Welcome to mirror list, hosted at ThFree Co, Russian Federation.

KeyPullup.cs « PlanCompiler « Query « Data « System « System.Data.Entity « referencesource « class « mcs - github.com/mono/mono.git - Unnamed repository; edit this file 'description' to name the repository.
summaryrefslogtreecommitdiff
blob: 976c8adc17f3e11980ddf36c71c8e2a89279e733 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
//---------------------------------------------------------------------
// <copyright file="KeyPullup.cs" company="Microsoft">
//      Copyright (c) Microsoft Corporation.  All rights reserved.
// </copyright>
//
// @owner  [....]
// @backupOwner [....]
//---------------------------------------------------------------------

using System;
using System.Collections.Generic;
//using System.Diagnostics; // Please use PlanCompiler.Assert instead of Debug.Assert in this class...

// It is fine to use Debug.Assert in cases where you assert an obvious thing that is supposed
// to prevent from simple mistakes during development (e.g. method argument validation 
// in cases where it was you who created the variables or the variables had already been validated or 
// in "else" clauses where due to code changes (e.g. adding a new value to an enum type) the default 
// "else" block is chosen why the new condition should be treated separately). This kind of asserts are 
// (can be) helpful when developing new code to avoid simple mistakes but have no or little value in 
// the shipped product. 
// PlanCompiler.Assert *MUST* be used to verify conditions in the trees. These would be assumptions 
// about how the tree was built etc. - in these cases we probably want to throw an exception (this is
// what PlanCompiler.Assert does when the condition is not met) if either the assumption is not correct 
// or the tree was built/rewritten not the way we thought it was.
// Use your judgment - if you rather remove an assert than ship it use Debug.Assert otherwise use
// PlanCompiler.Assert.

using System.Globalization;

using System.Data.Query.InternalTrees;

//
// The KeyPullup module helps pull up keys from the leaves of a subtree. 
//
namespace System.Data.Query.PlanCompiler
{
    /// <summary>
    /// The KeyPullup class subclasses the default visitor and pulls up keys
    /// for the different node classes below. 
    /// The only Op that really deserves special treatment is the ProjectOp. 
    /// </summary>
    internal class KeyPullup : BasicOpVisitor
    {
        #region private state
        private Command m_command;
        #endregion

        #region constructors
        internal KeyPullup(Command command)
        {
            m_command = command;
        }
        #endregion

        #region public methods
        /// <summary>
        /// Pull up keys (if possible) for the given node
        /// </summary>
        /// <param name="node">node to pull up keys for</param>
        /// <returns>Keys for the node</returns>
        internal KeyVec GetKeys(Node node)
        {
            ExtendedNodeInfo nodeInfo = node.GetExtendedNodeInfo(m_command);
            if (nodeInfo.Keys.NoKeys)
            {
                VisitNode(node);
            }
            return nodeInfo.Keys;
        }

        #endregion

        #region private methods

        #region Visitor Methods

        #region general helpers
        /// <summary>
        /// Default visitor for children. Simply visit all children, and 
        /// try to get keys for those nodes (relops, physicalOps) that 
        /// don't have keys as yet.
        /// </summary>
        /// <param name="n">Current node</param>
        protected override void VisitChildren(Node n)
        {
            foreach (Node chi in n.Children)
            {
                if (chi.Op.IsRelOp || chi.Op.IsPhysicalOp)
                {
                    GetKeys(chi);
                }
            }
        }
        #endregion

        #region RelOp Visitors

        /// <summary>
        /// Default visitor for RelOps. Simply visits the children, and 
        /// then tries to recompute the NodeInfo (with the fond hope that
        /// some keys have now shown up)
        /// </summary>
        /// <param name="op"></param>
        /// <param name="n"></param>
        protected override void VisitRelOpDefault(RelOp op, Node n)
        {
            VisitChildren(n);
            m_command.RecomputeNodeInfo(n);
        }

        /// <summary>
        /// Visitor for a ScanTableOp. Simply ensures that the keys get 
        /// added to the list of referenced columns
        /// </summary>
        /// <param name="op">current ScanTableOp</param>
        /// <param name="n">current subtree</param>
        public override void Visit(ScanTableOp op, Node n)
        {
            // find the keys of the table. Make sure that they are 
            // all references
            op.Table.ReferencedColumns.Or(op.Table.Keys);
            // recompute the nodeinfo - keys won't get picked up otherwise
            m_command.RecomputeNodeInfo(n);
        }

        /// <summary>
        /// Pulls up keys for a ProjectOp. First visits its children to pull
        /// up its keys; then identifies any keys from the input that it may have 
        /// projected out - and adds them to the output list of vars
        /// </summary>
        /// <param name="op">Current ProjectOp</param>
        /// <param name="n">Current subtree</param>
        public override void Visit(ProjectOp op, Node n)
        {
            VisitChildren(n);

            ExtendedNodeInfo childNodeInfo = n.Child0.GetExtendedNodeInfo(m_command);
            if (!childNodeInfo.Keys.NoKeys)
            {
                VarVec outputVars = m_command.CreateVarVec(op.Outputs);
                // NOTE: This code appears in NodeInfoVisitor as well. Try to see if we
                //       can share this somehow.
                Dictionary<Var, Var> varRenameMap = NodeInfoVisitor.ComputeVarRemappings(n.Child1);
                VarVec mappedKeyVec = childNodeInfo.Keys.KeyVars.Remap(varRenameMap);
                outputVars.Or(mappedKeyVec);
                op.Outputs.InitFrom(outputVars);
            }
            m_command.RecomputeNodeInfo(n);
        }

        /// <summary>
        /// Comments from Murali:
        /// 
        ///   There are several cases to consider here. 
        ///     
        ///   Case 0:
        ///     Let’s assume that K1 is the set of keys ({k1, k2, ..., kn}) for the 
        ///     first input, and K2 ({l1, l2, …}) is the set of keys for the second
        ///     input.
        /// 
        ///     The best case is when both K1 and K2 have the same cardinality (hopefully
        ///     greater than 0), and the keys are in the same locations (ie) the corresponding
        ///     positions in the select-list.  Even in this case, its not enough to take
        ///     the keys, and treat them as the keys of the union-all. What we’ll need to 
        ///     do is to add a “branch” discriminator constant for each branch of the 
        ///     union-all, and use this as the prefix for the keys. 
        /// 
        ///     For example, if I had:
        /// 
        ///         Select c1, c2, c3... from ...
        ///         Union all
        ///         Select d1, d2, d3... from ...
        /// 
        ///     And for the sake of argument, lets say that {c2} and {d2} are the keys of 
        ///     each of the branches. What you’ll need to do is to translate this into
        ///     
        ///         Select 0 as bd, c1, c2, c3... from ...
        ///         Union all
        ///         Select 1 as bd, d1, d2, d3... from ...
        ///
        ///     And then treat {bd, c2/d2} as the key of the union-all 
        ///
        ///   Case 1:  (actually, a subcase of Case 0):
        ///     Now, if the keys don’t align, then we can simply take the union of the 
        ///     corresponding positions, and make them all the keys (we would still need 
        ///     the branch discriminator)
        ///
        ///   Case 2:
        ///     Finally, if you need to “pull” up keys from either of the branches, it is 
        ///     possible that the branches get out of whack.  We will then need to push up 
        ///     the keys (with nulls if the other branch doesn’t have the corresponding key) 
        ///     into the union-all. (We still need the branch discriminator).
        ///     
        /// Now, unfortunately, whenever we've got polymorphic entity types, we'll end up
        /// in case 2 way more often than we really want to, because when we're pulling up
        /// keys, we don't want to reason about a caseop (which is how polymorphic types
        /// wrap their key value).
        /// 
        /// To simplify all of this, we:
        /// 
        /// (1) Pulling up the keys for both branches of the UnionAll, and computing which
        ///     keys are in the outputs and which are missing from the outputs.
        /// 
        /// (2) Accumulate all the missing keys.
        ///
        /// (3) Slap a projectOp around each branch, adding a branch discriminator
        ///     var and all the missing keys.  When keys are missing from a different
        ///     branch, we'll construct null ops for them on the other branches.  If 
        ///     a branch already has a branch descriminator, we'll re-use it instead
        ///     of constructing a new one.  (Of course, if there aren't any keys to
        ///     add and it's already including the branch discriminator we won't 
        ///     need the projectOp)
        ///     
        /// </summary>
        /// <param name="op">the UnionAllOp</param>
        /// <param name="n">current subtree</param>
        public override void Visit(UnionAllOp op, Node n)
        {
#if DEBUG
            string input = Dump.ToXml(m_command, n);
#endif //DEBUG

            // Ensure we have keys pulled up on each branch of the union all.
            VisitChildren(n);

            // Create the setOp var we'll use to output the branch discriminator value; if 
            // any of the branches are already surfacing a branchDiscriminator var to the 
            // output of this operation then we won't need to use this but we construct it 
            // early to simplify logic.
            Var outputBranchDiscriminatorVar = m_command.CreateSetOpVar(m_command.IntegerType);

            // Now ensure that we're outputting the key vars from this op as well.
            VarList allKeyVarsMissingFromOutput = Command.CreateVarList();
            VarVec[] keyVarsMissingFromOutput = new VarVec[n.Children.Count];

            for (int i = 0; i < n.Children.Count; i++)
            {
                Node branchNode = n.Children[i];
                ExtendedNodeInfo branchNodeInfo = m_command.GetExtendedNodeInfo(branchNode);

                // Identify keys that aren't in the output list of this operation. We
                // determine these by remapping the keys that are found through the node's
                // VarMap, which gives us the keys in the same "varspace" as the outputs
                // of the UnionAll, then we subtract out the outputs of this UnionAll op,
                // leaving things that are not in the output vars.  Of course, if they're
                // not in the output vars, then we didn't really remap.
                VarVec existingKeyVars = branchNodeInfo.Keys.KeyVars.Remap(op.VarMap[i]);

                keyVarsMissingFromOutput[i] = m_command.CreateVarVec(existingKeyVars);
                keyVarsMissingFromOutput[i].Minus(op.Outputs);

                // Special Case: if the branch is a UnionAll, it will already have it's
                // branch discriminator var added in the keys; we don't want to add that
                // a second time...
                if (OpType.UnionAll == branchNode.Op.OpType)
                {
                    UnionAllOp branchUnionAllOp = (UnionAllOp)branchNode.Op;

                    keyVarsMissingFromOutput[i].Clear(branchUnionAllOp.BranchDiscriminator);
                }

                allKeyVarsMissingFromOutput.AddRange(keyVarsMissingFromOutput[i]);
            }

            // Construct the setOp vars we're going to map to output.
            VarList allKeyVarsToAddToOutput = Command.CreateVarList();

            foreach (Var v in allKeyVarsMissingFromOutput)
            {
                Var newKeyVar = m_command.CreateSetOpVar(v.Type);
                allKeyVarsToAddToOutput.Add(newKeyVar);
            }

            // Now that we've identified all the keys we need to add, ensure that each branch 
            // has both the branch discrimination var and the all the keys in them, even when 
            // the keys are just going to null (which we construct, as needed)
            for (int i = 0; i < n.Children.Count; i++)
            {
                Node branchNode = n.Children[i];
                ExtendedNodeInfo branchNodeInfo = m_command.GetExtendedNodeInfo(branchNode);

                VarVec branchOutputVars = m_command.CreateVarVec();
                List<Node> varDefNodes = new List<Node>();

                // If the branch is a UnionAllOp that has a branch discriminator var then we can
                // use it, otherwise we'll construct a new integer constant with the next value 
                // of the branch discriminator value from the command object.
                Var branchDiscriminatorVar;

                if (OpType.UnionAll == branchNode.Op.OpType && null != ((UnionAllOp)branchNode.Op).BranchDiscriminator)
                {
                    branchDiscriminatorVar = ((UnionAllOp)branchNode.Op).BranchDiscriminator;

                    // If the branch has a discriminator var, but we haven't added it to the
                    // varmap yet, then we do so now.
                    if (!op.VarMap[i].ContainsValue(branchDiscriminatorVar))
                    {
                        op.VarMap[i].Add(outputBranchDiscriminatorVar, branchDiscriminatorVar);
                        // We don't need to add this to the branch outputs, because it's already there,
                        // otherwise we wouln't have gotten here, yes?
                    }
                    else
                    {
                        // In this case, we're already outputting the branch discriminator var -- we'll 
                        // just use it for both sides.  We should never have a case where only one of the
                        // two branches are outputting the branch discriminator var, because it can only
                        // be constructed in this method, and we wouldn't need it for any other purpose.
                        PlanCompiler.Assert(0 == i, "right branch has a discriminator var that the left branch doesn't have?");
                        VarMap reverseVarMap = op.VarMap[i].GetReverseMap();
                        outputBranchDiscriminatorVar = reverseVarMap[branchDiscriminatorVar];
                    }
                }
                else
                {
                    // Not a unionAll -- we have to add a BranchDiscriminator var.
                    varDefNodes.Add(
                        m_command.CreateVarDefNode(
                            m_command.CreateNode(
                                m_command.CreateConstantOp(m_command.IntegerType, m_command.NextBranchDiscriminatorValue)), out branchDiscriminatorVar));

                    branchOutputVars.Set(branchDiscriminatorVar);
                    op.VarMap[i].Add(outputBranchDiscriminatorVar, branchDiscriminatorVar);
                }

                // Append all the missing keys to the branch outputs.  If the missing key
                // is not from this branch then create a null.
                for (int j = 0; j < allKeyVarsMissingFromOutput.Count; j++)
                {
                    Var keyVar = allKeyVarsMissingFromOutput[j];

                    if (!keyVarsMissingFromOutput[i].IsSet(keyVar))
                    {
                        varDefNodes.Add(
                            m_command.CreateVarDefNode(
                                m_command.CreateNode(
                                    m_command.CreateNullOp(keyVar.Type)), out keyVar));

                        branchOutputVars.Set(keyVar);
                    }

                    // In all cases, we're adding a key to the output so we need to update the
                    // varmap.
                    op.VarMap[i].Add(allKeyVarsToAddToOutput[j], keyVar);
                }

                // If we got this far and didn't add anything to the branch, then we're done.
                // Otherwise we'll have to construct the new projectOp around the input branch
                // to add the stuff we've added.
                if (branchOutputVars.IsEmpty)
                {
                    // Actually, we're not quite done -- we need to update the key vars for the
                    // branch to include the branch discriminator var we
                    branchNodeInfo.Keys.KeyVars.Set(branchDiscriminatorVar);
                }
                else
                {
                    PlanCompiler.Assert(varDefNodes.Count != 0, "no new nodes?");

                    // Start by ensuring all the existing outputs from the branch are in the list.
                    foreach (Var v in op.VarMap[i].Values)
                    {
                        branchOutputVars.Set(v);
                    }

                    // Now construct a project op to project out everything we've added, and
                    // replace the branchNode with it in the flattened ladder.
                    n.Children[i] = m_command.CreateNode(m_command.CreateProjectOp(branchOutputVars),
                                                        branchNode,
                                                        m_command.CreateNode(m_command.CreateVarDefListOp(), varDefNodes));

                    // Finally, ensure that we update the Key info for the projectOp to include
                    // the original branch's keys, along with the branch discriminator var.
                    m_command.RecomputeNodeInfo(n.Children[i]);
                    ExtendedNodeInfo projectNodeInfo = m_command.GetExtendedNodeInfo(n.Children[i]);
                    projectNodeInfo.Keys.KeyVars.InitFrom(branchNodeInfo.Keys.KeyVars);
                    projectNodeInfo.Keys.KeyVars.Set(branchDiscriminatorVar);
                }
            }

            // All done with the branches, now it's time to update the UnionAll op to indicate
            // that we've got a branch discriminator var.
            n.Op = m_command.CreateUnionAllOp(op.VarMap[0], op.VarMap[1], outputBranchDiscriminatorVar);

            // Finally, the thing we've all been waiting for -- computing the keys.  We cheat here and let 
            // nodeInfo do it so we don't have to duplicate the logic...
            m_command.RecomputeNodeInfo(n);

#if DEBUG
            input = input.Trim();
            string output = Dump.ToXml(m_command, n);
#endif //DEBUG
        }
        #endregion

        #endregion
        #endregion
    }
}