Welcome to mirror list, hosted at ThFree Co, Russian Federation.

runtime « doc - github.com/mono/mono.git - Unnamed repository; edit this file 'description' to name the repository.
summaryrefslogtreecommitdiff
blob: 8a08cc861638a18e8ae0e1c5a79a1c3a58adac0a (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
* The Mono runtime

	The Mono runtime will implement the JIT engine (and a byte
	code interpreter for quickly porting to new systems), the
	class loader, the garbage collector, threading system and
	metadata access libraries.

	We currently have two runtimes:

	<ul>
		* <b>mint:</b> The Mono interpreter.  This is an
		  easy-to-port runtime engine.

		* <b>mono:</b> The Just In Time compiler implemented
	 	  using a BURS instruction selector
	</ul>

	Currently both runtimes are missing garbage collection.  We
	are planning on using the ORP GC engine and deploy it by
	middle January.  

* COM and XPCOM

	We plan on adding support for XPCOM on Unix and COM on Microsoft
	Windows later in our development process.

** Executing MSIL/CIL images

	The code will load an executable and map the references to
	external assemblies to our own version of the assemblies on
	Linux.

	Our roadmap looks like this, this has been updated as of
	<b>Dec 18, 2001</b>:

	<ul>

		* Milestone 1: <b>Done</b> Fully read and parse all CIL byte-codes
		  and metadata tokens (ie, a disassembler).  

		* Milestone 2: <b>Done</b> Complete an interpreter for CIL byte
		  codes.  This interpreter can be used temporarly to
		  run CIL byte code on a system where no JIT is
		  available.

		* Milestone 3: <b>Done</b>Define an <i>lburg</i>-like
		  instruction selector for the JITer for Intel.

		* Milestone 4: <b>Done</b> Implement JITer.  This is where our
		  current efforts are focused on, the JITer currently runs
		  all of the code we have tested on it.  The major limitation
		  is that our class libraries are not complete, and hence not
		  every application can be ran.

		* Milestone 5: Port of the JITer to non IA32 systems.
	</ul>

	A setup similar to the Kaffe JIT engine will be used to
	layout the code to support non-IA32 architectures.  Our work
	will be focused on getting a IA32 version running first.  

	The JIT engine should work on Linux and Win32, although you
	will need to install the CygWin32 development tools to get a
	Unix-like compilation environment (mostly we use GNU make in 
	a few of the makefiles).

** JIT Engine (<b>updated, Dec 18th, 2001</b>)

	The JIT engine uses a code-generator generator approach for
	compilation.  Given the properties of CIL byte codes, we can
	take full advantage of a real instruction selector for our
	code generator. 

	There are a couple of books that deal with this technique: "A
	Retargetable C Compiler" and "Advanced Compiler Design and
	Implementation" are good references.  You can also get a
        technical description of <a
        href="http://research.microsoft.com/copyright/accept.asp?path=http://www.research.microsoft.com/~drh/pubs/iburg.pdf&pub=ACM">lbrug</a>.

	A few papers that describe the instruction selector:

	<ul>
		* <a href="http://research.microsoft.com/copyright/accept.asp?path=http://www.research.microsoft.com/~drh/pubs/interface.pdf&pub=wiley">A code generation interface for ANSI C</a>


		* <a href="http://research.microsoft.com/copyright/accept.asp?path=http://www.research.microsoft.com/~drh/pubs/iburg.pdf&pub=ACM">Engineering efficient code generators using tree matching and dynamic programming.</a>

	</ul>

** Garbage Collection

	We will be using the Intel ORP GC engine as it provides a precise
	garbage collector engine, similar to what is available on the
	.NET environment. 

	Although using a conservative garbage collector like Bohem's
	would work, all the type information is available at runtime,
	so we can actually implement a better collector than a
	conservative collector.

	<ul>
		* Garbage collection list and FAQ:<br>
		  <a href="http://www.iecc.com/gclist/">http://www.iecc.com/gclist/</a>

		* "GC points in a Threaded Environment":<br>
		  <a href="http://research.sun.com/techrep/1998/abstract-70.html">
		  http://research.sun.com/techrep/1998/abstract-70.html</a>

		* "A Generational Mostly-concurrent Garbage Collector":
		  <a href="http://research.sun.com/techrep/2000/abstract-88.html">
		  http://research.sun.com/techrep/2000/abstract-88.html</a>

		* Details on The Microsoft .NET Garbage Collection Implementation:<br>
		  <a href="http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dnmag00/html/GCI.asp">http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dnmag00/html/GCI.asp</a>
		  <a href="http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dnmag00/html/GCI2.asp">http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dnmag00/html/GCI2.asp</a>
	</ul>

** IO and threading

	The ECMA runtime and the .NET runtime assume an IO model and a
	threading model that is very similar to the Win32 API.  

	Dick Porter has been working on the Mono abstraction layer
	that allows our runtime to execute code that depend on this
	behaviour.

** Useful links

	Paolo Molaro found a few interesting links:

	<ul>
		* On compilation of stack-based languages:<br>
		<a href="http://www.complang.tuwien.ac.at/projects/rafts.html">
		http://www.complang.tuwien.ac.at/projects/rafts.html</a>

		* A paper on fast JIT compilation of a stack-based language:<br>
		  <a href="http://www.research.microsoft.com/~cwfraser/pldi99codegen.pdf">
		  http://www.research.microsoft.com/~cwfraser/pldi99codegen.pdf</a>

		* Vmgen generates much of the code for efficient virtual machine (VM)
		  interpreters from simple descriptions of the VM instructions:<br>
		  <a href="http://www.complang.tuwien.ac.at/anton/vmgen/">
		  http://www.complang.tuwien.ac.at/anton/vmgen</a>
	</ul>

** PInvoke

	PInvoke is the mechanism we are using to wrap Unix API calls
	as well as talking to system libraries.

	Initially we used libffi, but it was fairly slow, so we have
	reused parts of the JIT work to create efficient PInvoke trampolines.