/*********************************************************************** Moses - statistical machine translation system Copyright (C) 2006-2011 University of Edinburgh This library is free software; you can redistribute it and/or modify it under the terms of the GNU Lesser General Public License as published by the Free Software Foundation; either version 2.1 of the License, or (at your option) any later version. This library is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License for more details. You should have received a copy of the GNU Lesser General Public License along with this library; if not, write to the Free Software Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA ***********************************************************************/ #include "ExtractGHKM.h" #include "Alignment.h" #include "AlignmentGraph.h" #include "Exception.h" #include "InputFileStream.h" #include "Node.h" #include "OutputFileStream.h" #include "Options.h" #include "ParseTree.h" #include "PhraseOrientation.h" #include "ScfgRule.h" #include "ScfgRuleWriter.h" #include "Span.h" #include "StsgRule.h" #include "StsgRuleWriter.h" #include "SyntaxTree.h" #include "tables-core.h" #include "XmlException.h" #include "XmlTree.h" #include "XmlTreeParser.h" #include #include #include #include #include #include #include #include #include namespace Moses { namespace GHKM { int ExtractGHKM::Main(int argc, char *argv[]) { // Process command-line options. Options options; ProcessOptions(argc, argv, options); // Open input files. // // The GHKM algorithm is neutral about whether the model is string-to-tree or // tree-to-string. This implementation assumes the model to be // string-to-tree, but if the -t2s option is given then the source and target // input files are switched prior to extraction and then the source and // target of the extracted rules are switched on output. std::string effectiveTargetFile = options.t2s ? options.sourceFile : options.targetFile; std::string effectiveSourceFile = options.t2s ? options.targetFile : options.sourceFile; InputFileStream targetStream(effectiveTargetFile); InputFileStream sourceStream(effectiveSourceFile); InputFileStream alignmentStream(options.alignmentFile); // Open output files. OutputFileStream fwdExtractStream; OutputFileStream invExtractStream; OutputFileStream glueGrammarStream; OutputFileStream targetUnknownWordStream; OutputFileStream sourceUnknownWordStream; OutputFileStream sourceLabelSetStream; OutputFileStream unknownWordSoftMatchesStream; std::string fwdFileName = options.extractFile; std::string invFileName = options.extractFile + std::string(".inv"); if (options.gzOutput) { fwdFileName += ".gz"; invFileName += ".gz"; } OpenOutputFileOrDie(fwdFileName, fwdExtractStream); OpenOutputFileOrDie(invFileName, invExtractStream); if (!options.glueGrammarFile.empty()) { OpenOutputFileOrDie(options.glueGrammarFile, glueGrammarStream); } if (!options.targetUnknownWordFile.empty()) { OpenOutputFileOrDie(options.targetUnknownWordFile, targetUnknownWordStream); } if (!options.sourceUnknownWordFile.empty()) { OpenOutputFileOrDie(options.sourceUnknownWordFile, sourceUnknownWordStream); } if (!options.sourceLabelSetFile.empty()) { if (!options.sourceLabels) { Error("SourceLabels should be active if SourceLabelSet is supposed to be written to a file"); } OpenOutputFileOrDie(options.sourceLabelSetFile, sourceLabelSetStream); // note that this is not a global source label set if extraction is parallelized } if (!options.unknownWordSoftMatchesFile.empty()) { OpenOutputFileOrDie(options.unknownWordSoftMatchesFile, unknownWordSoftMatchesStream); } // Target label sets for producing glue grammar. std::set targetLabelSet; std::map targetTopLabelSet; // Source label sets for producing glue grammar. std::set sourceLabelSet; std::map sourceTopLabelSet; // Word count statistics for producing unknown word labels. std::map targetWordCount; std::map targetWordLabel; // Word count statistics for producing unknown word labels: source side. std::map sourceWordCount; std::map sourceWordLabel; std::string targetLine; std::string sourceLine; std::string alignmentLine; Alignment alignment; XmlTreeParser targetXmlTreeParser(targetLabelSet, targetTopLabelSet); ScfgRuleWriter scfgWriter(fwdExtractStream, invExtractStream, options); StsgRuleWriter stsgWriter(fwdExtractStream, invExtractStream, options); size_t lineNum = options.sentenceOffset; while (true) { std::getline(targetStream, targetLine); std::getline(sourceStream, sourceLine); std::getline(alignmentStream, alignmentLine); if (targetStream.eof() && sourceStream.eof() && alignmentStream.eof()) { break; } if (targetStream.eof() || sourceStream.eof() || alignmentStream.eof()) { Error("Files must contain same number of lines"); } ++lineNum; // Parse target tree. if (targetLine.size() == 0) { std::cerr << "skipping line " << lineNum << " with empty target tree\n"; continue; } std::auto_ptr targetParseTree; try { targetParseTree = targetXmlTreeParser.Parse(targetLine); assert(targetParseTree.get()); } catch (const Exception &e) { std::ostringstream oss; oss << "Failed to parse target XML tree at line " << lineNum; if (!e.GetMsg().empty()) { oss << ": " << e.GetMsg(); } Error(oss.str()); } // Parse source tree and construct a SyntaxTree object. MosesTraining::SyntaxTree sourceSyntaxTree; MosesTraining::SyntaxNode *sourceSyntaxTreeRoot=NULL; if (options.sourceLabels) { try { if (!ProcessAndStripXMLTags(sourceLine, sourceSyntaxTree, sourceLabelSet, sourceTopLabelSet, false)) { throw Exception(""); } sourceSyntaxTree.ConnectNodes(); sourceSyntaxTreeRoot = sourceSyntaxTree.GetTop(); assert(sourceSyntaxTreeRoot); } catch (const Exception &e) { std::ostringstream oss; oss << "Failed to parse source XML tree at line " << lineNum; if (!e.GetMsg().empty()) { oss << ": " << e.GetMsg(); } Error(oss.str()); } } // Read source tokens. std::vector sourceTokens(ReadTokens(sourceLine)); // Construct a source ParseTree object from the SyntaxTree object. std::auto_ptr sourceParseTree; if (options.sourceLabels) { try { sourceParseTree = XmlTreeParser::ConvertTree(*sourceSyntaxTreeRoot, sourceTokens); assert(sourceParseTree.get()); } catch (const Exception &e) { std::ostringstream oss; oss << "Failed to parse source XML tree at line " << lineNum; if (!e.GetMsg().empty()) { oss << ": " << e.GetMsg(); } Error(oss.str()); } } // Read word alignments. try { ReadAlignment(alignmentLine, alignment); } catch (const Exception &e) { std::ostringstream oss; oss << "Failed to read alignment at line " << lineNum << ": "; oss << e.GetMsg(); Error(oss.str()); } if (alignment.size() == 0) { std::cerr << "skipping line " << lineNum << " without alignment points\n"; continue; } if (options.t2s) { FlipAlignment(alignment); } // Record word counts. if (!options.targetUnknownWordFile.empty()) { CollectWordLabelCounts(*targetParseTree, options, targetWordCount, targetWordLabel); } // Record word counts: source side. if (options.sourceLabels && !options.sourceUnknownWordFile.empty()) { CollectWordLabelCounts(*sourceParseTree, options, sourceWordCount, sourceWordLabel); } // Form an alignment graph from the target tree, source words, and // alignment. AlignmentGraph graph(targetParseTree.get(), sourceTokens, alignment); // Extract minimal rules, adding each rule to its root node's rule set. graph.ExtractMinimalRules(options); // Extract composed rules. if (!options.minimal) { graph.ExtractComposedRules(options); } // Initialize phrase orientation scoring object PhraseOrientation phraseOrientation( sourceTokens.size(), targetXmlTreeParser.GetWords().size(), alignment); // Write the rules, subject to scope pruning. const std::vector &targetNodes = graph.GetTargetNodes(); for (std::vector::const_iterator p = targetNodes.begin(); p != targetNodes.end(); ++p) { const std::vector &rules = (*p)->GetRules(); Moses::GHKM::PhraseOrientation::REO_CLASS l2rOrientation=Moses::GHKM::PhraseOrientation::REO_CLASS_UNKNOWN, r2lOrientation=Moses::GHKM::PhraseOrientation::REO_CLASS_UNKNOWN; if (options.phraseOrientation && !rules.empty()) { int sourceSpanBegin = *((*p)->GetSpan().begin()); int sourceSpanEnd = *((*p)->GetSpan().rbegin()); l2rOrientation = phraseOrientation.GetOrientationInfo(sourceSpanBegin,sourceSpanEnd,Moses::GHKM::PhraseOrientation::REO_DIR_L2R); r2lOrientation = phraseOrientation.GetOrientationInfo(sourceSpanBegin,sourceSpanEnd,Moses::GHKM::PhraseOrientation::REO_DIR_R2L); // std::cerr << "span " << sourceSpanBegin << " " << sourceSpanEnd << std::endl; // std::cerr << "phraseOrientation " << phraseOrientation.GetOrientationInfo(sourceSpanBegin,sourceSpanEnd) << std::endl; } for (std::vector::const_iterator q = rules.begin(); q != rules.end(); ++q) { // STSG output. if (options.stsg) { StsgRule rule(**q); if (rule.Scope() <= options.maxScope) { stsgWriter.Write(rule); } continue; } // SCFG output. ScfgRule *r = 0; if (options.sourceLabels) { r = new ScfgRule(**q, &sourceSyntaxTree); } else { r = new ScfgRule(**q); } // TODO Can scope pruning be done earlier? if (r->Scope() <= options.maxScope) { scfgWriter.Write(*r,lineNum,false); if (options.treeFragments) { fwdExtractStream << " {{Tree "; (*q)->PrintTree(fwdExtractStream); fwdExtractStream << "}}"; } if (options.partsOfSpeech) { fwdExtractStream << " {{POS"; (*q)->PrintPartsOfSpeech(fwdExtractStream); fwdExtractStream << "}}"; } if (options.phraseOrientation) { fwdExtractStream << " {{Orientation "; phraseOrientation.WriteOrientation(fwdExtractStream,l2rOrientation); fwdExtractStream << " "; phraseOrientation.WriteOrientation(fwdExtractStream,r2lOrientation); fwdExtractStream << "}}"; phraseOrientation.IncrementPriorCount(Moses::GHKM::PhraseOrientation::REO_DIR_L2R,l2rOrientation,1); phraseOrientation.IncrementPriorCount(Moses::GHKM::PhraseOrientation::REO_DIR_R2L,r2lOrientation,1); } fwdExtractStream << std::endl; invExtractStream << std::endl; } delete r; } } } if (options.phraseOrientation) { std::string phraseOrientationPriorsFileName = options.extractFile + std::string(".phraseOrientationPriors"); OutputFileStream phraseOrientationPriorsStream; OpenOutputFileOrDie(phraseOrientationPriorsFileName, phraseOrientationPriorsStream); PhraseOrientation::WritePriorCounts(phraseOrientationPriorsStream); } std::map sourceLabels; if (options.sourceLabels && !options.sourceLabelSetFile.empty()) { sourceLabelSet.insert("XLHS"); // non-matching label (left-hand side) sourceLabelSet.insert("XRHS"); // non-matching label (right-hand side) sourceLabelSet.insert("TOPLABEL"); // as used in the glue grammar sourceLabelSet.insert("SOMELABEL"); // as used in the glue grammar size_t index = 0; for (std::set::const_iterator iter=sourceLabelSet.begin(); iter!=sourceLabelSet.end(); ++iter, ++index) { sourceLabels.insert(std::pair(*iter,index)); } WriteSourceLabelSet(sourceLabels, sourceLabelSetStream); } std::set strippedTargetLabelSet; std::map strippedTargetTopLabelSet; if (options.stripBitParLabels && (!options.glueGrammarFile.empty() || !options.unknownWordSoftMatchesFile.empty())) { StripBitParLabels(targetLabelSet, targetTopLabelSet, strippedTargetLabelSet, strippedTargetTopLabelSet); } if (!options.glueGrammarFile.empty()) { if (options.stripBitParLabels) { WriteGlueGrammar(strippedTargetLabelSet, strippedTargetTopLabelSet, sourceLabels, options, glueGrammarStream); } else { WriteGlueGrammar(targetLabelSet, targetTopLabelSet, sourceLabels, options, glueGrammarStream); } } if (!options.targetUnknownWordFile.empty()) { WriteUnknownWordLabel(targetWordCount, targetWordLabel, options, targetUnknownWordStream); } if (options.sourceLabels && !options.sourceUnknownWordFile.empty()) { WriteUnknownWordLabel(sourceWordCount, sourceWordLabel, options, sourceUnknownWordStream, true); } if (!options.unknownWordSoftMatchesFile.empty()) { if (options.stripBitParLabels) { WriteUnknownWordSoftMatches(strippedTargetLabelSet, unknownWordSoftMatchesStream); } else { WriteUnknownWordSoftMatches(targetLabelSet, unknownWordSoftMatchesStream); } } return 0; } void ExtractGHKM::OpenInputFileOrDie(const std::string &filename, std::ifstream &stream) { stream.open(filename.c_str()); if (!stream) { std::ostringstream msg; msg << "failed to open input file: " << filename; Error(msg.str()); } } void ExtractGHKM::OpenOutputFileOrDie(const std::string &filename, std::ofstream &stream) { stream.open(filename.c_str()); if (!stream) { std::ostringstream msg; msg << "failed to open output file: " << filename; Error(msg.str()); } } void ExtractGHKM::OpenOutputFileOrDie(const std::string &filename, OutputFileStream &stream) { bool ret = stream.Open(filename); if (!ret) { std::ostringstream msg; msg << "failed to open output file: " << filename; Error(msg.str()); } } void ExtractGHKM::ProcessOptions(int argc, char *argv[], Options &options) const { namespace po = boost::program_options; namespace cls = boost::program_options::command_line_style; // Construct the 'top' of the usage message: the bit that comes before the // options list. std::ostringstream usageTop; usageTop << "Usage: " << GetName() << " [OPTION]... TARGET SOURCE ALIGNMENT EXTRACT\n\n" << "SCFG rule extractor based on the GHKM algorithm described in\n" << "Galley et al. (2004).\n\n" << "Options"; // Construct the 'bottom' of the usage message. std::ostringstream usageBottom; usageBottom << "\nImplementation Notes:\n" << "\nThe parse tree is assumed to contain part-of-speech preterminal nodes.\n" << "\n" << "For the composed rule constraints: rule depth is the maximum distance from the\nrule's root node to a sink node, not counting preterminal expansions or word\nalignments. Rule size is the measure defined in DeNeefe et al (2007): the\nnumber of non-part-of-speech, non-leaf constituent labels in the target tree.\nNode count is the number of target tree nodes (excluding target words).\n" << "\n" << "Scope pruning (Hopkins and Langmead, 2010) is applied to both minimal and\ncomposed rules.\n" << "\n" << "Unaligned source words are attached to the tree using the following heuristic:\nif there are aligned source words to both the left and the right of an unaligned\nsource word then it is attached to the lowest common ancestor of its nearest\nsuch left and right neighbours. Otherwise, it is attached to the root of the\nparse tree.\n" << "\n" << "Unless the --AllowUnary option is given, unary rules containing no lexical\nsource items are eliminated using the method described in Chung et al. (2011).\nThe parsing algorithm used in Moses is unable to handle such rules.\n" << "\n" << "References:\n" << "Galley, M., Hopkins, M., Knight, K., and Marcu, D. (2004)\n" << "\"What's in a Translation Rule?\", In Proceedings of HLT/NAACL 2004.\n" << "\n" << "DeNeefe, S., Knight, K., Wang, W., and Marcu, D. (2007)\n" << "\"What Can Syntax-Based MT Learn from Phrase-Based MT?\", In Proceedings of\nEMNLP-CoNLL 2007.\n" << "\n" << "Hopkins, M. and Langmead, G. (2010)\n" << "\"SCFG Decoding Without Binarization\", In Proceedings of EMNLP 2010.\n" << "\n" << "Chung, T. and Fang, L. and Gildea, D. (2011)\n" << "\"Issues Concerning Decoding with Synchronous Context-free Grammar\", In\nProceedings of ACL/HLT 2011."; // Declare the command line options that are visible to the user. po::options_description visible(usageTop.str()); visible.add_options() //("help", "print this help message and exit") ("AllowUnary", "allow fully non-lexical unary rules") ("ConditionOnTargetLHS", "write target LHS instead of \"X\" as source LHS") ("GlueGrammar", po::value(&options.glueGrammarFile), "write glue grammar to named file") ("GZOutput", "write gzipped extract files") ("IncludeSentenceId", "include sentence ID") ("MaxNodes", po::value(&options.maxNodes)->default_value(options.maxNodes), "set maximum number of tree nodes for composed rules") ("MaxRuleDepth", po::value(&options.maxRuleDepth)->default_value(options.maxRuleDepth), "set maximum depth for composed rules") ("MaxRuleSize", po::value(&options.maxRuleSize)->default_value(options.maxRuleSize), "set maximum size for composed rules") ("MaxScope", po::value(&options.maxScope)->default_value(options.maxScope), "set maximum allowed scope") ("Minimal", "extract minimal rules only") ("PartsOfSpeech", "output parts-of-speech as property (preterminals from the parse tree)") ("PartsOfSpeechFactor", "output parts-of-speech as factor (preterminals from the parse tree)") ("PCFG", "include score based on PCFG scores in target corpus") ("PhraseOrientation", "output phrase orientation information") ("StripBitParLabels", "strip suffix starting with a hyphen symbol (\"-\") from non-terminal labels") ("STSG", "output STSG rules (default is SCFG)") ("T2S", "enable tree-to-string rule extraction (string-to-tree is assumed by default)") ("TreeFragments", "output parse tree information") ("SourceLabels", "output source syntax label information") ("SourceLabelSet", po::value(&options.sourceLabelSetFile), "write source syntax label set to named file") ("SentenceOffset", po::value(&options.sentenceOffset)->default_value(options.sentenceOffset), "set sentence number offset if processing split corpus") ("UnknownWordLabel", po::value(&options.targetUnknownWordFile), "write unknown word labels to named file") ("SourceUnknownWordLabel", po::value(&options.sourceUnknownWordFile), "write source syntax unknown word labels to named file") ("UnknownWordMinRelFreq", po::value(&options.unknownWordMinRelFreq)->default_value( options.unknownWordMinRelFreq), "set minimum relative frequency for unknown word labels") ("UnknownWordSoftMatches", po::value(&options.unknownWordSoftMatchesFile), "write dummy value to unknown word label file, and mappings from dummy value to other labels to named file") ("UnknownWordUniform", "write uniform weights to unknown word label file") ("UnpairedExtractFormat", "do not pair non-terminals in extract files") ; // Declare the command line options that are hidden from the user // (these are used as positional options). po::options_description hidden("Hidden options"); hidden.add_options() ("TargetFile", po::value(&options.targetFile), "target file") ("SourceFile", po::value(&options.sourceFile), "source file") ("AlignmentFile", po::value(&options.alignmentFile), "alignment file") ("ExtractFile", po::value(&options.extractFile), "extract file") ; // Compose the full set of command-line options. po::options_description cmdLineOptions; cmdLineOptions.add(visible).add(hidden); // Register the positional options. po::positional_options_description p; p.add("TargetFile", 1); p.add("SourceFile", 1); p.add("AlignmentFile", 1); p.add("ExtractFile", 1); // Process the command-line. po::variables_map vm; const int optionStyle = cls::allow_long | cls::long_allow_adjacent | cls::long_allow_next; try { po::store(po::command_line_parser(argc, argv).style(optionStyle). options(cmdLineOptions).positional(p).run(), vm); po::notify(vm); } catch (const std::exception &e) { std::ostringstream msg; msg << e.what() << "\n\n" << visible << usageBottom.str(); Error(msg.str()); } if (vm.count("help")) { std::cout << visible << usageBottom.str() << std::endl; std::exit(0); } // Check all positional options were given. if (!vm.count("TargetFile") || !vm.count("SourceFile") || !vm.count("AlignmentFile") || !vm.count("ExtractFile")) { std::ostringstream msg; std::cerr << visible << usageBottom.str() << std::endl; std::exit(1); } // Process Boolean options. if (vm.count("AllowUnary")) { options.allowUnary = true; } if (vm.count("ConditionOnTargetLHS")) { options.conditionOnTargetLhs = true; } if (vm.count("GZOutput")) { options.gzOutput = true; } if (vm.count("IncludeSentenceId")) { options.includeSentenceId = true; } if (vm.count("Minimal")) { options.minimal = true; } if (vm.count("PartsOfSpeech")) { options.partsOfSpeech = true; } if (vm.count("PartsOfSpeechFactor")) { options.partsOfSpeechFactor = true; } if (vm.count("PCFG")) { options.pcfg = true; } if (vm.count("PhraseOrientation")) { options.phraseOrientation = true; } if (vm.count("StripBitParLabels")) { options.stripBitParLabels = true; } if (vm.count("STSG")) { options.stsg = true; } if (vm.count("T2S")) { options.t2s = true; } if (vm.count("TreeFragments")) { options.treeFragments = true; } if (vm.count("SourceLabels")) { options.sourceLabels = true; } if (vm.count("UnknownWordUniform")) { options.unknownWordUniform = true; } if (vm.count("UnpairedExtractFormat")) { options.unpairedExtractFormat = true; } // Workaround for extract-parallel issue. if (options.sentenceOffset > 0) { options.targetUnknownWordFile.clear(); } if (options.sentenceOffset > 0) { options.sourceUnknownWordFile.clear(); options.unknownWordSoftMatchesFile.clear(); } } void ExtractGHKM::Error(const std::string &msg) const { std::cerr << GetName() << ": " << msg << std::endl; std::exit(1); } std::vector ExtractGHKM::ReadTokens(const std::string &s) const { std::vector tokens; std::string whitespace = " \t"; std::string::size_type begin = s.find_first_not_of(whitespace); assert(begin != std::string::npos); while (true) { std::string::size_type end = s.find_first_of(whitespace, begin); std::string token; if (end == std::string::npos) { token = s.substr(begin); } else { token = s.substr(begin, end-begin); } tokens.push_back(token); if (end == std::string::npos) { break; } begin = s.find_first_not_of(whitespace, end); if (begin == std::string::npos) { break; } } return tokens; } void ExtractGHKM::WriteGlueGrammar( const std::set &labelSet, const std::map &topLabelSet, const std::map &sourceLabels, const Options &options, std::ostream &out) const { // choose a top label that is not already a label std::string topLabel = "QQQQQQ"; for(size_t i = 1; i <= topLabel.length(); i++) { if (labelSet.find(topLabel.substr(0,i)) == labelSet.end() ) { topLabel = topLabel.substr(0,i); break; } } const size_t sourceLabelGlueTop = 0; const size_t sourceLabelGlueX = 1; const size_t sourceLabelSentenceStart = 2; const size_t sourceLabelSentenceEnd = 3; // const size_t partOfSpeechSentenceStart = 0; // const size_t partOfSpeechSentenceEnd = 1; #ifndef BOS_ #define BOS_ "" //Beginning of sentence symbol #endif #ifndef EOS_ #define EOS_ "" //End of sentence symbol #endif std::string sentenceStartSource = BOS_; std::string sentenceEndSource = EOS_; std::string sentenceStartTarget = BOS_; std::string sentenceEndTarget = EOS_; if (options.partsOfSpeech) { sentenceStartTarget = sentenceStartTarget + "|" + BOS_; sentenceEndTarget = sentenceEndTarget + "|" + EOS_; } if (options.partsOfSpeechFactor) { sentenceStartTarget = sentenceStartTarget + "|" + BOS_; sentenceEndTarget = sentenceEndTarget + "|" + EOS_; } // basic rules out << sentenceStartSource << " [X] ||| " << sentenceStartTarget << " [" << topLabel << "] ||| 1 ||| 0-0 ||| ||| |||"; if (options.treeFragments) { out << " {{Tree [" << topLabel << " [SSTART ]]}}"; } // if (options.partsOfSpeech) { // out << " {{POS " << partOfSpeechSentenceStart << "}}"; // } if (options.sourceLabels) { out << " {{SourceLabels 2 1 " << sourceLabelSentenceStart << " 1 1 " << sourceLabelGlueTop << " 1}}"; } if (options.phraseOrientation) { out << " {{Orientation 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25}}"; } out << std::endl; out << "[X][" << topLabel << "] " << sentenceEndSource << " [X] ||| [X][" << topLabel << "] " << sentenceEndTarget << " [" << topLabel << "] ||| 1 ||| 0-0 1-1 ||| ||| |||"; if (options.treeFragments) { out << " {{Tree [" << topLabel << " [" << topLabel << "] [SEND ]]}}"; } // if (options.partsOfSpeech) { // out << " {{POS " << partOfSpeechSentenceEnd << "}}"; // } if (options.sourceLabels) { out << " {{SourceLabels 4 1 " << sourceLabelSentenceStart << " " << sourceLabelGlueTop << " " << sourceLabelSentenceEnd << " 1 1 " << sourceLabelGlueTop << " 1}}"; } if (options.phraseOrientation) { out << " {{Orientation 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25}}"; } out << std::endl; // top rules for (std::map::const_iterator i = topLabelSet.begin(); i != topLabelSet.end(); ++i) { out << sentenceStartSource << " [X][" << i->first << "] " << sentenceEndSource << " [X] ||| " << sentenceStartTarget << " [X][" << i->first << "] " << sentenceEndTarget << " [" << topLabel << "] ||| 1 ||| 0-0 1-1 2-2 ||| ||| |||"; if (options.treeFragments) { out << " {{Tree [" << topLabel << " [SSTART ] [" << i->first << "] [SEND ]]}}"; } // if (options.partsOfSpeech) { // out << " {{POS " << partOfSpeechSentenceStart << " " << partOfSpeechSentenceEnd << "}}"; // } if (options.sourceLabels) { out << " {{SourceLabels 4 1 " << sourceLabelSentenceStart << " " << sourceLabelGlueX << " " << sourceLabelSentenceEnd << " 1 1 " << sourceLabelGlueTop << " 1}}"; } if (options.phraseOrientation) { out << " {{Orientation 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25}}"; } out << std::endl; } // glue rules for(std::set::const_iterator i = labelSet.begin(); i != labelSet.end(); i++ ) { out << "[X][" << topLabel << "] [X][" << *i << "] [X] ||| [X][" << topLabel << "] [X][" << *i << "] [" << topLabel << "] ||| 2.718 ||| 0-0 1-1 ||| ||| |||"; if (options.treeFragments) { out << " {{Tree [" << topLabel << " ["<< topLabel << "] [" << *i << "]]}}"; } if (options.sourceLabels) { out << " {{SourceLabels 3 1 " << sourceLabelGlueTop << " " << sourceLabelGlueX << " 1 1 " << sourceLabelGlueTop << " 1}}"; } if (options.phraseOrientation) { out << " {{Orientation 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25}}"; } out << std::endl; } // glue rule for unknown word... out << "[X][" << topLabel << "] [X][X] [X] ||| [X][" << topLabel << "] [X][X] [" << topLabel << "] ||| 2.718 ||| 0-0 1-1 ||| ||| |||"; if (options.treeFragments) { out << " {{Tree [" << topLabel << " [" << topLabel << "] [X]]}}"; } if (options.sourceLabels) { out << " {{SourceLabels 3 1 " << sourceLabelGlueTop << " " << sourceLabelGlueX << " 1 1 " << sourceLabelGlueTop << " 1}}"; } if (options.phraseOrientation) { out << " {{Orientation 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25}}"; } out << std::endl; } void ExtractGHKM::WriteSourceLabelSet( const std::map &sourceLabels, std::ostream &out) const { out << sourceLabels.size() << std::endl; for (std::map::const_iterator iter=sourceLabels.begin(); iter!=sourceLabels.end(); ++iter) { out << iter->first << " " << iter->second << std::endl; } } void ExtractGHKM::CollectWordLabelCounts( ParseTree &root, const Options &options, std::map &wordCount, std::map &wordLabel) { std::vector leaves; root.GetLeaves(std::back_inserter(leaves)); for (std::vector::const_iterator p = leaves.begin(); p != leaves.end(); ++p) { const ParseTree &leaf = **p; const std::string &word = leaf.GetLabel(); const ParseTree *ancestor = leaf.GetParent(); // If unary rule elimination is enabled and this word is at the end of a // chain of unary rewrites, e.g. // PN-SB -> NE -> word // then record the constituent label at the top of the chain instead of // the part-of-speech label. while (!options.allowUnary && ancestor->GetParent() && ancestor->GetParent()->GetChildren().size() == 1) { ancestor = ancestor->GetParent(); } const std::string &label = ancestor->GetLabel(); ++wordCount[word]; wordLabel[word] = label; } } std::vector ExtractGHKM::ReadTokens(const ParseTree &root) const { std::vector tokens; std::vector leaves; root.GetLeaves(std::back_inserter(leaves)); for (std::vector::const_iterator p = leaves.begin(); p != leaves.end(); ++p) { const ParseTree &leaf = **p; const std::string &word = leaf.GetLabel(); tokens.push_back(word); } return tokens; } void ExtractGHKM::WriteUnknownWordLabel( const std::map &wordCount, const std::map &wordLabel, const Options &options, std::ostream &out, bool writeCounts) const { if (!options.unknownWordSoftMatchesFile.empty()) { out << "UNK 1" << std::endl; return; } std::map labelCount; int total = 0; for (std::map::const_iterator p = wordCount.begin(); p != wordCount.end(); ++p) { // Only consider singletons. if (p->second == 1) { std::map::const_iterator q = wordLabel.find(p->first); assert(q != wordLabel.end()); if (options.stripBitParLabels) { size_t pos = q->second.find('-'); if (pos == std::string::npos) { ++labelCount[q->second]; } else { ++labelCount[q->second.substr(0,pos)]; } } else { ++labelCount[q->second]; } ++total; } } if ( writeCounts ) { for (std::map::const_iterator p = labelCount.begin(); p != labelCount.end(); ++p) { out << p->first << " " << p->second << std::endl; } } else { for (std::map::const_iterator p = labelCount.begin(); p != labelCount.end(); ++p) { double ratio = static_cast(p->second) / static_cast(total); if (ratio >= options.unknownWordMinRelFreq) { float weight = options.unknownWordUniform ? 1.0f : ratio; out << p->first << " " << weight << std::endl; } } } } void ExtractGHKM::WriteUnknownWordSoftMatches( const std::set &labelSet, std::ostream &out) const { for (std::set::const_iterator p = labelSet.begin(); p != labelSet.end(); ++p) { std::string label = *p; out << "UNK " << label << std::endl; } } void ExtractGHKM::StripBitParLabels( const std::set &labelSet, const std::map &topLabelSet, std::set &outLabelSet, std::map &outTopLabelSet) const { for (std::set::const_iterator it=labelSet.begin(); it!=labelSet.end(); ++it) { size_t pos = it->find('-'); if (pos == std::string::npos) { outLabelSet.insert(*it); } else { outLabelSet.insert(it->substr(0,pos)); } } for (std::map::const_iterator it=topLabelSet.begin(); it!=topLabelSet.end(); ++it) { size_t pos = it->first.find('-'); std::string stripped; if (pos == std::string::npos) { stripped = it->first; } else { stripped = it->first.substr(0,pos); } std::map::iterator found=outTopLabelSet.find(stripped); if (found != outTopLabelSet.end()) { found->second += it->second; } else { outTopLabelSet.insert(std::pair(stripped,it->second)); } } } } // namespace GHKM } // namespace Moses