// $Id$ /*********************************************************************** Moses - factored phrase-based language decoder Copyright (C) 2006 University of Edinburgh This library is free software; you can redistribute it and/or modify it under the terms of the GNU Lesser General Public License as published by the Free Software Foundation; either version 2.1 of the License, or (at your option) any later version. This library is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License for more details. You should have received a copy of the GNU Lesser General Public License along with this library; if not, write to the Free Software Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA ***********************************************************************/ #include #include #include #include "HypothesisStackCubePruning.h" #include "TypeDef.h" #include "Util.h" #include "StaticData.h" #include "Manager.h" #include "util/exception.hh" using namespace std; namespace Moses { HypothesisStackCubePruning::HypothesisStackCubePruning(Manager& manager) : HypothesisStack(manager) { m_nBestIsEnabled = manager.options()->nbest.enabled; m_bestScore = -std::numeric_limits::infinity(); m_worstScore = -std::numeric_limits::infinity(); m_deterministic = manager.options()->cube.deterministic_search; } /** remove all hypotheses from the collection */ void HypothesisStackCubePruning::RemoveAll() { // delete all bitmap accessors; _BMType::iterator iter; for (iter = m_bitmapAccessor.begin(); iter != m_bitmapAccessor.end(); ++iter) { delete iter->second; } } pair HypothesisStackCubePruning::Add(Hypothesis *hypo) { std::pair ret = m_hypos.insert(hypo); if (ret.second) { // equiv hypo doesn't exists VERBOSE(3,"added hyp to stack"); // Update best score, if this hypothesis is new best if (hypo->GetFutureScore() > m_bestScore) { VERBOSE(3,", best on stack"); m_bestScore = hypo->GetFutureScore(); // this may also affect the worst score if ( m_bestScore + m_beamWidth > m_worstScore ) m_worstScore = m_bestScore + m_beamWidth; } // Prune only if stack is twice as big as needed (lazy pruning) VERBOSE(3,", now size " << m_hypos.size()); if (m_hypos.size() > 2*m_maxHypoStackSize-1) { PruneToSize(m_maxHypoStackSize); } else { VERBOSE(3,std::endl); } } return ret; } bool HypothesisStackCubePruning::AddPrune(Hypothesis *hypo) { if (hypo->GetFutureScore() == - std::numeric_limits::infinity()) { m_manager.GetSentenceStats().AddDiscarded(); VERBOSE(3,"discarded, constraint" << std::endl); delete hypo; return false; } if (hypo->GetFutureScore() < m_worstScore) { // too bad for stack. don't bother adding hypo into collection m_manager.GetSentenceStats().AddDiscarded(); VERBOSE(3,"discarded, too bad for stack" << std::endl); delete hypo; return false; } // over threshold, try to add to collection std::pair addRet = Add(hypo); if (addRet.second) { // nothing found. add to collection return true; } // equiv hypo exists, recombine with other hypo iterator &iterExisting = addRet.first; assert(iterExisting != m_hypos.end()); Hypothesis *hypoExisting = *iterExisting; m_manager.GetSentenceStats().AddRecombination(*hypo, **iterExisting); // found existing hypo with same target ending. // keep the best 1 if (hypo->GetFutureScore() > hypoExisting->GetFutureScore()) { // incoming hypo is better than the one we have VERBOSE(3,"better than matching hyp " << hypoExisting->GetId() << ", recombining, "); if (m_nBestIsEnabled) { hypo->AddArc(hypoExisting); Detach(iterExisting); } else { Remove(iterExisting); } bool added = Add(hypo).second; if (!added) { iterExisting = m_hypos.find(hypo); UTIL_THROW(util::Exception, "Should have added hypothesis " << **iterExisting); } return false; } else { // already storing the best hypo. discard current hypo VERBOSE(3,"worse than matching hyp " << hypoExisting->GetId() << ", recombining" << std::endl) if (m_nBestIsEnabled) { hypoExisting->AddArc(hypo); } else { delete hypo; } return false; } } void HypothesisStackCubePruning::AddInitial(Hypothesis *hypo) { std::pair addRet = Add(hypo); UTIL_THROW_IF2(!addRet.second, "Should have added hypothesis " << *hypo); const Bitmap &bitmap = hypo->GetWordsBitmap(); AddBitmapContainer(bitmap, *this); } void HypothesisStackCubePruning::PruneToSize(size_t newSize) { if ( newSize == 0) return; // no limit if (m_hypos.size() > newSize) { // ok, if not over the limit priority_queue bestScores; // push all scores to a heap // (but never push scores below m_bestScore+m_beamWidth) iterator iter = m_hypos.begin(); float score = 0; while (iter != m_hypos.end()) { Hypothesis *hypo = *iter; score = hypo->GetFutureScore(); if (score > m_bestScore+m_beamWidth) { bestScores.push(score); } ++iter; } // pop the top newSize scores (and ignore them, these are the scores of hyps that will remain) // ensure to never pop beyond heap size size_t minNewSizeHeapSize = newSize > bestScores.size() ? bestScores.size() : newSize; for (size_t i = 1 ; i < minNewSizeHeapSize ; i++) bestScores.pop(); // and remember the threshold float scoreThreshold = bestScores.top(); // delete all hypos under score threshold iter = m_hypos.begin(); while (iter != m_hypos.end()) { Hypothesis *hypo = *iter; float score = hypo->GetFutureScore(); if (score < scoreThreshold) { iterator iterRemove = iter++; Remove(iterRemove); m_manager.GetSentenceStats().AddPruning(); } else { ++iter; } } VERBOSE(3,", pruned to size " << size() << endl); IFVERBOSE(3) { TRACE_ERR("stack now contains: "); for(iter = m_hypos.begin(); iter != m_hypos.end(); iter++) { Hypothesis *hypo = *iter; TRACE_ERR( hypo->GetId() << " (" << hypo->GetFutureScore() << ") "); } TRACE_ERR( endl); } // set the worstScore, so that newly generated hypotheses will not be added if worse than the worst in the stack m_worstScore = scoreThreshold; } } const Hypothesis *HypothesisStackCubePruning::GetBestHypothesis() const { if (!m_hypos.empty()) { const_iterator iter = m_hypos.begin(); Hypothesis *bestHypo = *iter; while (++iter != m_hypos.end()) { Hypothesis *hypo = *iter; if (hypo->GetFutureScore() > bestHypo->GetFutureScore()) bestHypo = hypo; } return bestHypo; } return NULL; } vector HypothesisStackCubePruning::GetSortedList() const { vector ret; ret.reserve(m_hypos.size()); std::copy(m_hypos.begin(), m_hypos.end(), std::inserter(ret, ret.end())); sort(ret.begin(), ret.end(), CompareHypothesisTotalScore()); return ret; } void HypothesisStackCubePruning::CleanupArcList() { // only necessary if n-best calculations are enabled if (!m_nBestIsEnabled) return; iterator iter; for (iter = m_hypos.begin() ; iter != m_hypos.end() ; ++iter) { Hypothesis *mainHypo = *iter; mainHypo->CleanupArcList(this->m_manager.options()->nbest.nbest_size, this->m_manager.options()->NBestDistinct()); } } void HypothesisStackCubePruning::SetBitmapAccessor(const Bitmap &newBitmap , HypothesisStackCubePruning &stack , const Range &/*range*/ , BitmapContainer &bitmapContainer , const SquareMatrix &estimatedScores , const TranslationOptionList &transOptList) { BitmapContainer *bmContainer = AddBitmapContainer(newBitmap, stack); BackwardsEdge *edge = new BackwardsEdge(bitmapContainer , *bmContainer , transOptList , estimatedScores , m_manager.GetSource() , m_deterministic); bmContainer->AddBackwardsEdge(edge); } TO_STRING_BODY(HypothesisStackCubePruning); // friend std::ostream& operator<<(std::ostream& out, const HypothesisStackCubePruning& hypoColl) { HypothesisStackCubePruning::const_iterator iter; for (iter = hypoColl.begin() ; iter != hypoColl.end() ; ++iter) { const Hypothesis &hypo = **iter; out << hypo << endl; } return out; } void HypothesisStackCubePruning::AddHypothesesToBitmapContainers() { HypothesisStackCubePruning::const_iterator iter; for (iter = m_hypos.begin() ; iter != m_hypos.end() ; ++iter) { Hypothesis *h = *iter; const Bitmap &bitmap = h->GetWordsBitmap(); BitmapContainer *container = m_bitmapAccessor[&bitmap]; container->AddHypothesis(h); } } BitmapContainer *HypothesisStackCubePruning::AddBitmapContainer(const Bitmap &bitmap, HypothesisStackCubePruning &stack) { _BMType::iterator iter = m_bitmapAccessor.find(&bitmap); BitmapContainer *bmContainer; if (iter == m_bitmapAccessor.end()) { bmContainer = new BitmapContainer(bitmap, stack, m_deterministic); m_bitmapAccessor[&bitmap] = bmContainer; } else { bmContainer = iter->second; } return bmContainer; } }