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Chapter 1

Introduction

Philipp Koehn: overview of the goals of the workshop 2-4 pages
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Chapter 2

Factored Translation
Models

The current state-of-the-art approach to statistical machine translation, so-
called phrase-based models, are limited to the mapping of small text chunks
without any explicit use of linguistic information, may it be morphological, syn-
tactic, or semantic. Such additional information has been shown to be valuable,
by integrating it in pre-processing or post-processing steps.

For instance, gains have been achieved by handling Arabic morphology
through stemming or splitting off of affixes that typically translate into indi-
vidual words in English. Another example is our earlier work on methods to
reorder German input, so it is more similar to English output sentence order,
which makes it more amendable to the phrase-based approach (cite).

However, a tighter integration of linguistic information into the translation
model is desirable for two reasons:

• Translation models that operate on more general representations, such as
lemmas instead of surface forms of words, can draw on richer statistics and
overcome the data sparseness problems caused by limited training data.

• Many aspects of translation can be best explained on a morphological, syn-
tactic, or semantic level. Having such information available to the trans-
lation model allows the direct modeling of these aspects. For instance:
reordering at the sentence level is mostly driven by general syntactic prin-
ciples, local agreement constraints show up in morphology, etc.

Therefore, we developed a framework for statistical translation models that
tightly integrates additional information. Our framework is an extension of the
phrase-based model. It adds additional annotation at the word level. A word
in our framework is not anymore only a token, but a vector of factors that
represent different levels of annotation.
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word word
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Typical factors that we experimented with at this point include surface form,
lemma, part-of-speech tag, morphological features such as gender, count and
case, automatic word classes, true case forms of words, shallow syntactic tags,
as well as dedicated factors to ensure agreement between syntactically related
items.

2.1 Motivation

One example to illustrate the short-comings of the traditional surface word
approach in statistical machine translation is the poor handling of morphology.
Each word form is treated as a token in itself. This means that the translation
model treats, say, the word house completely independent of the word houses.
Any instance of house in the training data does not add any knowledge to the
translation of houses.

In the extreme case, while the translation of house may be known to the
model, the word houses may be unknown and the system will not be able to
translate it. While this problem does not show up as strongly in English — due
to the very limited morphological production in English — it does constitute a
significant problem for morphologically rich languages such as Arabic, German,
Czech, etc.

Thus, it may be preferably to model translation between morphologically rich
languages on the level of lemmas, and thus pooling the evidence for different
word forms that derive from a common lemma. In such a model, we would want
to translate lemma and morphological information separately, and combine this
information on the target side to generate the ultimate output surface words.

Such a model, which makes more efficient use of the translation lexicon, can
be defined as a factored translation model. See below for an illustration of this
model in our framework.
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Note that while we illustrate the use of factored translation models on such
a linguistically motivated example, our framework also applies to models that
incorporate statistically defined word classes.

2.2 Decomposition of Factored Translation

The translation of the factored representation of source words into the factored
representation of target words is broken up into a sequence of mapping steps
that either translate input factors into output factors, or generate additional
target factors from existing target factors.

Recall the previous of a factored model that translates using morphological
analysis and generation. This model breaks up the translation process into the
following steps:

• Translating of input lemmas into target lemmas

• Translating of morphological and syntactic factors

• Generating of surface forms given the lemma and linguistic factors

Factored translation models build on the phrase-based approach that breaks
up the translation of a sentence in the translation of small text chunks (so-called
phrases). This model implicitly defines a segmentation of the input and output
sentences into such phrases. See an example below:

neue häuser werden gebaut

new houses are built
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Our current implementation of factored translation models follows strictly
the phrase-based approach, with the additional decomposition of phrase trans-
lation into a sequence of mapping steps. Since all mapping steps operate on the
same phrase segmentation of the input and output sentence into phrase pairs,
we call these synchronous factored models.

Let us now take a closer look at one example, the translation of the one-word
phrase häuser into English. The representation of häuser in German is: surface-
form häuser, lemma haus, part-of-speech NN, count plural, case nominative,
gender neutral.

Given the three mapping steps in our morphological analysis and generation
model may provide the following applicable mappings:

• Translation: Mapping lemmas

– haus → house, home, building, shell

• Translation: Mapping morphology

– NN|plural-nominative-neutral → NN|plural, NN|singular

• Generation: Generating surface forms

– house|NN|plural → houses

– house|NN|singular → house

– home|NN|plural → homes

– ...

The German haus|NN|plural|nominative|neutral is expanded as follows:

• Translation: Mapping lemmas
{ ?|house|?|?, ?|home|?|?, ?|building|?|?, ?|shell|?|? }

• Translation: Mapping morphology
{ ?|house|NN|plural, ?|home|NN|plural, ?|building|NN|plural, ?|shell|NN|plural,
?|house|NN|singular, ... }

• Generation: Generating surface forms
{ houses|house|NN|plural, homes|home|NN|plural, buildings|building|NN|plural,
shells|shell|NN|plural, house|house|NN|singular, ... }

2.3 Statistical Modeling

Factored translation models follow closely the statistical modeling methods used
in phrase-based models. Each of the mapping steps is modeled by a feature
function. This function is learned from the training data, resulting in translation
tables and generation tables.

Phrase-based statistical translation models are acquired from word-aligned
parallel corpora by extracting all phrase-pairs that are consistent with the word
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alignment. Given the set of extracted word pairs with counts, various scor-
ing functions are estimated, such as conditional phrase translation probabilities
based on relative frequency estimation.

Factored models are also acquired from word-aligned parallel corpora. The
tables for translation steps are extracted in the same way as phrase translation
tables. The tables for generation steps are estimated on the target side only (the
word alignment plays no role here, and in fact additional monolingual data may
be used). Multiple scoring functions may be used for generation and translation
steps, we used in our experiments

• five scores for translation steps: conditional phrase translation probabili-
ties in both direction (foreign to English and vice versa), lexical translation
probabilities (foreign to English and vice versa), and phrase count;

• two scores for generation steps: conditional generation probabilities in
both directions (new target factors given existing target factors and vice
versa).

As in phrase-based models, the different components of the model are com-
bined in a log-linear model. In addition to traditional components — language
model, reordering model, word and phrase count, etc. — each mapping steps
forms a component with five (translation) or two (generation) features. The
feature weights in the log-linear model are determined using a minimum error
rate training method (cite Och, simplex).

2.4 Efficient Decoding

Compared to phrase-based models, the decomposition of the phrase translation
into several mapping steps creates additional computational complexity. Instead
of a simple table lookup to obtain the possible translation for an input phrase,
now a sequence of such tables have to be consulted and their content combined.

Since all translation steps operate on the same segmentation, the expansion
of these mapping steps can be efficiently pre-computed prior to the heuristic
beam search, and stored as translation options (recall the example in Section 2.2,
where we carried out the expansion for one input phrase). This means that the
fundamental search algorithm does not change. Only the scoring of hypothesis
becomes slightly more complex.

However, we need to be careful about the combinatorial explosion of the
number of translation options given a sequence of mapping steps. If one or
many mapping steps result in a vast increase of (intermediate) expansions, this
may be become unmanageable. We currently address this problem by early
pruning of expansions, and limiting the number of translation options per input
phrase to a maximum number, by default 50.
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2.5 Future Research

2.5.1 Smarter search for multi-factored models

Although factored translation models can be successfully used to improve trans-
lation quality (in terms of bleu score, as well as other metrics, such as the rate
of agreement errors in the output text), initial experiments suggest two changes
to the translation model and decoding strategy that will enable more sophis-
ticated models (that take advantage of linguistically motivated decomposition
and generation processes, for example) and enable the models to be applied in
situations where the target language is morphologically less complex (such as
English).

Shorter secondary spans

One significant limiting factor in the performance of multi-factored translation
models is the due to the present requirement that successive translation steps
all translate identical source and target spans. If a compatible translation is not
found for a secondary translation step (either because hypotheses with compat-
ible factors were discarded earlier or because there is no possible translation
in the phrase table for the secondary translation step), the hypothesis is aban-
doned. This has considerable benefit from a computational perspective since
it constrains the search space for potential targets when translating secondary
factors. However, it causes a number of significant problems:

1. In models where a secondary factor is both generated from another target
factor and translated from a source factor, any pruning before both steps
have completed runs the risk of producing not just degraded output, but
failing to find any adequate translation.

2. Because a compatible translation must be found in secondary steps for a
translation hypothesis to survive, it is difficult to filter secondary transla-
tion tables. This results in very large tables which are inefficient to load
and have considerable memory overhead.

3. When secondary translation steps fail and hypotheses are abandoned, the
model is forced to rely on shorter translation units for the primary trans-
lation step. This is in direct conflict to the potential benefits that can be
gained by richer statistics.

There are several possible ways that the exact-span match requirement might
be addressed. One solution that is computationally tractable is to back off to
shorter spans only in the event of a failure to find any possible translation
candidates during subsequent translation steps. The problem that arises is how
the spans established should be translated once multiple translation units can
be used. Reordering within phrases is certainly quite common. These can be
further constrained to either match alignments that are suggested by the initial
span.
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Translation-constrained generation with FSTs

Currently when translation hypotheses are enumerated for a particular span
of the source sentence (the first step in the translation process), each step in
the mapping (whether translation or generation) occurs serially and pruning
occurs after each step. Furthermore, multiple generation and translation steps
frequently target the same factor in a particular model (for example, a target-
side lemma may generate target-side part of speech candidates, and source-side
part of speech information may also be translated into target-side part of speech
sequences). When the same factor is generated in multiple mapping steps, they
must all converge or the hypothesis is abandoned.

The serial approach to computing translation options has two primary draw-
backs:

1. Since a translation hypotheses is abandoned unless all steps in the map-
ping succeed fully, it is often the case that many hypotheses that survive
pruning after one step are abandoned at a later step, and that many that
were pruned would have ended up being a reasonable hypothesis.

2. There are an exponential number of generation candidates available for a
given target span (where the exponent is the length of the span and the
base is the average number of targets from a given source in the generation
table).

To mitigate both of these problems, it is possible to execute generation and
translation steps concurrently. The generation table can be formalized as a
finite state transducer that maps between factors on the target language side.
The phrase table can be formalized as a finite state transducer (FST) that maps
between source language factors to target language factors. Thus all devices that
generate a given target language factor can be conceived of as FSTs. These FSTs
can be composed with well-known algorithms that will generally run much more
efficiently (this is exactly the method that is used to minimize the paths searched
through confusion networks: the source-side of the phrase table is treated as a
finite state automaton that is intersected with the confusion network).

Hybrid multi-factor and single-factor models

A characteristic feature of natural languages is that elements of a wide variety of
sizes, from sub-word morphemes to complete sentential units may be lexicalized.
The larger lexicalized units (for example, idioms and ”stock phrases”) frequently
exhibit idiosyncratic- rather than compositional- meaning and are the bread and
butter of conventional phrase-based machine translation systems. The phrase
model can simply ”memorize” the larger units and their corresponding trans-
lations, which often tend to be idiosyncratic in the target language. This is
arguably one of the significant benefits of conventional phrase-based translation
models since mistranslating common stock phrases results is significantly dimin-
ished fluency and understanding, and common evaluation metrics assign a great

13



deal of value to correctly translated stock phrases (since they are, by definition,
several words in length and tend to exhibit relatively fixed word order).

Multi-factored models that analyze the source language in terms of underly-
ing lemmas, parts of speech, and morphological information, and then translate
these factors in a piecemeal fashion may actually result in a system that per-
forms less well on commonly occurring lexicalized phrases. There are at least
two reasons for this. First, the process of lexicalization results in the retention
of archaic or otherwise unusual forms, possibly in unusual configurations. Thus,
when these units are analyzed, they exhibit unusual morphological features and
parts of speech. These unusual features introduce significant sparseness in the
sequence models in the target language and reduce the overall probability that
would be assigned to a correct translation. Second, single-factored translation
models generally have very good data on lexicalized phrases (since they must,
in order to be acquired by language learners as lexicalized elements, occur with
a reasonable frequency). Therefore even if the underlying linguistic phenomena
are rather unusual, they are well modeled in both translation models and tar-
get language models. Moreover, if the target translation does contain unusual
items, these are more likely to occur in a very specific context, which will gen-
erally decrease the net language model cost that would otherwise be expected
for infrequently occurring items.

To retain the benefits associated with multi-factored models (generalization
across inflected forms, making use of data with richer statistics) but retain-
ing the benefits of single-factored ”surface” translation models (better handling
of stock phrases), a more effective method would be to allow both a surface
form based single-factored model to propose hypotheses for various spans in
a sentence that would compete with hypotheses generated by a multi-factored
model. Since multi-factored models consist of different models with different
scoring functions, the costs associated with the two classes of hypotheses are
not directly comparable. To mitigate this difficulty and establish a trading re-
lation between the two classes of hypotheses, a single-factor penalty parameter
will be introduced that can be tuned along with the other parameters used in
decoding.
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Chapter 3

Confusion Network
Decoding

Marcello Federico and Richard Zens: cut and paste from your
journal paper?
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Chapter 4

Open Source Toolkit

4.1 Overall design

In developing the Moses decoder we were aware that the system should be
open-sourced if it were to gain the support and interest from the machine trans-
lation community that we had hoped. There were already several proprietary
decoders available which frustrated the community as the details of their algo-
rithms could not be analysed or changed. However, making the source freely
available is not enough. The decoder must also advance the state of the art in
machine translation to be of interest to other researchers. Its translation quality
and runtime resource consumption must be comparable with the best available
decoders. Also, as far as possible, it should be compatible with current systems
which minimize the learning curve for people who wish to migrate to Moses.
We therefore kept to the following principles when developing Moses:

• Accessibility

• Easy to Maintain

• Flexibility

• Easy for distributed team development

• Portability

The number of functionality added in the six weeks by every member of the
team at the Johns Hopkins University workshop, as can be seen from the figures
below, is evident that many of these design goals were met.

BeforeJHUworkshop AfterJHUworkshop
Lines of code 9000 15,652

Number of classes 30 60
Lines of code attributed

to original developer 100% 54%
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Figure 4.1: Percentage of code contribute by each developer

By adding factored translation to conventional phrase based decoding we
hope to incorporate linguistic information into the translation process in order
to create a competitive system.

Resource consumption is of great importance to researchers as it often de-
termine whether or not experiments can be run or what compromises needs
to be taken. We therefore also benchmarked resource usage against another
phrase-based decoder, Pharaoh, as well as other decoders, to ensure that they
were comparable in like-for-like decoding.

It is essential that features can be easily added, changed or replace, and
that the decoder can be used as a toolkit in ways not originally envisaged. We
followed strict object oriented methodology; all functionality was abstracted
into classes which can be more readily changed and extended. For example, we
have two implementations of single factor language models which can be used
depending on the functionality and licensing terms required. Other implemen-
tations for very large and distributed LMs are in the pipeline and can easily
be integrated into Moses. The framework also allows for factored LMs; a joint
factor and skipping LM are currently available.

17



Figure 4.2: Language Model Framework

Another example is the extension of Moses to accept confusion networks as in-
put. This also required changes to the decoding mechanism.

Figure 4.3: Input

Figure 4.4: Translation Option Collection

Nevertheless, there will be occasions when changes need to be made which are
unforeseen and unprepared. In these cases, the coding practises and styles we

18



instigated should help, ensuring that the source code is clear, modular and
consistent to enable the developers to quickly assess the algorithms and depen-
dencies of any classes or functions that they may need to change.

A major change was implemented when we decided to collect all the score
keeping information and functionality into one place. That this was imple-
mented relatively painlessly must be partly due to the clarity of the source code.

Figure 4.5: Scoring framework

The decoder is packaged as a library to enable users to more easily comply
with the LGPL license. The library can also be embedded in other programs,
for example a GUI front-end or an integrated speech to text translator.

4.1.1 Entry Point to Moses library

The main entry point to the library is the class

Manager

For each sentence or confusion network to be decoded, this class is instanti-
ated and the following function called

ProcessSentence()

19



Its outline is shown below

CreateTranslationOptions()
for each stack in m hypoStack

prune stack
for each hypothesis in stack

ProcessOneHypothesis()

Each contiguous word coverage (span) of the source sentence is analysed in
CreateTranslationOptions()

and translations are created for that span. Then each hypothesis in each stack
is processed in a loop. This loop starts with the stack where nothing has been
translated which has been initialised with one empty hypothesis.

4.1.2 Creating Translations for Spans

The outline of the function

TranslationOptionCollection::CreateTranslationOptions()

is as follows:

for each span of the source input
CreateTranslationOptionsForRange(span)

ProcessUnknownWord()
Prune()
CalcFutureScoreMatrix()

A translation option is a pre-processed translation of the source span, taking
into account all the translation and generation steps required. Translations op-
tions are created in

CreateTranslationOptionsForRange()
which is out follows

ProcessInitialTranslation()
for every subequent decoding step

if step is Translation
DecodeStepTranslation::Process()

else if step is Generation
DecodeStepGeneration::Process()

Store translation options for use by decoder

However, each decoding step, whether translation or generation, is a subclass of

20



DecodeStep

so that the correct Process() is selected by polymorphism rather than using
if statements as outlined above.

4.1.3 Unknown Word Processing

After translation options have been created for all contiguous spans, some posi-
tions may not have any translation options which covers it. In these cases, Cre-
ateTranslationOptionsForRange() is called again but the table limits on phrase
and generation tables are ignored.
If this still fails to cover the position, then a new target word is create by copy-
ing the string for each factor from the untranslatable source word, or the string
UNK if the source factor is null.

Source Word New Target Word
Jimmy → Jimmy

Proper Noun → Proper Noun
- → UNK
- → UNK

This algorithm is suitable for proper nouns and numbers, which are one
of the main causes of unknown words, but is incorrect for rare conjugation of
source words which have not been seen in the training corpus. The algorithm
also assumes that the factor set are the same for both source and target lan-
guage, for instance, th list of POS tags are the same for source and target. This
is clearly not the case for the majority of language pairs. Language dependent
processing of unknown words, perhaps based on morphology. is a subject of
debate for inclusion into Moses.
Unknown word processing is also dependent on the input type - either sentences
or confusion networks. This is handled by polymorphism, the call stack is

Base::ProcessUnknownWord()
Inherited::ProcessUnknownWord(position)

Base::ProcessOneUnknownWord()
where

Inherited::ProcessUnknownWord(position)

is dependent on the input type.

4.1.4 Scoring

A class is created which inherits from

ScoreProducer

21



for each scoring model. Moses currently uses the following scoring models:

Scoringmodel Class
Distortion DistortionScoreProducer

WordPenalty WordPenaltyProducer
Translation PhraseDictionary
Generation GenerationDictionary

LanguageModel LanguageModel

The scoring framework includes the classes

ScoreIndexManager
ScoreComponentCollection

which takes care of maintaining and combining the scores from the different
models for each hypothesis.

4.1.5 Hypothesis

A hypothesis represents a complete or incomplete translation of the source. Its
main properties are

V ariables
m sourceCompleted Which source words have already been translated

m currSourceWordsRange Source span current being translated
m targetPhrase Target phrase currently being used

m prevHypo Pointer to preceding hypothesis that translated
the other words, not including m currSourceWordsRange

m scoreBreakdown Scores of each scoring model
m arcList List of equivalent hypothesis which have lower

score than current hypothesis

Hypothesis are created by calling the constructor with the preceding hypoth-
esis and an appropriate translation option. The constructors have been wrapped
with static functions, Create(), to make use of a memory pool of hypotheses for
performance.

Many of the functionality in the Hypothesis class are for scoring. The out-
line call stack for this is

CalcScore()
CalcDistortionScore()
CalcLMScore()
CalcFutureScore()

22



The Hypothesis class also contains functions for recombination with other hy-
potheses. Before a hypothesis is added to a decoding stack, it is compare to
other other hypotheses on the stack. If they have translated the same source
words and the last n-words for each target factor are the same (where n is de-
termined by the language models on that factor), then only the best scoring
hypothesis will be kept. The losing hypothesis may be used latter when gener-
ating the n-best list but it is otherwise not used for creating the best translation.

In practise, language models often backoff to lower n-gram than the context
words they are given. Where it is available, we use information on the backoff
to more agressively recombine hypotheses, potentially speeding up the decoding.

The hypothesis comparison is evaluated in

NGramCompare()

while the recombination is processed in the hypothesis stack class

HypothesisCollection::AddPrune()

and in the comparison functor class

HypothesisRecombinationOrderer

4.1.6 Phrase Tables

The main function of the phrase table is to look up target phrases give a source
phrase, encapsulated in the function

PhraseDictionary::GetTargetPhraseCollection()
There are currently two implementation of the PhraseDictionary class
PhraseDictionaryMemory Based on std::map. Phrase table loaded

completely and held in memory
PhraseDictionaryTreeAdaptor Binarized phrase table held on disk and

loaded on demand.

4.1.7 Command Line Interface

The subproject, moses-cmd, is a user of the Moses library and provides an il-
lustration on how the library functions should be called. It is licensed under a
BSD license to enable other users to copy it source code for using the Moses
library in their own application.

However, since most researchers will be using a command line program for
running experiments, it will remain the defacto Moses application for the time
being.
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Apart from the main() function, there are two classes which inherites from
the moses abstract class, InputOutput:

IOCommandLine
IOFile (inherites from IOCommandLine)

These implement the required functions to read and write input and output
(sentences and confusion network inputs, target phrases and n-best lists) from
standard io or files.

4.2 Software Engineering Aspects

4.2.1 Regression Tests

Moses includes a suite of regression tests designed to ensure that behavior that
has been previously determined to be correct does not break as new functionality
is added, bugs are fixed, or performance improvements are made. The baseline
behavior for the regression testing is determined in three ways:

1. Expected behavior based on off-line calculations (for example, given a
small phrase table and sample input, one can work through the search
space manually and compute the expected scores for a translation hy-
pothesis).

2. Expected values based on comparisons with other systems (for example,
language modeling toolkits provide the ability to score a sentence. Such
a tool can be used to calculate the expected value of the language model
score that will be produced by the decoder).

3. Expected values based on previous behavior of the decoder (some output
behavior is so complex that it is impractical or impossible to determine ex-
ternally what the expected values are; however, it is reasonable to assume
that localized bug-fixes, the addition of new functionality, or performance
improvements should not impact existing behavior).

The nature of statistical machine translation decoding makes achieving substan-
tial and adequate test coverage possible with simple black-box testing. Aggre-
gate statistics on the number of hypotheses generated, pruned, explored, as well
as comparisons of the exact costs and translations for certain sample sentences
provide ample evidence that the models and code that is utilized in decoding is
working adequately since these values tend to be highly sensitive to even minor
changes in behavior.

How it works

The test harness (invoked with the command run-test-suite) runs the de-
coder that is to be tested (specified to the script with the --decoder command

24



line option) with a series of configuration files and translation inputs. The out-
put from the decoder, which is written to stdout and stderr, is post-processed
by small scripts that pull out the data that is going to be compared for test-
ing purposes. These values are compared with the baseline and a summary is
generated.

Timing information is also provided so that changes that have serious per-
formance implications can be identified as they are made. This information is
dependent on a variety of factors (system load, disk speed), so it is only useful
as a rough estimate.

Versioning

The code for the regression test suite is in the regression/tests subdirectory
of the Subversion repository. The inputs and expected values for each test case
in the test suite are stored together in regression-tests/tests. The test suite
is versioned together with the source code for several reasons:

1. As bugs are identified and fixed that effect existing behavior, the testing
code needs to be updated.

2. As new functionality is added, testing code exercising this functionality
needs to be added (see below for more details).

By versioning the regression tests together with the source code, it should be
possible to minimize when developers need to worry about expected test failures.

The data (language models, phrase tables, generation tables, etc.) that is
used by the individual test cases is versioned along with the source code, but
because of its size (currently about 60MB), it is not stored in Subversion. When
test suite is run in a new environment or one with an improper version of the
test data, it will fail and provide instructions for retrieving and installing the
proper version of the testing data (via HTTP) from the test data repository,
which is currently http://statmt.org.

Making changes to existing tests

As changes are made that effect the decoder’s interface (output format, com-
mand line interface, or configuration file format) and bugs that effect existing
decoder behavior are fixed, it will often be necessary to update either the ex-
pected values, the scripts that post-process the decoder output, or the configura-
tion files. These files can be edited in the same manner as the rest of the source
code and should be submitted along with the corresponding code changes.

If changes need to be made to the test data, a new tar-ball must be gener-
ated that contains all of the test data for all regression tests and submitted to the
repository maintainer. Once it is available for download, the TEST DATA VERSION
constant in MosesRegressionTesting.pm can be incremented to point to the
new version.
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Adding regression tests

As new functionality is incorporated into Moses, regression tests should be added
that guarantee that it will continue to be behave properly as further changes
are made. Generally, testing new models with multi-factored models is rec-
ommended since common single-factored models exercise only a subset of the
logic.

If new regression tests have new data dependencies, the test data will need
to be updated. For more information on this workflow, refer to the previous
section.

4.2.2 Accessability

The source code for the Moses project is housed at Sourceforge.net in a subver-
sion repository. The URL for the project is:

http://sourceforge.net/projects/mosesdecoder/

The source code is publicly accessible and in two ways:

1. Pre-packaged tar-balls are available for download directly from project
page at Sourceforge.

2. The current development source code can be accessed with a subversion
client (see http://subversion.tigris.org/ for more details how to ac-
quire and use the client software).

4.2.3 Documentation

Philipp Koehn and Chris Callison-Burch: Doxygen

4.3 Parallelization

The decoder implemented in Moses translates its input sequentially; in order to
increase the speed of the toolkit a parallelization module was developed which
exploits several instances of the decoder and feed them with subsets of the
scource input.

As shown in Figure 4.3, the procedure we implemented is reasonably easy:
first, the source input is equally divided into N parts, then N instances of the
Moses translate them; finally, the full translation is obtained by ordering and
merging the translation of all input parts.

All Moses instances are assumed to run on a (possibly remote) cluster. No
restriction on the number of Moses instances is given.

Time to perform a full translation with one Moses instance comprises the
time to load data, which is constant, and time to translate the input, which is
proportional to its size. The parallelization module requires an additional time
to access the cluster, which is strictly related to the real load of the cluster itself

26



Figure 4.6: The parallelization module for Moses.
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and hardly forecastable. Time to split the input and merge the output can be
considered negligible with respect to the translation time. Moreover, an ending
delay can be observe because the merging module should wait that all decoders
have completed their translations, and this does not necessarily happen at the
same time. A good splitting policy which allows a balanced translation time
among all decoders, improves the effciency of the whole parallelization module.

We tested the gain in time that the parallelization module can provide to
the toolkit on the Spanish-English EuroParl task. 3 input sets were created of
10, 100 1000 sentences and translated using a standalone Moses, and the paral-
lelization module exploiting difference number of Moses instances (1, 5, 10, 20).
Decoders ran on the 18-processor CLSP cluster. As in the real situation, its load
was not in control, and hence the immediate availability of the processors was
not assured. Table 4.3 reports the average translation times for all conditions.

Some considerations can be drawn by inspecting these figures.

• Parallelization is uneffective if source input is small, because time to access
the cluster becomes prevalent.

• Trivially, there is no reason of using the parallelization module if just one
processor is required.

• Parallelization is beneficial if more instances of Moses are exploited.

• The gain in time is not exactly proportional to the number of decoder
instances, mainly due to the effect of ending delay.

In conclusion, the choice of the number of splits N is essential for a good
efficiency of the parallelization module, and depends on the available computa-
tional power, the cluster load, and the average translation time of the standalone
decoder.
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standalone 1 proc 5 proc 10 proc 20 proc
10 sentences 6.3 13.1 9.0 9.0 –

100 sentences 5.2 5.6 3.0 1.7 1.7
1000 sentences 6.3 6.5 2.0 1.6 1.1

Table 4.1: Average time (seconds) to translate 3 input sets with a standalone
Moses and with its parallel version.

4.4 Tuning

As described in Section (reference to the correct section), Moses decoder relies
on a log-linear model to search for the best translation e∗ given an input string
f :

e∗ = arg max
e

Pr(e | f) = arg max
e

pλ(e | f) = arg max
e

∑
i

λihi(e, f) (4.1)

Main components of a log-linear model are the real-valued feature functions
hi and their real-valued weights λi. To get the best performance from this
model all components need to be estimated and optimized for the specific task
the model is applied to.

Feature functions model specific aspects of the translation process, like the
fluency, the adequacy, the reordering. Features can correspond to any function
of e and f , and there is no restriction about the values they assume. Some
features are based on statistical models which are estimated on specific training
data.

Feature weights are useful to balance the (possibly very different) ranges of
the feature functions, and to weigh their relative relevance. The most common
way to estimate the weights of a log-linear model is called Minimum Error Rate
Training (MERT). It consists in an automatic procedure which search for the
weights minimizing translation errors on a development set.

Let f be a source sentence and ref the set of its reference translations; let
Err(e; ref) be an error function which measures the quality of a given transla-
tion e with respect to the references ref . The MERT paradigm can be formally
stated as follows:

e∗ = e∗(λ) = arg max
e

pλ(e | f) (4.2)

λ∗ = arg min
λ

Err(e∗(λ); ref) (4.3)

where e∗(λ) is the best translation found by the decoder exploiting a given set
of weights λ.

The error function needs to be computed automatically from e and ref
without human intervention. Word Error Rate (WER), Position Independent
Word Error Rate (PER), (100-BLEU score), -NIST score, or any combination
of them are good candidates as automatic scoring functions.
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Figure 4.7:
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An error function is rarely mathematically sound, and hence an exact solu-
tion of the previous problem is not usually known. Hence, algorithms like the
gradient descent or the downhill simplex, are exploited which iteratively ap-
proximate the optimal solution. Unfortunately, these approximate algorithms
just assure to find a local optimum.

The MERT procedure we implemented during the workshop is depicted in
Figure 4.4. It is based on two nested loops, which are now described.

In the outer loop

1. initial weights λ0, an empty list of translation hypotheses T 0, and the
iteration index t = 0 are set;

2. Moses translates the input with λt and generates a list of N -best transla-
tion hypotheses T t;

3. T t are added to the previous lists T 0, . . . T t−1;

4. the inner loop is performed (see below) on the new list
⋃t

i=0 T i and with
the weights λt;

5. the new set of weights λt+1 provided by the inner loop are set;

6. t is increased by 1, and the loop restarts from 2.

The outer loop ends when the list of translation hypotheses does not increase
anymore.

In the inner loop which is fed with a list of hypotheses and a set of weights
λ̄

1. initial weights λ0 are set to λ̄, and the iteration index s = 0 is set;

2. all translation hypotheses in the list are rescored according with the actual
weights λs and the best-scored hypothesis is extracted (Extractor);

3. the error measure of such translation is computed (Scorer);
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4. the Optimizer suggests a new set of weights λs+1;

5. s is increased by 1, and the loop restarts from 2.

The inner loop ends when the error measure does not improve anymore. As
the Optimizer provides a local optimum for the weights, and strongly depends
on the starting point λ̄, the inner loop starts over several times with different
choices of λ̄. The first time the weights λt used by Moses in the last outer loop
are applied; the next times random sets are exploited. The best set of weights
are then provided to the outer loop again.

Instead of standard approximate algorithms like the gradient descent or the
downhill simplex, in the workshop we employed an Optimizer which was devel-
oped by XXXX (should we cite the guy form UMaryland?) and based on the
idea of ? (Och’s paper). The algorithm strongly relies on the availability of a
finite list of translation alternatives, because this allows a discretization of the
r-dimensional space of the weights (r is the number of weights). This makes the
search of the optimum faster. The algorithm iteratively optimizes one weight
at a time.

The Scorer employed in the workshop computes BLEU score (version xxx).
The time spent for each iteration of the outer and inner loops is basically

proportional to the size of the input and the amount of translation hypotheses,
respectively.

4.5 Efficient Language Model Handling

Marcello Federico

4.6 Lexicalized Reordering Models

Christine Moran

4.7 Error Analysis

We describe some statistics generally used to measure error and present two
error analysis tools written over the summer.

4.7.1 Error Measurement

There are three common measures of translation error. BiLingual Evaluation
Understudy (BLEU) (?), the most common, measures matches of short phrases
between the translated and reference text as well as the difference in the lengths
of the reference and output. BLEU can be applied to multiple references, but
in a way such that BLEU scores using different numbers of references are not
comparable.
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Word Error Rate (WER) measures the number of matching output and
reference words given that if output word i is noted as matching reference word
j, output word i+1 cannot match any reference word before j; i.e., word ordering
is preserved in both texts. Such a mapping isn’t unique, so WER is specified
using the maximum attainable number of single-word matches. This number
is computable by some simple dynamic programming. [[[Ought I to elaborate
here?]]]

Position-Independent Word Error Rate (PWER) simply counts matching
output and reference words regardless of their order in the text. This allows
for rearrangement of logical units of text, but allows a system to get away with
poor rearrangement of function words.

All these measures are highly dependent on the level of redundancy in the
target language: the more reasonable translation options, the less likely the
one chosen will match the reference exactly. So the scores we use are really
comparable only for a specific source text in a specific language.

Perplexity (defined in ?), measured for a text with respect to a language
model, is a function of the likelihood of that text being produced by repeated
application of the model. In a shaky sense, he higher the perplexity of a text,
the more complex it is, so the harder it is to produce. The perplexity of the
output of a modern machine translation system is usually lower (for our test
case, by a factor of two to three) than that of a reliable reference translation.
This is unsurprising because the people who provide the references have at their
command long-range syntactic constructs that haven’t been reconstructed via
computer.

Along with these statistics, we’d like some assurance that they’re stable,
preferably in the form of confidence intervals. We use both the paired t test
and the more conservative sign test to obtain confidence intervals for the BLEU
score of each translation system on a corpus.

All of these measures can be applied to a text of any size, but the larger
the text, the more statistical these scores become. For detail about the kinds
of errors a translation system is making, we need sentence-by-sentence error
analysis. For this purpose we wrote two graphical tools.

4.7.2 Tools

While working on his thesis Dr. Koehn wrote an online tool that keeps track
of a set of corpuses (a corpus is a source text, at least one system output
and at least one reference) and generates various statistics each time a corpus
is added or changed. Before the workshop, his system showed BLEU scores
and allowed a user to view individual sentences (source, output, reference) and
score the output. For large numbers of sentences manual scoring isn’t a good
use of our time; the system was designed for small corpuses. To replace the
manual-scoring feature we created a display of the BLEU scores in detail for
each sentence: counts and graphical displays of matching n-grams of all sizes
used by BLEU. See figure 4.8 for screenshots.
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The overall view for a corpus shows a list of files associated with a given
corpus: a source text, one or more reference translations, one or more system
translations. For the source it gives a count of unknown words in the source
text (a measure of difficulty of translation, since we can’t possibly correctly
translate a word we don’t recognize) and the perplexity. For each reference
it shows perplexity. For each system output it shows WER and PWER, the
difference between WER and PWER two for nouns and adjectives only (?), the
ratio of PWER of surface forms to PWER of lemmas (?), and the results of
some simple statistical tests, as described above, for the consistency of BLEU
scores in different sections of the text. The system handles missing information
decently, and shows the user a message to the effect that some measure is not
computable. Also displayed are results of a t test on BLEU scores between each
pair of systems’ outputs, which give the significance of the difference in BLEU
scores of two systems on the same input.

Figure 4.8: Sample output of corpus-statistics tool.

A second tool developed during the workshop shows the mapping of individ-
ual source to output phrases (boxes of the same color on the two lines in figure
4.9) and gives the average source phrase length used. This statistic tells us how
much use is being made of the translation model’s capabilities. There’s no need
to take the time to tabulate all phrases of length 10, say, in the training source
text if we’re pretty sure that at translation time no source phrase longer than
4 words will be chosen.

Figure 4.9: Sample output of phrase-detail tool.
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Chapter 5

Experiments

5.1 English-German

Philipp Koehn, Chris Callison-Burch, Chris Dyer

5.2 English-Spanish

Wade Shen, Brooke Cowan, Christine Moran

5.3 English-Czech

This report describes in detail our experiments on Czech↔English translation
with the Moses system (?) carried out at Johns Hopkins University Summer
Workshop 2006 in Baltimore. The reader is expected to be familiar with factored
translation models as implemented in Moses.

Section 5.3.1 describes the data used for our experiments, including prepro-
cessing steps and some basic statistics. Section 5.3.2 introduces the metric and
lists some known result on MT quality on our dataset, including the scores of
human translation. The core of this report is contained in Section 5.3.3 where
all our experiments and results are described in detail.

5.3.1 Data Used

Corpus Description and Preprocessing

The data used for Czech↔English experiments are available as CzEng 0.5 (Bojar
and Žabokrtský [2006]) and PCEDT 1.0 (Čmejrek et al. [2004]). The collection
contains parallel texts from various domains, as summarized in Table 5.1.

The texts in CzEng are pre-tokenized and pre-segmented (sentence bound-
aries identified) and automatically sentence-aligned using the hunalign tool
(Varga et al. [2005]). The PCEDT data are manually aligned 1-1 by origin,
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Sentences Tokens
Czech English Czech English

Texts from European Parliament 77.7% 71.7% 78.2% 75.9%
E-Books 5.5% 6.6% 7.2% 7.4%
KDE (open-source documentation) 6.9% 10.2% 2.6% 3.6%
PCEDT-WSJ (Wall Street Journal texts) 1.5% 1.7% 2.6% 2.8%
Reader’s Digest stories 8.4% 9.7% 9.4% 10.3%
Total 1.4 M 1.3 M 19.0 M 21.6 M

Table 5.1: Domains of texts contained in full training data.

because the Czech version of the text was obtained by translating English text
sentence by sentence.

For the purposes of our experiments, we processed the data using the tools
listed in Table 5.2. The English side of the corpus had to be retokenized (keeping
CzEng sentence boundaries), because the original tokenization was not compat-
ible with the tagging tool.

Czech English

Segmentation CzEng CzEng
Tokenization CzEng Like Europarl, Koehn [2005]
Morph./POS Tagging Hajič and Hladká [1998] Ratnaparkhi [1996]
Lemmatization Hajič and Hladká [1998] -not used-
Parsing McDonald et al. [2005] -not used-

Table 5.2: Czech and English tools used to annotate CzEng data.

Baseline (PCEDT) and Large (CzEng+PCEDT) Corpus Data

The evaluation set of sentences used in our experiments (see section 5.3.1 below)
comes from the very specific domain of Wall Street Journal. The PCEDT-WSJ
section matches this domain exactly, so we use the PCEDT-WSJ section (20k
sentences) as the training data in most of our experiments and refer to it by the
term “baseline corpus” or simply PCEDT. In some experiments, we make use
of all the training data (860k sentences) and refer to it as the “large corpus”.
(Of course, test data are always excluded from training.)

Table 5.3 reports exact data sizes of the baseline and large corpora used
for our experiments. (Note that the baseline corpus is a subset of the large
corpus.) The data size is significantly lower than what CzEng offers, because
not all of the sentences successfully passed through all our tools and also due
to the removal of sentences longer than 50 words and sentences with the ratio
between Czech and English number of tokens worse than 9.
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Corpus Sentences Tokens
Baseline: PCEDT Czech 20,581 453,050

English 20,581 474,336
Large: CzEng+PCEDT Czech 862,398 10,657,552

English 862,398 12,001,772

Table 5.3: Data sizes available for our experiments.

Tuning and Evaluation Data

Our tuning and evaluation data consist of 515 sentences with 4 reference trans-
lations. The dataset was first published as part of PCEDT 1.0 for evaluating
Czech→English translation and included original English Wall Street Journal
(WSJ) texts translated to Czech (sentence by sentence) and 4 independent back-
translations to English. For the purposes of English→Czech translation in our
experiments, another 4 independent translations from the original English to
Czech were obtained.

For our experiments we kept the original division of the dataset into two
parts: the tuning (development) set and the evaluation test set. However, we
retokenized all the sentences with the Europarl tokenization tool. Dataset sizes
in terms of number of sentences, input tokens and input tokens never seen in
the PCEDT training corpus (out-of-vocabulary, OOV) are listed in Table 5.4.

Input Tokens When Translating from
Sentences Czech OOV English OOV

Tuning 259 6429 6.8% 6675 3.5%
Evaluation 256 5980 6.9% 6273 3.8%

Table 5.4: Tuning and evaluation data.

We followed the common procedure to use tuning dataset to set parameters
of the translation system and to use the evaluation dataset for final translation
quality estimate. In other words, the translation system has access to the ref-
erence translations of the tuning dataset but never has access to the reference
translations of the evaluation dataset.

In the following, we use the this short notation: “Dev (std)” denotes results
obtained on the tuning dataset with the model parameters set to the default,
somewhat even distribution. “Dev (opt)” denotes results on the tuning dataset
with the parameters optimized using minimum error rate training procedure
(MERT, XXX). The “Dev (opt)” results are always overly optimistic, because
MERT had access to the reference translations and tunes the MT output to get
the highest scores possible. “Test (opt)” denotes results on evaluation set with
model parameters as optimized on the tuning set. The “Test (opt)” results thus
estimate the system performance on unseen data and allow for a fair comparison.
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For the purposes of automatic translation, the input texts were analyzed
using the same tools as listed in section 5.3.1.

5.3.2 MT Quality Metric and Known Baselines

Throughout all our experiments, we use the BLEU metric (Papineni et al. [2002])
to automatically assess the quality of translation. We use an implementation
of this metric provided for the workshop. Other implementations such as IBM
original or NIST official mt eval might give slightly different absolute results,
mainly due to different tokenization rules.

In all experiments reported below, we train and test the system in case-
insensitive fashion (all data are converted to lowercase, including the reference
translations), except where stated otherwise.

Human Cross-Evaluation

Table 5.5 displays the scores if we evaluate one human translation against 4
other human translations. For the sake of completeness, we report not only the
default lowercase (LC) evaluation but also case sensitive (CSens) evaluation.
This estimate cannot be understood as any kind of a bound or limit on MT
output scores, but it nevertheless gives some vague orientation when reading
BLEU figures.

To Czech To English
Min Average Max Min Average Max

Evaluation LC 38.5 43.1±4.0 48.4 41.6 54.5±8.4 62.9
CSens 38.1 42.5±4.0 47.8 41.1 53.8±8.4 62.4

Tuning LC 39.0 46.3±4.3 49.3 45.8 55.3±6.0 61.7
CSens 38.3 45.8±4.4 48.8 45.0 54.7±6.1 61.3

Table 5.5: BLEU scores of human translation against 4 different human trans-
lations. Evaluated 5 times, always comparing one translation against the 4
remaining. The minimum, average and maximum scores of the 5-fold estima-
tion are given.

As expected, we observe a higher variance (standard deviation) when evalu-
ating translation to English. The reason is that one of the five English versions
of the sentences is the original, while the other four were back translated from
Czech. It is therefore quite likely for the four back translations to differ more
from the original than from each other raising the BLEU variance.

English scores are generally higher and this may indicate that there is less
variance in word order, lexical selection or word morphology in English, but
it also could be the simple case that the translators to English produced more
rigid translations.
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BLEU When not Translating at All

Our particular type of text (WSJ) contains a lot of numbers and proper names
that are often not altered during translation. Just for curiosity and to check
that our datasets are not just numbers, punctuation and company names, we
evaluate BLEU for texts not translated at all. I.e. the input text is evaluated
against the standard 4 references. As displayed in Table 5.6, the scores are very
low but nonzero, as expected.

To Czech To English
Evaluation Lowercase 2.20 2.66
Evaluation Case Sensitive 2.20 2.65
Tuning Lowercase 2.93 3.60
Tuning Case Sensitive 2.93 3.59

Table 5.6: BLEU scores when not translating at all, i.e. only punctuation,
numbers and some proper names score.

Previous Research Results

Table 5.7 summarizes previously published results of Czech→English transla-
tion. Dependency-based MT (DBMT, Čmejrek et al. [2003]) is a system with
rule-based transfer from Czech deep syntactic trees (obtained automatically us-
ing one of two parsers of Czech) to English syntactic trees. GIZA++ (Och and
Ney [2003]) and ReWrite (Germann [2003]) is the “standard baseline” word-
based statistical system. PBT (Zens et al. [2005]) is a phrase-based statistical
MT system developed at RWTH Aachen that has been evaluated on English-
Czech data by Bojar et al. [2006].

Average over 5 refs. 4 refs. only
Dev Test Dev Test

DBMT with parser I, no LM 18.57 16.34 - -
DBMT with parser II, no LM 19.16 17.05 - -
GIZA++ & ReWrite, bigger LM 22.22 20.17 - -
PBT, no additional LM 38.7±1.5 34.8±1.3 36.3 32.5
PBT, bigger LM 41.3±1.2 36.4±1.3 39.7 34.2
PBT, more parallel texts, bigger LM 42.3±1.1 38.1±0.8 41.0 36.8

Table 5.7: Previously published results of Czech→English MT.

All figures in Table 5.7 are based on the same training dataset as we use:
the baseline corpus of PCEDT (20k sentences) and on the same tuning and
evaluation sets. However, the tokenization of the data is slightly different the
we use and also a different implementation of the BLEU metric was used. Our
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experience is that a different scoring script can change BLEU results by about
2 points absolute, so these numbers should not be directly compared to our
results reported here.

Unlike Čmejrek et al. [2003] who evaluate four-reference BLEU five times
using the original English text in addition to the 4 available reference back-
translations in a leave-one out procedure, we always report BLEU estimated on
the 4 reference translations only.

To the best of our knowledge, we are the first to evaluate English→Czech
machine translation quality with automatic measures.

5.3.3 Experiments

Motivation: Margin for Improving Morphology

Czech is a Slavonic language with very rich morphology and relatively free word
order. (See e.g. Bojar [2004] for more details.) The Czech morphological system
defines 4,000 tags in theory and 2,000 were actually seen in a big tagged corpus.
(For comparison, the English Penn Treebank tagset contains just about 50 tags.)
When translating to Czech, any MT system has to face the richness and generate
output words in appropriate forms.

Table 5.8 displays BLEU scores of single-factored translation English→Czech
using the baseline corpus only. The second line in the table gives the scores if
morphological information was disregarded in the evaluation: the MT output is
lemmatized (word forms replaced with their respective base forms) and evalu-
ated against lemmatized references.

Dev (std) Dev (opt) Test (opt)
Regular BLEU, lowercase 25.68 29.24 25.23
Lemmatized MT output

against lemmatized references 34.29 38.01 33.63

Table 5.8: Margin in BLEU for improving morphology.

We see that more than 8 point BLEU absolute could be achieved if output
word forms were chosen correctly.1 This observation gives us a strong motivation
for focussing on morphological errors first.

Obtaining Reliable Word Alignment

Given the richness of Czech morphological system and quite limited amount
of data in the baseline corpus (20k sentences), our first concern was to obtain
reliable word alignments. Like Bojar et al. [2006], we reduce the data sparse-
ness by either lemmatizing or stemming Czech tokens and stemming English

1Although not all required word forms may be available in the training data, we could easily
generate output word forms from lemmas and morphological tags deterministically using a
large target-side-only dictionary.
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tokens. (By stemming we mean truncating each word to at most 4 characters.)
The vocabulary size of Czech word forms reduces to a half after stemming or
lemmatization and comes thus very close to the vocabulary size of English word
forms.

Table 5.9 displays BLEU scores on Test (opt) English→Czech depending
on the preprocessing of corpus for word alignment. The translation process
itself was performed on full word forms (single-factored), with a single trigram
language model collected from the Czech side of the parallel corpus. In all cases,
we employed the grow-diag-final heuristic for symmetrization of two independent
GIZA++ runs.

Preprocessing for Alignment Parallel Corpus Used
English Czech Baseline (20k sents.) Large (860k sents.)

word forms word forms 25.17 -
4-char stems lemmas 25.23 25.40
4-char stems 4-char stems 25.82 24.99

Table 5.9: BLEU in English→Czech translation depending on corpus prepro-
cessing for word alignment.

The results confirm improvement in translation quality if we address the
data sparseness problem for alignments either by full lemmatization or by simple
stemming. Surprisingly, using full lemmatization of the Czech side scored worse
than just stemming Czech. This result was confirmed neither on the large
training set, nor by Bojar et al. [2006] for Czech→English direction, so we
attribute this effect to random fluctuations in MERT procedure.

We also see nearly no gain or even some loss by increasing the corpus size
from 20k to 860k sentences. (See section 5.3.3 below for more details on various
ways of using more data.) This observation can be explained by the very specific
domain of our test set, see section

Scenarios of Factored Translation English→Czech

Scenarios Used

We experimented with the following factored translation scenarios:

English Czech

lowercase lowercase +LM

morphology lemma

morphology

Figure 5.1: Single-factored scenario (T).

The baseline scenario is single-
factored: input (English) lower-
case word forms are directly trans-
lated to target (Czech) lowercase
forms. A 3-gram language model
(or more models based on various
corpora) checks the stream of output word forms.

We call this the “T” (translation) scenario.
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English Czech

lowercase lowercase +LM

morphology lemma

morphology +LM

Figure 5.2: Checking morphology (T+C).

In order to check the output
not only for word-level coherence
but also for morphological coher-
ence, we add a single generation
step: input word forms are first
translated to output word forms
and each output word form then generates its morphological tag.

Two types of language models can be used simultaneously: a (3-gram) LM
over word forms and a LM over morphological tags. For the morphological tags,
a higher-order LM can be used, such as 7 or 9-gram.

We used tags with various levels of detail, see section 5.3.3. We call this the
“T+C” (translate and check) scenario.

English Czech

lowercase lowercase +LM

morphology lemma

morphology +LM

Figure 5.3: Translating and checking mor-
phology (T+T+C).

As a refinement of T+C, we
also used T+T+C scenario, where
the morphological output stream
is constructed based on both, out-
put word forms and input mor-
phology. This setting should en-
sure correct translation of mor-
phological features such as number of source noun phrases.

Again, two types of language models can be used in this “T+T+C” scenario.

English Czech

lowercase lowercase +LM

morphology lemma +LM

morphology +LM

Figure 5.4: Generating forms from lemmas
and tags (T+T+G).

The most complex scenario we
used is linguistically appealing: out-
put lemmas (base forms) and mor-
phological tags are generated from
input in two independent trans-
lation steps and combined in a
single generation step to produce
output word forms. The input English text was not lemmatized so we used
English word forms as the source for producing Czech lemmas.

The “T+T+G” setting allows us to use up to three types of language models.
Trigram models are used for word forms and lemmas and 7 or 9-gram language
models are used over tags.

Experimental Results: T+C Works Best

Table 5.10 summarizes estimated translation quality of the various scenarios.
In all experiments, only the baseline corpus of 20k sentences was used with
word alignment obtained using grow-diag-final heuristic on stemmed English
and lemmatized Czech input streams. Language models are also based on the
20k sentences only, 3-grams are used for word forms and lemmas, 7-grams for
morphological tags.

The good news is that multi-factored models always outperform the baseline
T (except for “Dev (std)”, but this is not surprising, as the default weights can
be quite bad for multi-factored translation).
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Dev (std) Dev (opt) Test (opt)
Baseline: T 25.68 29.24 25.23
T+T+G 23.93 30.34 25.94
T+T+C 25.12 30.73 26.43
T+C 23.51 30.88 27.23

Table 5.10: BLEU scores of various translation scenarios.

Unfortunately, the more complex a multi-factored scenario is, the worse the
results are. Our belief is that this effect is caused by search errors: with multi-
factored models, more hypotheses get similar scores and future costs of partial
hypotheses might be estimated less reliably. With the limited stack size (not
more than 200 hypotheses of the same number of covered input words), the
decoder may more often find sub-optimal solutions.

To conclude, the scenario for just checking output morphology (T+C) gives
us the best results, 27.23 BLEU, 2 points absolute improvement over the single-
factored baseline.

Granularity of Czech Part-of-Speech

As stated above, Czech morphological tag system is very complex, in theory up
to 4,000 different tags are possible. In our T+C scenario, we experiment with
various simplifications of the system to find the best balance between expresivity
and richness of the statistics available in our corpus. (The more information is
retained in the tags, the more severe data sparseness is.)

Full tags (1098 unique seen in baseline corpus): Full Czech positional tags
are used. A tag consists of 15 positions, each holding the value of a mor-
phological property (e.g. number, case or gender).

POS (173 unique seen): We simplify the tag to include only part and sub-
part of speech (distinguishes also partially e.g. verb tenses). For nouns,
pronouns, adjectives and prepositions2, also the case is included.

CNG01 (571 unique seen): CNG01 refines POS. For nouns, pronouns and
adjectives we include not only the case but also number and gender.

CNG02 (707 unique seen): Tag for punctuation is refined: lemma of the
punctuation symbol is taken into account; previous models disregarded e.g.
the distributional differences between a comma and a question mark. Case,
number and gender added to nouns, pronouns, adjectives, prepositions,
but also to verbs and numerals (where applicable).

CNG03 (899 unique seen): Highly optimized tagset:
2Some Czech prepositions select for a particular case, some are ambiguous. Although the

case is never shown on surface of the preposition, the tagset includes this information and
Czech taggers are able to infer the case.
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• Tags for nouns, adjectives, pronouns and numerals describe the case,
number and gender; the Czech reflexive pronoun se or si is highlighted
by a special flag.

• Tag for verbs describes subpart of speech, number, gender, tense and
aspect; the tag includes a special flag if the verb was the auxiliary
verb být (to be) in any of its forms.

• Tag for prepositions includes the case and also the lemma of the
preposition.

• Lemma included for punctuation, particles and interjections.

• Tag for numbers describes the “shape” of the number (all digits are
replaced by the digit 5 but number-internal punctuation is kept in-
tact). The tag thus distinguishes between 4- or 5-digit numbers or
the precision of floating point numbers.

• Part of speech and subpart of speech for all other words.

Experimental Results: CNG03 Best

Table 5.11 summarizes the results of T+C scenario with varying detail in
morphological tag. All the results were obtained using only the baseline corpus
of 20k sentences, word-alignment symmetrized with grow-diag-final heuristic
and based on stemmed Czech and English input. Also the language models
are based solely on the 20k sentences. Trigrams are used for word forms and
7-grams for tags.

Dev (std) Dev (opt) Test (opt)
Baseline: T (single-factor) 26.52 28.77 25.82
T+C, CNG01 22.30 29.86 26.14
T+C, POS 21.77 30.27 26.57
T+C, full tags 22.56 29.65 27.04
T+C, CNG02 23.17 30.77 27.45
T+C, CNG03 23.27 30.75 27.62

Table 5.11: BLEU scores of various granularities of morphological tags in T+C
scenario.

Our results confirm significant improvement over single-factored baseline.
Detailed knowledge of the morphological systems also proves its utility: by
choosing the most relevant features of tags and lemmas but avoiding sparseness,
we can improve about 0.5 BLEU absolute over T+C with full tags. Too strict
reduction of features used causes a loss.

More Out-of-Domain Data in T and T+C Scenarios

Figure 5.5 gives a chart and full details on our experiments with adding more
data into the T and T+C scenarios. We varied the scenario (T or T+C), the
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mix s

mix

s

s+

s+

mix

L

L

s

L

T

T+C full tags

T+C CNG03

23 24 25 26 27 28 29

s small data, 20k sentences in the domain
s+ small data, 20k sentences in the domain with an additional separate LM

(860k sents out of the domain)
L large data, 860k sentences, separate in-domain and out-of-domain LMs

mix large data, 860k sentences, a single LM mixes the domains

Scenario Acronym Parallel Corpus Language Models Dev (std) Dev (opt) Test (opt)
T mix Large (860k) Large (860k) 23.47 28.74 24.99
T s Baseline (20k) Baseline (20k) 26.52 28.77 25.82
T+C full tags mix Large (860k) Large (860k) 15.66 29.50 26.54
T+C full tags s Baseline (20k) Baseline (20k) 22.56 29.65 27.04
T+C full tags s+ Baseline (20k) 20k+860k 19.97 30.33 27.15
T+C CNG03 s+ Baseline (20k) 20k+860k 19.95 30.48 27.15
T+C CNG03 mix Large (860k) Large (860k) 15.77 30.71 27.29
T L Large (860k) 20k+860k 19.45 29.42 27.41
T+C CNG03 L Large (860k) 20k+860k 14.22 30.33 27.48
T+C CNG03 s Baseline (20k) Baseline (20k) 23.27 30.75 27.62
T+C full tags L Large (860k) 20k+860k 14.06 30.64 28.12

Figure 5.5: The effect of additional data in T and T+C scenarios.

level of detail in the T+C scenario (full tags vs. CNG03), the size of the parallel
corpus used to extract phrases (Baseline vs. Large, as described in section 5.3.1)
and the size or combination of target side language models (a single LM based
on the Baseline or Large corpus, or both of them with separate weights set in
the MERT training).

Several observations can be made:

• Ignoring the domain difference and using only the single Large language
model (denoted “mix” in the chart) hurts. Only the “T+C CNG03” sce-
nario does not confirm this observation and we believe this can be at-
tributed to some randomness in MERT training of “T+C CNG03 s+”.

• CNG03 outperforms full tags only in small data setting, with large data
(treating the domain difference properly), full tags are significantly better.

• The improvement of T+C over T decreases if we use more data.

43



An adjective in MT output. . . Portion
agrees with the governing noun 74%
depends on a verb (cannot check the agreement) 7%
misses the governing noun (cannot check the agreement) 7%
should not occur in MT output 5%
has the governing noun not translated (cannot check the agreement) 5%
mismatches with the governing noun 2%

Table 5.12: Microstudy: adjectives in English→Czech MT output.

Translation of Verb Modifier
. . . preserves meaning 56% 79%
. . . is disrupted 14% 12%
. . . is missing 27% 1%
. . . is unknown (not translated) 0% 5%

Table 5.13: Analysis of 77 Verb-Modifier pairs in 15 sample sentences.

First Experiments with Verb Frames

Microstudy: Current MT Errors

The previous sections described significant improvements gained on small
data sets when checking morphological agreement or adding more data (BLEU
raised from 25.82% to 27.62% or up to 28.12% with additional out-of-domain
parallel data). However, the best result achieved is still far below the margin of
lemmatized BLEU, as estimated in section 5.3.3. In fact, lemmatized BLEU of
our best result is yet a bit higher (35%), indicating that T+C improve not only
morphology, but also word order or lexical selection issues.

We performed a microstudy on local agreement between adjectives and their
governing nouns. Altogether 74% of adjectives agreed with the governing noun
and only 2% of adjectives did not agree; the full listing is given in Table 5.12.

Local agreement thus seems to be relatively correct. In order to find the
source of the remaining morphological errors, we performed another micros-
tudy of current best MT output (BLEU 28.12%) using an intuitive metric.
We checked whether Verb-Modifier relations are properly preserved during the
translation of 15 sample sentences.

The source text of the sample sentences contained 77 Verb-Modifier pairs.
Table 5.13 lists our observations on the two members in each Verb-Modifier pair.
We see that only 43% of verbs are translated correctly and 79% of nouns are
translated correctly. The system tends to skip verbs quite often (21% of cases).

More importantly, our analysis has shown that even in cases where both
the Verb and the Modifier are correct, the relation between them in Czech is
either non-gramatical or meaning-disturbing in 56% of these cases. Commented
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Input: Keep on investing.
MT output: Pokračovalo investováńı. (grammar correct here!)
Gloss: Continued investing. (Meaning: The investing continued.)
Correct: Pokračujte v investováńı.

Input: brokerage firms rushed out ads . . .
MT Output: brokerské firmy vyběhl reklamy

Gloss: brokerage firmspl.fem ransg.masc adspl.voc,sg.gen
pl.nom,pl.acc

Correct option 1: brokerské firmy vyběhly s reklamamipl.instr

Correct option 2: brokerské firmy vydaly reklamypl.acc

Figure 5.6: Two sample errors in translating Verb-Modifier relation from English
to Czech.

samples of such errors are given in Figure 5.6. The first sample shows that
a strong language model can lead to the choice of a grammatical relation that
nevertheless does not convey the original meaning. The second sample illustrates
a situation where two correct options are available but the system chooses an
inappropriate relation, most probably because of backing off to a generic pattern
verb-nounaccusative

plural . This pattern is quite common for for expressing the object
role of many verbs (such as vydat, see Correct option 2 in Figure 5.6), but does
not fit well with the verb vyběhnout. While the target-side data may be rich
enough to learn the generalization vyběhnout–s–instr, no such generalization is
possible with language models over word forms or morphological tags only. The
target side data will be hardly ever rich enough to learn this particular structure
in all correct morphological and lexical variants: vyběhl–s–reklamou, vyběhla–s–
reklamami, vyběhl–s–prohlášeńım, vyběhli–s–oznámeńım, . . . . We would need a
mixed model that combines verb lemmas, prepositions and case information to
properly capture the relations.

To sum up, the analysis has revealed that in our best MT output:

• noun-adjective agreement is already quite fine,

• verbs are often missing,

• verb-modifier relations are often malformed.

Design of Verb Frame Factor

In this section we describe a model that combines verb lemmas, prepositions
and noun cases to improve the verb-modifier relations on the target side and
possibly to favour keeping verbs in MT output. The model is incorporated
to our MT system in the most simple fashion: we simply create an additional
output factor to explicitly model target verb valency/subcategorization, i.e. to
mark verbs and their modifiers in the output. An independent language model
is used to ensure coherence in the verb frame factor.
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Figure 5.7 illustrates the process of converting a Czech sentence to the cor-
responding verb frame factor. We make use of the dependency analysis of the
sentence and associate each input word with a token:

• tokens for verbs have the form H:V〈subpart of speech〉:〈verb lemma〉 indi-
cating that the verb is the head of the frame,

• tokens for words depending on a verb have the form M:〈slot description〉
to denote verb frame members. Slot description is based on the respective
modifier:

– slot description for nouns, pronouns and (nominalized) adjectives
contains only the case information (e.g. substnom for nouns or pro-
nouns in nominative),

– slot description for prepositions contains the preposition lemma and
the case (e.g. prep:naacc for the preposition na in accusative),

– sub-ordinating conjunctions are represented by their lemma (e.g. sub-
ord:zda for the conjunction zda),

– co-ordinating conjunctions are treated in an oversimplified manner,
the slot description just notes that there was a co-ordinating conjunc-
tion. No information is propagated from the co-ordinated elements.

– adverbs are completely ignored, i.e. get a dummy token —

• punctuation symbols have the form PUNCT:〈punctuation symbol〉 and
conjunctions have the form DELIM:〈subpart of speech〉:〈conjunction lemma〉
to keep track of structural delimiters in the verb frame factor,

• all other words get a dummy token —.

Thus for the beginning of the sample sentence in Figure 5.7 Poptávka tr-
vale stoupá za podpory. . . (The demand has been consistently growing under the
encouragement. . . ) we create the following stream:

M:substnom — H:VB:stoupat M:prep:zagen —

The stream indicates that the verb stoupat tends to be modified by a (preced-
ing) subject and (following) argument or adjunct governed by the preposition
za in genitive.

Keeping in mind the valency theory for Czech (e.g. Panevová [1994]), there
are several limitations in our model:

• We do not make any distinctions between argument and adjuncts (except
for the above mentioned deletion of adverbs). Ideally, all adjuncts would
get the dummy token —.

• In theory, the order of verb frame members is not grammatically significant
for some languages, so we should allow independent reordering of the verb
frame factor.
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• If a verb depends on a verb, their modifiers can be nearly arbitrarily
mixed within the clause (in Czech). Our model does not distinguish which
modifiers belong to which of the verbs.

Another problem with the verb frame factor is the explicit representation of
the number of intervening words (tokens —). A skipping language model would
be necessary to describe the linguistic reality more adequately.

Poptávka

M:substnom

Demand

trvale

—

consistently

stoupá

H:VB:stoupat

grows

za

M:prep:zagen

under

podpory

—

encouragement

vládńı

—

government

politiky

—

policies

,

M:Z-

,

řekl

H:Vp:̌ŕıci

said

mluvč́ı

M:substnom

spokesman

.

PUNCT:.

.

Sb Adv

Obj

AuxP

Adv

Atr

Atr

AuxX

Sb

Figure 5.7: Verb frame factor based on dependency syntax tree of a sample
sentence: Demand has been growing consistently under the encouragement of
government policies, a spokesman said.

Preliminary Results with Verb Frame Factor

Table 5.14 displays BLEU scores of the scenario translate-and-check verb
factor (T+Cvf) compared to the single-factored baseline (T). Word alignment
for these experiments was obtained using grow-diag-final heuristic on stemmed
English and lemmatized Czech texts. Only the baseline corpus (20k sentences)
was used to extract phrase tables. The verb frame factor language model is a
simple n-gram LM with n of 7, 9 or 11 and it is based either on the baseline
corpus (PCEDT) or the Czech side of the Large corpus. In all cases, a simple
trigram model checks the fluency of word form stream.

BLEU.dev.opt BLEU.dev.std BLEU.opt
T+Cvf LM-11gr-Large 28.68 19.51 24.23
T+Cvf LM-7gr-Baseline 28.54 19.75 25.05
T+Cvf LM-7gr-Large 28.32 19.69 25.07
T+Cvf LM-9gr-Large 27.98 19.55 25.09
Baseline: T 29.24 25.68 25.23

Table 5.14: Preliminary results with checking of verb frame factor.
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Unfortunately, all T+Cvf results fall below the single-factored baseline. A
more thorough analysis of the data available and the hypothesis space would be
necessary to explain why our verb frame factor tends to mislead the decoder.

XXX why did it fail? I’m going to check if at least the verb-mod-relations
get improved.

Single-factored Results Czech→English

Our primary interest was in English→Czech translation but we also experi-
mented with Czech→English direction, mainly to allow for comparison with
previous reported results.

It should be noted that translating to English in our setting is easier. In
general, there are fewer word forms in English so language models face milder
data spareness and there are fewer chances to make an error (BLEU would
notice). Moreover, the particular test set we use contains input Czech text that
came from an English original and was translated sentence by sentence. The
Czech thus probably does not exhibit full richness and complexity of word order
and language constructions and is easier to translate back to English than a
generic Czech text would be.

Scenario Parallel Corpus Language Models Dev (std) Dev (opt) Test (opt)

T Baseline (20k) Baseline (20k) 28.97 35.39 28.50
T+C Baseline (20k) Baseline (20k) 23.07 36.13 28.66
T Large (860k) 20k+860k 19.31 39.60 33.37
T Large (860k) Large (860k, i.e. mix) 28.94 40.15 34.12

Table 5.15: Sample Czech→English BLEU scores.

Table 5.15 lists Moses results of Czech→English translation. We observe a
minor improvement when checking the part-of-speech factor (T+C). A larger im-
provement is obtained by adding more data and quite differently from English→Czech
results (see section 5.3.3), mixing in-domain and out-of-domain LM data does
not hurt the performance.

Summary and Conclusion

We experimented with factored English→Czech translation. The majority of
our experiments were carried out in a small data setting and we translated
to a morphologically rich language. In this setting, lemmatization or stem-
ming of training data is vital for obtaining reliable alignments. Multi-factored
translation for ensuring coherence of morphological properties of output words
significantly increases BLEU performance, although the effect is reduced with
additional training data. Experiments also indicate that more complex transla-
tion scenarios lower the scores, probably due to more severe search errors.

Our English→Czech experiments confirm that in minimum-error-rate train-
ing, it is helpful to keep language models based on in- and out-of-domain data
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separate. We did not observe this domain sensitivity in Czech→English direc-
tion.

Based on manual analysis of sample output sentences, we also conducted
some preliminary experiments on using target-side syntactic information in or-
der to improve grammaticality of verb-modifier relations. The results are rather
inconclusive and further refinement of the model would be necessary.
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5.7 Linguistic Information for Word Alignment

5.7.1 Word Alignment

If we open a common bilingual dictionary, we may find an entry like
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Haus = house, building, home, household

Many words have multiple translations, some of which are more likely than
others.

If we had a large collection of German text, paired with its translation into
English, we could count how often Haus is translated into each of the given
choices. We can use the counts to estimate a lexical translation probability
distribution

t : e|f → t(e|f)

that, given a foreign word, f , returns a probability for each choice for an
English translation e, that indicates how likely that translation is.

We can derive an estimate of the translation probability distribution from the
data by using the ratio of the counts. For example, if we have 10000 occurrences
of Haus and 8000 translate to house, then t(house|Haus) = 0.8.

For some words that are infrequent in the corpus, the estimates of the prob-
ability distribution are not very accurate. Using other linguistic information,
such as observing that in a specific language pair verbs usually get translated
as verbs, could help in building a more accurate translation.

Let’s look at an example. Imagine we wanted to translate the German
sentence das Haus ist klein . The sentence can be translated word by word
into English. One possible translation is the house is small .

Implicit in these translations is an alignment, a mapping from German words
to English words:

An alignment can be formalized with an alignment function a : i → j. This
function maps each English target word at position i to a German source word
at position j.

For example, if we are given the following pair of sentences:
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the alignment function will be
a : {1 → 3, 2 → 4, 3 → 2, 4 → 1}.

5.7.2 IBM Model 1

Lexical translations and the notion of alignment allow us to define a model
capable of generating a number of different translations for a sentence, each
with a different probability. One such model is IBM Model 1, which will be
described below.

For each target word e that is produced by the model from a source word f ,
we want to factor in the translation probability t(e|f).

The translation probability of a foreign sentence f = (f1, . . . , flf ) of length
lf into an English sentence e = (e1, . . . , ele) of length le with an alignment of
each English word ej to a foreign word fi according to alignment a : j → i is:

p(e, a|f) = ε
(lf +1)le

∏le
j=1 t(ej |fa(j))

5.7.3 Learning the Lexical Translation Model

A method for estimating these translation probability distributions from sentence-
aligned parallel text is now needed.

The previous section describes a strategy for estimating the lexical trans-
lation probability distributions from a word-aligned parallel corpus. However,
while large amounts of sentence-aligned parallel texts can be easily collected,
word-aligned data cannot. We would thus like to estimate these lexical transla-
tion distributions without knowing the actual word alignment, which we consider
a hidden variable. To do this, we use the Expectation-Maximization algorithm:

EM algorithm

• Initialize model (typically with uniform distribution)

• Apply the model to the data (expectation step)
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• Learn the model from the data (maximization step)

• Iterate steps 2-3 until convergence

First, we initialize the model. Without prior knowledge, uniform probability
distributions are a good starting point. In the expectation step, we apply the
model to the data and estimate the most likely alignments. In the maximization
step, we learn the model from the data and augment the data with guesses for
the gaps.

Expectation step

When we apply the model to the data, we need to compute the probability
of different alignments given a sentence pair in the data:

p(a|e, f) = p(e,a|f)
p(e|f)

p(e|f), the probability of translating sentence f into sentence e is derived as:

p(e|f) =
∑

a p(e, a|f) =
∏le

j=1

∑lf
i=0 t(ej |fi)

Putting the previous two equations together,

p(a|e, f) = p(e,a|f)
p(e|f) =

∏le
j=1

t(ej |fa(j))Plf
i=0 t(ej |fi)

.

Maximization Step
For the maximization step, we need to collect counts over all possible align-

ments, weighted by their probabilities. For this purpose, we define a count
function c that collects evidence from a sentence pair (e, f) that a particular
source word f translates into a particular target word e.

c(e|f ; e, f) =
∑

a p(a|e, f) = t(e|f)Ple
j=1 t(e|fa(j))

∑le
j=1 δ(e, ej)

∑lf
i=0 δ(f, fi)

where δ(x, y) is 1 is x = y and 0 otherwise.
Given the count function, we can estimate the new translation probability

distribution by:

t(e|f ; e, f) =
P

(e,f) c(e|f ;e,f)P
f

P
(e,f) c(e|f ;e,f) .

5.7.4 Introducing Part of Speech Information to the Model

In order to introduce part of speech information to the model, we need to
consider the probability of translating a foreign word fword with part of speech
fPOS into English word eword with part of speech ePOS . In order words, we
need to consider the translation probability distribution t(e|f), where e and f
are vectors, e = (eword, ePOS), f = (fword, fPOS). In order to estimate this
density function, we need to make some independence assumptions. Depending
on the independence assumption, several models can be formed:
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POS Model 1 Assuming that words are independent from their parts of
speech, we can estimate the translation density as:

t(e|f) = t(eword|fword) ∗ t(ePOS |fPOS)

POS Model 2 Making weaker independence assumption, the translation den-
sity can be estimated as:

t(e|f) = λp(ePOS |eword)t(eword|fword) + (1− λ)p(eword|ePOS)t(ePOS |fPOS)

This model has the advantage that it can weigh the importance given to
part-of-speech information.

5.7.5 Experiment

To test whether part-of-speech information improves alignment quality, we com-
pared alignments generated using IBM Model 1, alignments generated using
only part-of-speech information, and alignments generated using POS Model 1
against manual alignments. The metric used to compare the alignments was
AER (alignment error rate). The data consisted of European Parliament Ger-
man and English parallel corpora. Experiments were done using different sizes
of corpora. The scores are presented in the following table:

 
AER 10k 20k 40k 60k 80k 100k 
IBM 
Model 1 

54.7 51.8 49.3 48.6 47.5 47.1 

POS Only 76.0 75.4 75.5 75.1 75.3 75.1 
POS 
Model 1 

53.6 51.5 49.6 48.4 47.7 47.3 

 

The first row indicates the number of sentences used for training and the
first column indicates the model used to generate alignments.

As expected, the AER of the alignments generated using only part of speech
information are very high, indicating that part-of-speech information is not
sufficient to generate good alignments. However, an AER of around .75 indicates
that there is some information provided by part-of-speech information that could
be useful.

The AER of alignments generated with IBM Model 1 doesn’t statistically
differ from the AER of alignments generated with the additional part of speech
information. One reason for this might be that the part-of-speech probability
was given equal weight to the word probability, even though the latter is more
important. POS Model 2 might thus generate an improvement in AER.
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Chapter 6

Conclusions

Philipp Koehn: Accomplishments
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Appendix A

Follow-Up Research
Proposals

A.1 Translation with syntax and factors: Han-
dling global and local dependencies in SMT

Brooke Cowan: just cut and paste your proposal here

A.2 Exploiting Ambiguous Input in Statistical
Machine Translation

Richard Zens: just cut and paste your proposal here

55



Bibliography

Bojar, O. (2004). Problems of Inducing Large Coverage Constraint-Based De-
pendency Grammar for Czech. In Constraint Solving and Language Pro-
cessing, CSLP 2004, volume LNAI 3438, pages 90–103, Roskilde University.
Springer.

Bojar, O., Matusov, E., and Ney, H. (2006). Czech-English Phrase-Based Ma-
chine Translation. In FinTAL 2006, volume LNAI 4139, pages 214–224,
Turku, Finland. Springer.
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