatExponent(ref sb, info, number.scale - 1, expChar, 2, true); } private static void FormatPercent(ref ValueStringBuilder sb, ref NumberBuffer number, int nMinDigits, int nMaxDigits, NumberFormatInfo info) { string fmt = number.sign ? s_negPercentFormats[info.PercentNegativePattern] : s_posPercentFormats[info.PercentPositivePattern]; foreach (char ch in fmt) { switch (ch) { case '#': FormatFixed(ref sb, ref number, nMinDigits, nMaxDigits, info, info.percentGroupSizes, info.PercentDecimalSeparator, info.PercentGroupSeparator); break; case '-': sb.Append(info.NegativeSign); break; case '%': sb.Append(info.PercentSymbol); break; default: sb.Append(ch); break; } } } private static unsafe void RoundNumber(ref NumberBuffer number, int pos) { char* dig = number.digits; int i = 0; while (i < pos && dig[i] != 0) i++; if (i == pos && dig[i] >= '5') { while (i > 0 && dig[i - 1] == '9') i--; if (i > 0) { dig[i - 1]++; } else { number.scale++; dig[0] = '1'; i = 1; } } else { while (i > 0 && dig[i - 1] == '0') i--; } if (i == 0) { number.scale = 0; number.sign = false; } dig[i] = '\0'; } private static unsafe int FindSection(ReadOnlySpan format, int section) { int src; char ch; if (section == 0) return 0; fixed (char* pFormat = &format.DangerousGetPinnableReference()) { src = 0; for (;;) { if (src >= format.Length) { return 0; } switch (ch = pFormat[src++]) { case '\'': case '"': while (src < format.Length && pFormat[src] != 0 && pFormat[src++] != ch) ; break; case '\\': if (src < format.Length && pFormat[src] != 0) src++; break; case ';': if (--section != 0) break; if (src < format.Length && pFormat[src] != 0 && pFormat[src] != ';') return src; goto case '\0'; case '\0': return 0; } } } } private static uint Low32(ulong value) => (uint)value; private static uint High32(ulong value) => (uint)((value & 0xFFFFFFFF00000000) >> 32); private static uint Int64DivMod1E9(ref ulong value) { uint rem = (uint)(value % 1000000000); value /= 1000000000; return rem; } } }