Welcome to mirror list, hosted at ThFree Co, Russian Federation.

Collections.cs « Mono.C5 « class « mcs - github.com/mono/mono.git - Unnamed repository; edit this file 'description' to name the repository.
summaryrefslogtreecommitdiff
blob: d85f6217098376b009386be052d7a3da2505637c (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
#if NET_2_0
/*
 Copyright (c) 2003-2004 Niels Kokholm <kokholm@itu.dk> and Peter Sestoft <sestoft@dina.kvl.dk>
 Permission is hereby granted, free of charge, to any person obtaining a copy
 of this software and associated documentation files (the "Software"), to deal
 in the Software without restriction, including without limitation the rights
 to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
 copies of the Software, and to permit persons to whom the Software is
 furnished to do so, subject to the following conditions:
 
 The above copyright notice and this permission notice shall be included in
 all copies or substantial portions of the Software.
 
 THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
 AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
 OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
 SOFTWARE.
*/

using System;
using System.Diagnostics;
using MSG = System.Collections.Generic;
namespace C5
{
	/// <summary>
	/// Direction of enumeration order relative to original collection.
	/// </summary>
	public enum EnumerationDirection { 
		/// <summary>
		/// Same direction
		/// </summary>
		Forwards, 
		/// <summary>
		/// Opposite direction
		/// </summary>
		Backwards 
	}

	#region int stuff
	class IC: IComparer<int>
	{
		[Tested]
		public int Compare(int a, int b) { return a > b ? 1 : a < b ? -1 : 0; }
	}



	/// <summary>
	/// A hasher for int32
	/// </summary>
	public class IntHasher: IHasher<int>
	{
		/// <summary>
		/// Get the hash code of this integer, i.e. itself
		/// </summary>
		/// <param name="item">The integer</param>
		/// <returns>The same</returns>
		[Tested]
		public int GetHashCode(int item) { return item; }


		/// <summary>
		/// Check if two integers are equal
		/// </summary>
		/// <param name="i1">first integer</param>
		/// <param name="i2">second integer</param>
		/// <returns>True if equal</returns>
		[Tested]
		public bool Equals(int i1, int i2) { return i1 == i2; }
	}


	#endregion

	#region Natural Comparers


	/// <summary>
	/// A natural generic IComparer for an IComparable&lt;T&gt; item type
	/// </summary>
	public class NaturalComparer<T>: IComparer<T>
		where T: IComparable<T>
	{
		/// <summary>
		/// Compare two items
		/// </summary>
		/// <param name="a">First item</param>
		/// <param name="b">Second item</param>
		/// <returns>a &lt;=&gt; b</returns>
		[Tested]
		public int Compare(T a, T b) { return a.CompareTo(b); }
	}



	/// <summary>
	/// A natural generic IComparer for a System.IComparable item type
	/// </summary>
	public class NaturalComparerO<T>: IComparer<T>
		where T: System.IComparable
	{
		/// <summary>
		/// Compare two items
		/// </summary>
		/// <param name="a">First item</param>
		/// <param name="b">Second item</param>
		/// <returns>a &lt;=&gt; b</returns>
		[Tested]
		public int Compare(T a, T b) { return a.CompareTo(b); }
	}



	#endregion

	#region Hashers
	/// <summary>
	/// The default item hasher for a reference type. A trivial wrapper for calling 
	/// the GetHashCode and Equals methods inherited from object.
	///
	/// <p>Should only be instantiated with a reference type as generic type parameter. 
	/// This is asserted at instatiation time in Debug builds.</p>
	/// </summary>
	public sealed class DefaultReferenceTypeHasher<T>: IHasher<T>
	{
		static DefaultReferenceTypeHasher()
		{
			Debug.Assert(!typeof(T).IsValueType, "DefaultReferenceTypeHasher instantiated with value type: " + typeof(T));
		}
		
		/// <summary>
		/// Get the hash code with respect to this item hasher
		/// </summary>
		/// <param name="item">The item</param>
		/// <returns>The hash code</returns>
		[Tested]
		public int GetHashCode(T item) { return item.GetHashCode(); }


		/// <summary>
		/// Check if two items are equal with respect to this item hasher
		/// </summary>
		/// <param name="i1">first item</param>
		/// <param name="i2">second item</param>
		/// <returns>True if equal</returns>
		[Tested]
		public bool Equals(T i1, T i2)
		{
			//For reference types, the (object) cast should be jitted as a noop. 
			return (object)i1 == null ? (object)i2 == null : i1.Equals(i2);
		}
	}

	/// <summary>
	/// The default item hasher for a value type. A trivial wrapper for calling 
	/// the GetHashCode and Equals methods inherited from object.
	///
	/// <p>Should only be instantiated with a value type as generic type parameter. 
	/// This is asserted at instatiation time in Debug builds.</p>
	/// <p>We cannot add the constraint "where T : struct" to get a compile time check
	/// because we need to instantiate this class in C5.HasherBuilder.ByPrototype[T].Examine()
	/// with a T that is only known at runtime to be a value type!</p>
	/// </summary>
	
    //Note: we could (now) add a constraint "where T : struct" to get a compile time check,
    //but 
	public sealed class DefaultValueTypeHasher<T>: IHasher<T>
	{
		static DefaultValueTypeHasher()
		{
			Debug.Assert(typeof(T).IsValueType, "DefaultValueTypeHasher instantiated with reference type: " + typeof(T));
		}
		/// <summary>
		/// Get the hash code with respect to this item hasher
		/// </summary>
		/// <param name="item">The item</param>
		/// <returns>The hash code</returns>
		[Tested]
		public int GetHashCode(T item) { return item.GetHashCode(); }


		/// <summary>
		/// Check if two items are equal with respect to this item hasher
		/// </summary>
		/// <param name="i1">first item</param>
		/// <param name="i2">second item</param>
		/// <returns>True if equal</returns>
		[Tested]
		public bool Equals(T i1, T i2) { return i1.Equals(i2); }
	}

	#endregion

	#region Bases

	/// <summary>
	/// A base class for implementing an IEnumerable&lt;T&gt;
	/// </summary>
	public abstract class EnumerableBase<T>: MSG.IEnumerable<T>
	{
		/// <summary>
		/// Create an enumerator for this collection.
		/// </summary>
		/// <returns>The enumerator</returns>
		public abstract MSG.IEnumerator<T> GetEnumerator();

		System.Collections.IEnumerator System.Collections.IEnumerable.GetEnumerator ()
		{
			return GetEnumerator ();
		}

		/// <summary>
		/// Count the number of items in an enumerable by enumeration
		/// </summary>
		/// <param name="items">The enumerable to count</param>
		/// <returns>The size of the enumerable</returns>
		protected static int countItems(MSG.IEnumerable<T> items)
		{
			ICollectionValue<T> jtems = items as ICollectionValue<T>;

			if (jtems != null)
				return jtems.Count;

			int count = 0;

			using (MSG.IEnumerator<T> e = items.GetEnumerator())
				while (e.MoveNext()) count++;

			return count;
		}
	}


	/// <summary>
	/// Base class for classes implementing ICollectionValue[T]
	/// </summary>
	public abstract class CollectionValueBase<T>: EnumerableBase<T>, ICollectionValue<T>
	{
		//This forces our subclasses to make Count virtual!
		/// <summary>
		/// The number of items in this collection.
		/// </summary>
		/// <value></value>
		public abstract int Count { get;}

        /// <summary>
        /// The value is symbolic indicating the type of asymptotic complexity
        /// in terms of the size of this collection (worst-case or amortized as
        /// relevant).
        /// </summary>
        /// <value>A characterization of the speed of the 
        /// <code>Count</code> property in this collection.</value>
        public abstract Speed CountSpeed { get; }


        /// <summary>
		/// Copy the items of this collection to part of an array.
		/// <exception cref="ArgumentOutOfRangeException"/> if i is negative.
		/// <exception cref="ArgumentException"/> if the array does not have room for the items.
		/// </summary>
		/// <param name="a">The array to copy to</param>
		/// <param name="i">The starting index.</param>
		[Tested]
		public virtual void CopyTo(T[] a, int i)
		{
			if (i < 0)
				throw new ArgumentOutOfRangeException();

			if (i + Count > a.Length)
				throw new ArgumentException();

			foreach (T item in this) a[i++] = item;
		}

        /// <summary>
        /// Create an array with the items of this collection (in the same order as an
        /// enumerator would output them).
        /// </summary>
        /// <returns>The array</returns>
        //[Tested]
        public virtual T[] ToArray()
        {
            T[] res = new T[Count];
            int i = 0;

            foreach (T item in this) res[i++] = item;

            return res;
        }

        /// <summary>
        /// Apply an Applier&lt;T&gt; to this enumerable
        /// </summary>
        /// <param name="a">The applier delegate</param>
        [Tested]
        public void Apply(Applier<T> a)
        {
            foreach (T item in this)
                a(item);
        }


        /// <summary>
        /// Check if there exists an item  that satisfies a
        /// specific predicate in this collection.
        /// </summary>
        /// <param name="filter">A filter delegate 
        /// (<see cref="T:C5.Filter!1"/>) defining the predicate</param>
        /// <returns>True is such an item exists</returns>
        [Tested]
        public bool Exists(Filter<T> filter)
        {
            foreach (T item in this)
                if (filter(item))
                    return true;

            return false;
        }


        /// <summary>
        /// Check if all items in this collection satisfies a specific predicate.
        /// </summary>
        /// <param name="filter">A filter delegate 
        /// (<see cref="T:C5.Filter!1"/>) defining the predicate</param>
        /// <returns>True if all items satisfies the predicate</returns>
        [Tested]
        public bool All(Filter<T> filter)
        {
            foreach (T item in this)
                if (!filter(item))
                    return false;

            return true;
        }

        /// <summary>
        /// Create an enumerator for this collection.
		/// </summary>
		/// <returns>The enumerator</returns>
		public override abstract MSG.IEnumerator<T> GetEnumerator();
	}


	/// <summary>
	/// Base class (abstract) for ICollection implementations.
	/// </summary>
	public abstract class CollectionBase<T>: CollectionValueBase<T>
	{
		#region Fields

		object syncroot = new object();

		/// <summary>
		/// The underlying field of the ReadOnly property
		/// </summary>
		protected bool isReadOnly = false;

		/// <summary>
		/// The current stamp value
		/// </summary>
		protected int stamp;

		/// <summary>
		/// The number of items in the collection
		/// </summary>
		protected int size;

		/// <summary>
		/// The item hasher of the collection
		/// </summary>
		protected IHasher<T> itemhasher;

		int iUnSequencedHashCode, iUnSequencedHashCodeStamp = -1;

		#endregion
		
		#region Util

		//protected bool equals(T i1, T i2) { return itemhasher.Equals(i1, i2); }
		/// <summary>
		/// Utility method for range checking.
		/// <exception cref="ArgumentOutOfRangeException"/> if the start or count is negative
		/// <exception cref="ArgumentException"/> if the range does not fit within collection size.
		/// </summary>
		/// <param name="start">start of range</param>
		/// <param name="count">size of range</param>
		[Tested]
		protected void checkRange(int start, int count)
		{
			if (start < 0 || count < 0)
				throw new ArgumentOutOfRangeException();

			if (start + count > size)
				throw new ArgumentException();
		}


		/// <summary>
		/// Compute the unsequenced hash code of a collection
		/// </summary>
		/// <param name="items">The collection to compute hash code for</param>
		/// <param name="itemhasher">The item hasher</param>
		/// <returns>The hash code</returns>
		[Tested]
		public static int ComputeHashCode(ICollectionValue<T> items, IHasher<T> itemhasher)
		{
			int h = 0;

			foreach (T item in items)
				h ^= itemhasher.GetHashCode(item);

			return (items.Count << 16) + h;
		}


		/// <summary>
		/// Examine if tit and tat are equal as unsequenced collections
		/// using the specified item hasher (assumed compatible with the two collections).
		/// </summary>
		/// <param name="tit">The first collection</param>
		/// <param name="tat">The second collection</param>
		/// <param name="itemhasher">The item hasher to use for comparison</param>
		/// <returns>True if equal</returns>
		[Tested]
		public static bool StaticEquals(ICollection<T> tit, ICollection<T> tat, IHasher<T> itemhasher)
		{
			if (tat == null)
				return tit == null;

			if (tit.Count != tat.Count)
				return false;

			//This way we might run through both enumerations twice, but
			//probably not (if the hash codes are good)
			if (tit.GetHashCode() != tat.GetHashCode())
				return false;

            if (!tit.AllowsDuplicates && (tat.AllowsDuplicates || tat.ContainsSpeed >= tit.ContainsSpeed))
            {
                //TODO: use foreach construction
				using (MSG.IEnumerator<T> dit = tit.GetEnumerator())
				{
					while (dit.MoveNext())
						if (!tat.Contains(dit.Current))
							return false;
				}
			}
            else if (!tat.AllowsDuplicates)
            {
				using (MSG.IEnumerator<T> dat = tat.GetEnumerator())
				{
					while (dat.MoveNext())
						if (!tit.Contains(dat.Current))
							return false;
				}
			}
			else
			{//both are bags, we only have a slow one
				//unless the bags are based on a fast T->int dictinary (tree or hash) 
				using (MSG.IEnumerator<T> dat = tat.GetEnumerator())
				{
					while (dat.MoveNext())
					{
						T item = dat.Current;

						if (tit.ContainsCount(item) != tat.ContainsCount(item))
							return false;
					}
				}
				//That was O(n^3) - completely unacceptable.
				//If we use an auxiliary bool[] we can do the comparison in O(n^2)
			}

			return true;
		}


		/// <summary>
		/// Get the unsequenced collection hash code of this collection: from the cached 
		/// value if present and up to date, else (re)compute.
		/// </summary>
		/// <returns>The hash code</returns>
		protected int unsequencedhashcode()
		{
			if (iUnSequencedHashCodeStamp == stamp)
				return iUnSequencedHashCode;

			iUnSequencedHashCode = ComputeHashCode(this, itemhasher);
			iUnSequencedHashCodeStamp = stamp;
			return iUnSequencedHashCode;
		}


		/// <summary>
		/// Check if the contents of that is equal to the contents of this
		/// in the unsequenced sense. Using the item hasher of this collection.
		/// </summary>
		/// <param name="that">The collection to compare to.</param>
		/// <returns>True if  equal</returns>
		protected bool unsequencedequals(ICollection<T> that)
		{
			return StaticEquals((ICollection<T>)this, that, itemhasher);
		}


		/// <summary>
		/// <exception cref="InvalidOperationException"/> if this collection has been updated 
		/// since a target time
		/// </summary>
		/// <param name="thestamp">The stamp identifying the target time</param>
		protected virtual void modifycheck(int thestamp)
		{
			if (this.stamp != thestamp)
				throw new InvalidOperationException("Collection was modified");
		}


		/// <summary>
		/// Check if it is valid to perform update operations, and if so increment stamp
		/// </summary>
		protected virtual void updatecheck()
		{
			if (isReadOnly)
				throw new InvalidOperationException("Collection cannot be modified through this guard object");

			stamp++;
		}

		#endregion

		#region IEditableCollection<T> members

		/// <summary>
		/// 
		/// </summary>
		/// <value>True if this collection is read only</value>
		[Tested]
		public bool IsReadOnly { [Tested]get { return isReadOnly; } }

		#endregion

		#region ICollection<T> members
		/// <summary>
		/// 
		/// </summary>
		/// <value>The size of this collection</value>
		[Tested]
		public override int Count { [Tested]get { return size; } }

        /// <summary>
        /// The value is symbolic indicating the type of asymptotic complexity
        /// in terms of the size of this collection (worst-case or amortized as
        /// relevant).
        /// </summary>
        /// <value>A characterization of the speed of the 
        /// <code>Count</code> property in this collection.</value>
        public override Speed CountSpeed { get { return Speed.Constant; } }


		#endregion

		#region ISink<T> members
		/// <summary>
		/// 
		/// </summary>
		/// <value>A distinguished object to use for locking to synchronize multithreaded access</value>
		[Tested]
		public object SyncRoot { get { return syncroot; } }


		/// <summary>
		/// 
		/// </summary>
		/// <value>True is this collection is empty</value>
		[Tested]
		public bool IsEmpty { [Tested]get { return size == 0; } }
		#endregion

		#region IEnumerable<T> Members
		/// <summary>
		/// Create an enumerator for this collection.
		/// </summary>
		/// <returns>The enumerator</returns>
		public override abstract MSG.IEnumerator<T> GetEnumerator();
		#endregion
	}


	/// <summary>
	/// Base class (abstract) for sequenced collection implementations.
	/// </summary>
	public abstract class SequencedBase<T>: CollectionBase<T>
	{
		#region Fields

		int iSequencedHashCode, iSequencedHashCodeStamp = -1;

		#endregion

		#region Util

		/// <summary>
		/// Compute the unsequenced hash code of a collection
		/// </summary>
		/// <param name="items">The collection to compute hash code for</param>
		/// <param name="itemhasher">The item hasher</param>
		/// <returns>The hash code</returns>
		[Tested]
		public static int ComputeHashCode(ISequenced<T> items, IHasher<T> itemhasher)
		{
			//NOTE: It must be possible to devise a much stronger combined hashcode, 
			//but unfortunately, it has to be universal. OR we could use a (strong)
			//family and initialise its parameter randomly at load time of this class!
			//(We would not want to have yet a flag to check for invalidation?!)
			int iIndexedHashCode = 0;

			foreach (T item in items)
				iIndexedHashCode = iIndexedHashCode * 31 + itemhasher.GetHashCode(item);

			return iIndexedHashCode;
		}


		/// <summary>
		/// Examine if tit and tat are equal as sequenced collections
		/// using the specified item hasher (assumed compatible with the two collections).
		/// </summary>
		/// <param name="tit">The first collection</param>
		/// <param name="tat">The second collection</param>
		/// <param name="itemhasher">The item hasher to use for comparison</param>
		/// <returns>True if equal</returns>
		[Tested]
		public static bool StaticEquals(ISequenced<T> tit, ISequenced<T> tat, IHasher<T> itemhasher)
		{
			if (tat == null)
				return tit == null;

			if (tit.Count != tat.Count)
				return false;

			//This way we might run through both enumerations twice, but
			//probably not (if the hash codes are good)
			if (tit.GetHashCode() != tat.GetHashCode())
				return false;

			using (MSG.IEnumerator<T> dat = tat.GetEnumerator(), dit = tit.GetEnumerator())
			{
				while (dit.MoveNext())
				{
					dat.MoveNext();
					if (!itemhasher.Equals(dit.Current, dat.Current))
						return false;
				}
			}

			return true;
		}


		/// <summary>
		/// Get the sequenced collection hash code of this collection: from the cached 
		/// value if present and up to date, else (re)compute.
		/// </summary>
		/// <returns>The hash code</returns>
		protected int sequencedhashcode()
		{
			if (iSequencedHashCodeStamp == stamp)
				return iSequencedHashCode;

			iSequencedHashCode = ComputeHashCode((ISequenced<T>)this, itemhasher);
			iSequencedHashCodeStamp = stamp;
			return iSequencedHashCode;
		}


		/// <summary>
		/// Check if the contents of that is equal to the contents of this
		/// in the sequenced sense. Using the item hasher of this collection.
		/// </summary>
		/// <param name="that">The collection to compare to.</param>
		/// <returns>True if  equal</returns>
		protected bool sequencedequals(ISequenced<T> that)
		{
			return StaticEquals((ISequenced<T>)this, that, itemhasher);
		}


		#endregion

		/// <summary>
		/// Create an enumerator for this collection.
		/// </summary>
		/// <returns>The enumerator</returns>
		public override abstract MSG.IEnumerator<T> GetEnumerator();


		/// <summary>
		/// <code>Forwards</code> if same, else <code>Backwards</code>
		/// </summary>
		/// <value>The enumeration direction relative to the original collection.</value>
		[Tested]
		public EnumerationDirection Direction { [Tested]get { return EnumerationDirection.Forwards; } }
	}


	/// <summary>
	/// Base class for collection classes of dynamic array type implementations.
	/// </summary>
	public class ArrayBase<T>: SequencedBase<T>
	{
		#region Fields
		/// <summary>
		/// The actual internal array container. Will be extended on demand.
		/// </summary>
		protected T[] array;

		/// <summary>
		/// The offset into the internal array container of the first item. The offset is 0 for a 
		/// base dynamic array and may be positive for an updatable view into a base dynamic array.
		/// </summary>
		protected int offset;
		#endregion

		#region Util
		/// <summary>
		/// Double the size of the internal array.
		/// </summary>
		protected virtual void expand()
		{
			expand(2 * array.Length, size);
		}


		/// <summary>
		/// Expand the internal array container.
		/// </summary>
		/// <param name="newcapacity">The new size of the internal array - 
		/// will be rounded upwards to a power of 2.</param>
		/// <param name="newsize">The (new) size of the (base) collection.</param>
		protected virtual void expand(int newcapacity, int newsize)
		{
			Debug.Assert(newcapacity >= newsize);

			int newlength = array.Length;

			while (newlength < newcapacity) newlength *= 2;

			T[] newarray = new T[newlength];

			Array.Copy(array, newarray, newsize);
			array = newarray;
		}


		/// <summary>
		/// Insert an item at a specific index, moving items to the right
		/// upwards and expanding the array if necessary.
		/// </summary>
		/// <param name="i">The index at which to insert.</param>
		/// <param name="item">The item to insert.</param>
		protected virtual void insert(int i, T item)
		{
			if (size == array.Length)
				expand();

			if (i < size)
				Array.Copy(array, i, array, i + 1, size - i);

			array[i] = item;
			size++;
		}

		#endregion

		#region Constructors

		/// <summary>
		/// Create an empty ArrayBase object.
		/// </summary>
		/// <param name="capacity">The initial capacity of the internal array container.
		/// Will be rounded upwards to the nearest power of 2 greater than or equal to 8.</param>
		/// <param name="hasher">The item hasher to use, primarily for item equality</param>
		public ArrayBase(int capacity, IHasher<T> hasher)
		{
			int newlength = 8;

			while (newlength < capacity) newlength *= 2;

			array = new T[newlength];
			itemhasher = hasher;
		}

		#endregion

		#region IIndexed members

		/// <summary>
		/// <exception cref="IndexOutOfRangeException"/>.
		/// </summary>
		/// <value>The directed collection of items in a specific index interval.</value>
		/// <param name="start">The low index of the interval (inclusive).</param>
        /// <param name="count">The size of the range.</param>
        [Tested]
        public IDirectedCollectionValue<T> this[int start, int count]
		{
			[Tested]
			get
			{
				checkRange(start, count);
				return new Range(this, start, count, true);
			}
		}

		#endregion

		#region IEditableCollection members
		/// <summary>
		/// Remove all items and reset size of internal array container.
		/// </summary>
		[Tested]
		public virtual void Clear()
		{
			updatecheck();
			array = new T[8];
			size = 0;
		}


		/// <summary>
		/// Create an array containing (copies) of the items of this collection in enumeration order.
		/// </summary>
		/// <returns>The new array</returns>
		[Tested]
		public override T[] ToArray()
		{
			T[] res = new T[size];

			Array.Copy(array, res, size);
			return res;
		}


		/// <summary>
		/// Perform an internal consistency (invariant) test on the array base.
		/// </summary>
		/// <returns>True if test succeeds.</returns>
		[Tested]
		public virtual bool Check()
		{
			bool retval = true;

			if (size > array.Length)
			{
				Console.WriteLine("Bad size ({0}) > array.Length ({1})", size, array.Length);
				return false;
			}

			for (int i = 0; i < size; i++)
			{
				if ((object)(array[i]) == null)
				{
					Console.WriteLine("Bad element: null at index {0}", i);
					return false;
				}
			}

			return retval;
		}

		#endregion

		#region IDirectedCollection<T> Members

		/// <summary>
		/// Create a directed collection with the same contents as this one, but 
		/// opposite enumeration sequence.
		/// </summary>
		/// <returns>The mirrored collection.</returns>
		[Tested]
		public IDirectedCollectionValue<T> Backwards() { return this[0, size].Backwards(); }

		#endregion

		#region IEnumerable<T> Members
		/// <summary>
		/// Create an enumerator for this array based collection.
		/// </summary>
		/// <returns>The enumerator</returns>
		[Tested]
		public override MSG.IEnumerator<T> GetEnumerator()
		{
			int thestamp = stamp, theend = size + offset, thestart = offset;

			for (int i = thestart; i < theend; i++)
			{
				modifycheck(thestamp);
				yield return array[i];
			}
		}
		#endregion

		#region Range nested class
		/// <summary>
		/// A helper class for defining results of interval queries on array based collections.
		/// </summary>
		protected class Range: CollectionValueBase<T>, IDirectedCollectionValue<T>
		{
			int start, count, delta, stamp;

			ArrayBase<T> thebase;


			internal Range(ArrayBase<T> thebase, int start, int count, bool forwards)
			{
				this.thebase = thebase;  stamp = thebase.stamp;
				delta = forwards ? 1 : -1;
				this.start = start + thebase.offset; this.count = count;
			}


			/// <summary>
			/// 
			/// </summary>
			/// <value>The number of items in the range</value>
			[Tested]
			public override int Count { [Tested]get { thebase.modifycheck(stamp); return count; } }

            /// <summary>
            /// The value is symbolic indicating the type of asymptotic complexity
            /// in terms of the size of this collection (worst-case or amortized as
            /// relevant).
            /// </summary>
            /// <value>A characterization of the speed of the 
            /// <code>Count</code> property in this collection.</value>
            public override Speed CountSpeed { get { thebase.modifycheck(stamp); return Speed.Constant; } }

            /// <summary>
			/// Create an enumerator for this range of an array based collection.
			/// </summary>
			/// <returns>The enumerator</returns>
			[Tested]
			public override MSG.IEnumerator<T> GetEnumerator()
			{
				for (int i = 0; i < count; i++)
				{
					thebase.modifycheck(stamp);
					yield return thebase.array[start + delta * i];
				}
			}


			/// <summary>
			/// Create a araay collection range with the same contents as this one, but 
			/// opposite enumeration sequence.
			/// </summary>
			/// <returns>The mirrored collection.</returns>
			[Tested]
			public IDirectedCollectionValue<T> Backwards()
			{
				thebase.modifycheck(stamp);

				Range res = (Range)MemberwiseClone();

				res.delta = -delta;
				res.start = start + (count - 1) * delta;
				return res;
			}


			IDirectedEnumerable<T> C5.IDirectedEnumerable<T>.Backwards()
			{
				return Backwards();
			}


			/// <summary>
			/// <code>Forwards</code> if same, else <code>Backwards</code>
			/// </summary>
			/// <value>The enumeration direction relative to the original collection.</value>
			[Tested]
			public EnumerationDirection Direction
			{
				[Tested]
				get
				{
					thebase.modifycheck(stamp);
					return delta > 0 ? EnumerationDirection.Forwards : EnumerationDirection.Backwards;
				}
			}
		}
		#endregion
	}

	#endregion

	#region Sorting
	/// <summary>
	/// A utility class with functions for sorting arrays with respect to an IComparer&lt;T&gt;
	/// </summary>
	public class Sorting
	{
		/// <summary>
		/// Sort part of array in place using IntroSort
		/// </summary>
		/// <param name="a">Array to sort</param>
		/// <param name="f">Index of first position to sort</param>
		/// <param name="b">Index of first position beyond the part to sort</param>
		/// <param name="c">IComparer&lt;T&gt; to sort by</param>
		[Tested]
		public static void IntroSort<T>(T[] a, int f, int b, IComparer<T> c)
		{
			new Sorter<T>(a, c).IntroSort(f, b);
		}


		/// <summary>
		/// Sort part of array in place using Insertion Sort
		/// </summary>
		/// <param name="a">Array to sort</param>
		/// <param name="f">Index of first position to sort</param>
		/// <param name="b">Index of first position beyond the part to sort</param>
		/// <param name="c">IComparer&lt;T&gt; to sort by</param>
		[Tested]
		public static void InsertionSort<T>(T[] a, int f, int b, IComparer<T> c)
		{
			new Sorter<T>(a, c).InsertionSort(f, b);
		}


		/// <summary>
		/// Sort part of array in place using Heap Sort
		/// </summary>
		/// <param name="a">Array to sort</param>
		/// <param name="f">Index of first position to sort</param>
		/// <param name="b">Index of first position beyond the part to sort</param>
		/// <param name="c">IComparer&lt;T&gt; to sort by</param>
		[Tested]
		public static void HeapSort<T>(T[] a, int f, int b, IComparer<T> c)
		{
			new Sorter<T>(a, c).HeapSort(f, b);
		}


		class Sorter<T>
		{
			T[] a;

			IComparer<T> c;


			internal Sorter(T[] a, IComparer<T> c) { this.a = a; this.c = c; }


			internal void IntroSort(int f, int b)
			{
				if (b - f > 31)
				{
					int depth_limit = (int)Math.Floor(2.5 * Math.Log(b - f, 2));

					introSort(f, b, depth_limit);
				}
				else
					InsertionSort(f, b);
			}


			private void introSort(int f, int b, int depth_limit)
			{
				const int size_threshold = 14;//24;

				if (depth_limit-- == 0)
					HeapSort(f, b);
				else if (b - f <= size_threshold)
					InsertionSort(f, b);
				else
				{
					int p = partition(f, b);

					introSort(f, p, depth_limit);
					introSort(p, b, depth_limit);
				}
			}


			private int compare(T i1, T i2) { return c.Compare(i1, i2); }


			private int partition(int f, int b)
			{
				int bot = f, mid = (b + f) / 2, top = b - 1;
				T abot = a[bot], amid = a[mid], atop = a[top];

				if (compare(abot, amid) < 0)
				{
					if (compare(atop, abot) < 0)//atop<abot<amid
						{ a[top] = amid; amid = a[mid] = abot; a[bot] = atop; }
					else if (compare(atop, amid) < 0) //abot<=atop<amid
						{ a[top] = amid; amid = a[mid] = atop; }
					//else abot<amid<=atop
				}
				else
				{
					if (compare(amid, atop) > 0) //atop<amid<=abot
						{ a[bot] = atop; a[top] = abot; }
					else if (compare(abot, atop) > 0) //amid<=atop<abot
						{ a[bot] = amid; amid = a[mid] = atop; a[top] = abot; }
					else //amid<=abot<=atop
						{ a[bot] = amid; amid = a[mid] = abot; }
				}

				int i = bot, j = top;

				while (true)
				{
					while (compare(a[++i], amid) < 0);

					while (compare(amid, a[--j]) < 0);

					if (i < j)
					{
						T tmp = a[i]; a[i] = a[j]; a[j] = tmp;
					}
					else
						return i;
				}
			}


			internal void InsertionSort(int f, int b)
			{
				for (int j = f + 1; j < b; j++)
				{
					T key = a[j], other;
					int i = j - 1;

					if (c.Compare(other = a[i], key) > 0)
					{
						a[j] = other;
						while (i > f && c.Compare(other = a[i - 1], key) > 0) { a[i--] = other; }

						a[i] = key;
					}
				}
			}


			internal void HeapSort(int f, int b)
			{
				for (int i = (b + f) / 2; i >= f; i--) heapify(f, b, i);

				for (int i = b - 1; i > f; i--)
				{
					T tmp = a[f]; a[f] = a[i]; a[i] = tmp;
					heapify(f, i, f);
				}
			}


			private void heapify(int f, int b, int i)
			{
				T pv = a[i], lv, rv, max = pv;
				int j = i, maxpt = j;

				while (true)
				{
					int l = 2 * j - f + 1, r = l + 1;

					if (l < b && compare(lv = a[l], max) > 0) { maxpt = l; max = lv; }

					if (r < b && compare(rv = a[r], max) > 0) { maxpt = r; max = rv; }

					if (maxpt == j)
						break;

					a[j] = max;
					max = pv;
					j = maxpt;
				}

				if (j > i)
					a[j] = pv;
			}
		}
	}

	#endregion

	#region Random
	/// <summary>
	/// A modern random number generator based on (whatever)
	/// </summary>
	public class C5Random : Random
	{
		private uint[] Q = new uint[16];

		private uint c = 362436, i = 15;


		private uint Cmwc()
		{
			ulong t, a = 487198574UL;
			uint x, r = 0xfffffffe;

			i = (i + 1) & 15;
			t = a * Q[i] + c;
			c = (uint)(t >> 32);
			x = (uint)(t + c);
			if (x < c)
			{
				x++;
				c++;
			}

			return Q[i] = r - x;
		}


		/// <summary>
		/// Get a new random System.Double value
		/// </summary>
		/// <returns>The random double</returns>
		public override double NextDouble()
		{
			return Cmwc() / 4294967296.0;
		}


		/// <summary>
		/// Get a new random System.Double value
		/// </summary>
		/// <returns>The random double</returns>
		protected override double Sample()
		{
			return NextDouble();
		}


		/// <summary>
		/// Get a new random System.Int32 value
		/// </summary>
		/// <returns>The random int</returns>
		public override int Next()
		{
			return (int)Cmwc();
		}
		

		/// <summary>
		/// Get a random non-negative integer less than a given upper bound
		/// </summary>
		/// <param name="max">The upper bound (exclusive)</param>
		/// <returns></returns>
		public override int Next(int max)
		{
			if (max < 0)
				throw new ApplicationException("max must be non-negative");

			return (int)(Cmwc() / 4294967296.0 * max);
		}


		/// <summary>
		/// Get a random integer between two given bounds
		/// </summary>
		/// <param name="min">The lower bound (inclusive)</param>
		/// <param name="max">The upper bound (exclusive)</param>
		/// <returns></returns>
		public override int Next(int min, int max)
		{
			if (min > max)
				throw new ApplicationException("min must be less than or equal to max");

			return min + (int)(Cmwc() / 4294967296.0 * max);
		}

		/// <summary>
		/// Fill a array of byte with random bytes
		/// </summary>
		/// <param name="buffer">The array to fill</param>
		public override void NextBytes(byte[] buffer)
		{
			for (int i = 0, length = buffer.Length; i < length; i++)
				buffer[i] = (byte)Cmwc();
		}


		/// <summary>
		/// Create a random number generator seed by system time.
		/// </summary>
		public C5Random() : this(DateTime.Now.Ticks)
		{
		}


		/// <summary>
		/// Create a random number generator with a given seed
		/// </summary>
		/// <param name="seed">The seed</param>
		public C5Random(long seed)
		{
			if (seed == 0)
				throw new ApplicationException("Seed must be non-zero");

			uint j = (uint)(seed & 0xFFFFFFFF);

			for (int i = 0; i < 16; i++)
			{
				j ^= j << 13;
				j ^= j >>17;
				j ^= j << 5;
				Q[i] = j;
			}

			Q[15] = (uint)(seed ^ (seed >> 32));
		}
	}

	#endregion

	#region Custom code attributes

	/// <summary>
	/// A custom attribute to mark methods and properties as being tested 
	/// sufficiently in the regression test suite.
	/// </summary>
	[AttributeUsage(AttributeTargets.All, AllowMultiple = true)]
	public class TestedAttribute: Attribute
	{

		/// <summary>
		/// Optional reference to test case
		/// </summary>
		[Tested]
		public string via;


		/// <summary>
		/// Pretty print attribute value
		/// </summary>
		/// <returns>"Tested via " + via</returns>
		[Tested]
		public override string ToString() { return "Tested via " + via; }
	}

	#endregion
}
#endif