Welcome to mirror list, hosted at ThFree Co, Russian Federation.

PhraseDictionaryMultiModelCounts.cpp « TranslationModel « moses - github.com/moses-smt/mosesdecoder.git - Unnamed repository; edit this file 'description' to name the repository.
summaryrefslogtreecommitdiff
blob: 06b53e9c6496cbcc022807e3e131d490f248957f (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
/***********************************************************************
Moses - factored phrase-based language decoder
Copyright (C) 2006 University of Edinburgh

This library is free software; you can redistribute it and/or
modify it under the terms of the GNU Lesser General Public
License as published by the Free Software Foundation; either
version 2.1 of the License, or (at your option) any later version.

This library is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
Lesser General Public License for more details.

You should have received a copy of the GNU Lesser General Public
License along with this library; if not, write to the Free Software
Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA
***********************************************************************/
#include "util/exception.hh"

#include "moses/TranslationModel/PhraseDictionaryMultiModelCounts.h"

#define LINE_MAX_LENGTH 100000
#include "phrase-extract/SafeGetline.h" // for SAFE_GETLINE()

using namespace std;

template<typename T>
void OutputVec(const vector<T> &vec)
{
  for (size_t i = 0; i < vec.size(); ++i) {
    cerr << vec[i] << " " << flush;
  }
  cerr << endl;
}

// from phrase-extract/tables-core.cpp
vector<string> tokenize( const char* input )
{
  vector< string > token;
  bool betweenWords = true;
  int start=0;
  int i=0;
  for(; input[i] != '\0'; i++) {
    bool isSpace = (input[i] == ' ' || input[i] == '\t');

    if (!isSpace && betweenWords) {
      start = i;
      betweenWords = false;
    } else if (isSpace && !betweenWords) {
      token.push_back( string( input+start, i-start ) );
      betweenWords = true;
    }
  }
  if (!betweenWords)
    token.push_back( string( input+start, i-start ) );
  return token;
}

namespace Moses
{

PhraseDictionaryMultiModelCounts::PhraseDictionaryMultiModelCounts(const std::string &line)
  :PhraseDictionaryMultiModel("PhraseDictionaryMultiModelCounts", line)
{
  m_mode = "instance_weighting"; //TODO: set this in config; use m_mode to switch between interpolation and instance weighting
  m_combineFunction = InstanceWeighting;
  //m_mode = "interpolate";
  //m_combineFunction = LinearInterpolationFromCounts;

  for (size_t i = 0; i < m_args.size(); ++i) {
    const vector<string> &args = m_args[i];
    if (args[0] == "mode") {
      m_mode = args[1];
      if (m_mode == "instance_weighting")
        m_combineFunction = InstanceWeighting;
      else if (m_mode == "interpolate") {
        m_combineFunction = LinearInterpolationFromCounts;
      } else {
        ostringstream msg;
        msg << "combination mode unknown: " << m_mode;
        throw runtime_error(msg.str());
      }

    } else if (args[0] == "lex-e2f") {
      m_lexE2FStr = Tokenize(args[1], ",");
      CHECK(m_lexE2FStr.size() == m_pdStr.size());
    } else if (args[0] == "lex-f2e") {
      m_lexF2EStr = Tokenize(args[1], ",");
      CHECK(m_lexF2EStr.size() == m_pdStr.size());
    }

    else if (args[0] == "target-table") {
      m_targetTable = Tokenize(args[1], ",");
      CHECK(m_targetTable.size() == m_pdStr.size());
    }



  } // for

}

bool PhraseDictionaryMultiModelCounts::OverrideParameter(const std::string& key, const std::string& value)
{
    if (key == "mode") {
      m_mode = value;
      if (m_mode == "instance_weighting")
        m_combineFunction = InstanceWeighting;
      else if (m_mode == "interpolate") {
        m_combineFunction = LinearInterpolationFromCounts;
      } else {
        ostringstream msg;
        msg << "combination mode unknown: " << m_mode;
        throw runtime_error(msg.str());
      }

    } else if (key == "lex-e2f") {
      m_lexE2FStr = Tokenize(value, ",");
      CHECK(m_lexE2FStr.size() == m_pdStr.size());
    } else if (key == "lex-f2e") {
      m_lexF2EStr = Tokenize(value, ",");
      CHECK(m_lexF2EStr.size() == m_pdStr.size());
    }

    else if (key == "target-table") {
      m_targetTable = Tokenize(value, ",");
      CHECK(m_targetTable.size() == m_pdStr.size());
    }

    else {
    	PhraseDictionaryMultiModel::OverrideParameter(key, value);
    }
}

PhraseDictionaryMultiModelCounts::~PhraseDictionaryMultiModelCounts()
{
  RemoveAllInColl(m_lexTable_e2f);
  RemoveAllInColl(m_lexTable_f2e);
}


void PhraseDictionaryMultiModelCounts::Load()
{
  for(size_t i = 0; i < m_numModels; ++i) {

    // phrase table
    const string &ptName = m_pdStr[i];

    PhraseDictionary *pt;
    pt = FindPhraseDictionary(ptName);
    CHECK(pt);
    m_pd.push_back(pt);

    // reverse
    const string &target_table = m_targetTable[i];
    pt = FindPhraseDictionary(target_table);
    CHECK(pt);
    m_inverse_pd.push_back(pt);

    // lex
    string lex_e2f = m_lexE2FStr[i];
    string lex_f2e = m_lexF2EStr[i];
    lexicalTable* e2f = new lexicalTable;
    LoadLexicalTable(lex_e2f, e2f);
    lexicalTable* f2e = new lexicalTable;
    LoadLexicalTable(lex_f2e, f2e);

    m_lexTable_e2f.push_back(e2f);
    m_lexTable_f2e.push_back(f2e);

  }

  /*

  for(size_t i = 0; i < m_numModels; ++i){

      string impl, file, main_table, target_table, lex_e2f, lex_f2e;

      string delim = ":";
      size_t delim_pos = files[i].find(delim);
      UTIL_THROW_IF(delim_pos >= files[i].size(), util::Exception, "Phrase table must be specified in this format: Implementation:Path");

      impl = files[i].substr(0,delim_pos);
      file = files[i].substr(delim_pos+1,files[i].size());
      main_table = file + "/count-table";
      target_table = file + "/count-table-target";
      lex_e2f = file + "/lex.counts.e2f";
      lex_f2e = file + "/lex.counts.f2e";
      size_t componentTableLimit = 0; // using 0, because we can't trust implemented pruning algorithms with count tables.

      PhraseTableImplementation implementation = (PhraseTableImplementation) Scan<int>(impl);

      //how many actual scores there are in the phrase tables
      size_t numScoresCounts = 3;
      size_t numScoresTargetCounts = 1;
      if (implementation == Memory) {

            if (!FileExists(main_table) && FileExists(main_table + ".gz")) main_table += ".gz";
            if (!FileExists(target_table) && FileExists(target_table + ".gz")) target_table += ".gz";

            PhraseDictionaryMemory* pdm = new PhraseDictionaryMemory(m_numScoreComponent, m_feature_load);
            pdm->SetNumScoreComponentMultiModel(numScoresCounts); //instead of complaining about inequal number of scores, silently fill up the score vector with zeroes
            pdm->Load( input, output, main_table, m_weight, componentTableLimit, languageModels, m_weightWP);
            m_pd.push_back(pdm);

            PhraseDictionaryMemory* pdm_inverse = new PhraseDictionaryMemory(m_numScoreComponent, m_feature_load);
            pdm_inverse->SetNumScoreComponentMultiModel(numScoresTargetCounts);
            pdm_inverse->Load( input, output, target_table, m_weight, componentTableLimit, languageModels, m_weightWP);
            m_inverse_pd.push_back(pdm_inverse);
      } else if (implementation == Binary) {
            PhraseDictionaryTreeAdaptor* pdta = new PhraseDictionaryTreeAdaptor(m_numScoreComponent, numInputScores , m_feature_load);
            pdta->SetNumScoreComponentMultiModel(m_numScoreComponent); //for binary models, we need to pass number of log-linear components to correctly resize the score vector
            pdta->Load(input, output, main_table, m_weight, m_componentTableLimit, languageModels, m_weightWP);
            m_pd.push_back(pdta);

            PhraseDictionaryTreeAdaptor* pdta_inverse = new PhraseDictionaryTreeAdaptor(m_numScoreComponent, numInputScores , m_feature_load);
            pdta_inverse->SetNumScoreComponentMultiModel(m_numScoreComponent);
            pdta_inverse->Load(input, output, target_table, m_weight, m_componentTableLimit, languageModels, m_weightWP);
            m_inverse_pd.push_back(pdta_inverse);
      } else if (implementation == Compact) {
  #ifndef WIN32
            PhraseDictionaryCompact* pdc = new PhraseDictionaryCompact(m_numScoreComponent, implementation, m_feature_load);
            pdc->SetNumScoreComponentMultiModel(m_numScoreComponent); //for compact models, we need to pass number of log-linear components to correctly resize the score vector
            pdc->Load( input, output, main_table, m_weight, componentTableLimit, languageModels, m_weightWP);
            m_pd.push_back(pdc);

            PhraseDictionaryCompact* pdc_inverse = new PhraseDictionaryCompact(m_numScoreComponent, implementation, m_feature_load);
            pdc_inverse->SetNumScoreComponentMultiModel(m_numScoreComponent);
            pdc_inverse->Load( input, output, target_table, m_weight, componentTableLimit, languageModels, m_weightWP);
            m_inverse_pd.push_back(pdc_inverse);
  #else
            UTIL_THROW(util::Exception, "Compact phrase table not supported in windows");
  #endif
      }
      else {
        UTIL_THROW(util::Exception,"PhraseDictionaryMultiModel does not support phrase table type " << implementation);
      }

      lexicalTable* e2f = new lexicalTable;
      LoadLexicalTable(lex_e2f, e2f);
      lexicalTable* f2e = new lexicalTable;
      LoadLexicalTable(lex_f2e, f2e);

      m_lexTable_e2f.push_back(e2f);
      m_lexTable_f2e.push_back(f2e);

  }

  */

}


const TargetPhraseCollection *PhraseDictionaryMultiModelCounts::GetTargetPhraseCollection(const Phrase& src) const
{

  vector<vector<float> > multimodelweights;
  bool normalize;
  normalize = (m_mode == "interpolate") ? true : false;
  multimodelweights = getWeights(4,normalize);

  //source phrase frequency is shared among all phrase pairs
  vector<float> fs(m_numModels);

  map<string,multiModelCountsStatistics*>* allStats = new(map<string,multiModelCountsStatistics*>);

  CollectSufficientStatistics(src, fs, allStats);

  TargetPhraseCollection *ret = CreateTargetPhraseCollectionCounts(src, fs, allStats, multimodelweights);

  ret->NthElement(m_tableLimit); // sort the phrases for pruning later
  const_cast<PhraseDictionaryMultiModelCounts*>(this)->CacheForCleanup(ret);
  return ret;
}


void PhraseDictionaryMultiModelCounts::CollectSufficientStatistics(const Phrase& src, vector<float> &fs, map<string,multiModelCountsStatistics*>* allStats) const
//fill fs and allStats with statistics from models
{
  for(size_t i = 0; i < m_numModels; ++i) {
    const PhraseDictionary &pd = *m_pd[i];

    TargetPhraseCollection *ret_raw = (TargetPhraseCollection*)  pd.GetTargetPhraseCollection( src);
    if (ret_raw != NULL) {

      TargetPhraseCollection::iterator iterTargetPhrase;
      for (iterTargetPhrase = ret_raw->begin(); iterTargetPhrase != ret_raw->end();  ++iterTargetPhrase) {

        TargetPhrase * targetPhrase = *iterTargetPhrase;
        vector<float> raw_scores = targetPhrase->GetScoreBreakdown().GetScoresForProducer(&pd);

        string targetString = targetPhrase->GetStringRep(m_output);
        if (allStats->find(targetString) == allStats->end()) {

          multiModelCountsStatistics * statistics = new multiModelCountsStatistics;
          statistics->targetPhrase = new TargetPhrase(*targetPhrase); //make a copy so that we don't overwrite the original phrase table info

          // zero out scores from original phrase table
          statistics->targetPhrase->GetScoreBreakdown().ZeroDenseFeatures(&pd);

          statistics->fst.resize(m_numModels);
          statistics->ft.resize(m_numModels);
          Scores scoreVector(5);
          scoreVector[0] = -raw_scores[0];
          scoreVector[1] = -raw_scores[1];
          scoreVector[2] = -raw_scores[2];
          statistics->targetPhrase->GetScoreBreakdown().Assign(this, scoreVector); // set scores to 0
          statistics->targetPhrase->Evaluate(src, GetFeaturesToApply());

          (*allStats)[targetString] = statistics;

        }
        multiModelCountsStatistics * statistics = (*allStats)[targetString];

        statistics->fst[i] = UntransformScore(raw_scores[0]);
        statistics->ft[i] = UntransformScore(raw_scores[1]);
        fs[i] = UntransformScore(raw_scores[2]);
        (*allStats)[targetString] = statistics;
      }
    }
  }

  // get target phrase frequency for models which have not seen the phrase pair
  for ( map< string, multiModelCountsStatistics*>::const_iterator iter = allStats->begin(); iter != allStats->end(); ++iter ) {
    multiModelCountsStatistics * statistics = iter->second;

    for (size_t i = 0; i < m_numModels; ++i) {
      if (!statistics->ft[i]) {
        statistics->ft[i] = GetTargetCount(static_cast<const Phrase&>(*statistics->targetPhrase), i);
      }
    }
  }
}

TargetPhraseCollection* PhraseDictionaryMultiModelCounts::CreateTargetPhraseCollectionCounts(const Phrase &src, vector<float> &fs, map<string,multiModelCountsStatistics*>* allStats, vector<vector<float> > &multimodelweights) const
{
  TargetPhraseCollection *ret = new TargetPhraseCollection();
  for ( map< string, multiModelCountsStatistics*>::const_iterator iter = allStats->begin(); iter != allStats->end(); ++iter ) {

    multiModelCountsStatistics * statistics = iter->second;

    if (statistics->targetPhrase->GetAlignTerm().GetSize() == 0) {
      UTIL_THROW(util::Exception, " alignment information empty\ncount-tables need to include alignment information for computation of lexical weights.\nUse --phrase-word-alignment during training; for on-disk tables, also set -alignment-info when creating on-disk tables.");
    }

    try {
      pair<vector< set<size_t> >, vector< set<size_t> > > alignment = GetAlignmentsForLexWeights(src, static_cast<const Phrase&>(*statistics->targetPhrase), statistics->targetPhrase->GetAlignTerm());
      vector< set<size_t> > alignedToT = alignment.first;
      vector< set<size_t> > alignedToS = alignment.second;
      double lexst = ComputeWeightedLexicalTranslation(static_cast<const Phrase&>(*statistics->targetPhrase), src, alignedToS, m_lexTable_e2f, multimodelweights[1], m_output, m_input );
      double lexts = ComputeWeightedLexicalTranslation(src, static_cast<const Phrase&>(*statistics->targetPhrase), alignedToT, m_lexTable_f2e, multimodelweights[3], m_input, m_output );

      Scores scoreVector(5);
      scoreVector[0] = FloorScore(TransformScore(m_combineFunction(statistics->fst, statistics->ft, multimodelweights[0])));
      scoreVector[1] = FloorScore(TransformScore(lexst));
      scoreVector[2] = FloorScore(TransformScore(m_combineFunction(statistics->fst, fs, multimodelweights[2])));
      scoreVector[3] = FloorScore(TransformScore(lexts));
      scoreVector[4] = FloorScore(TransformScore(2.718));

      statistics->targetPhrase->GetScoreBreakdown().Assign(this, scoreVector);
      statistics->targetPhrase->Evaluate(src, GetFeaturesToApply());
    } catch (AlignmentException& e) {
      continue;
    }

    ret->Add(new TargetPhrase(*statistics->targetPhrase));
  }

  RemoveAllInMap(*allStats);
  delete allStats;
  return ret;
}


float PhraseDictionaryMultiModelCounts::GetTargetCount(const Phrase &target, size_t modelIndex) const
{

  const PhraseDictionary &pd = *m_inverse_pd[modelIndex];
  TargetPhraseCollection *ret_raw = (TargetPhraseCollection*)  pd.GetTargetPhraseCollection(target);

  // in inverse mode, we want the first score of the first phrase pair (note: if we were to work with truly symmetric models, it would be the third score)
  if (ret_raw != NULL) {
    TargetPhrase * targetPhrase = *(ret_raw->begin());
    return UntransformScore(targetPhrase->GetScoreBreakdown().GetScoresForProducer(&pd)[0]);
  }

  // target phrase unknown
  else return 0;
}


pair<PhraseDictionaryMultiModelCounts::AlignVector,PhraseDictionaryMultiModelCounts::AlignVector> PhraseDictionaryMultiModelCounts::GetAlignmentsForLexWeights(const Phrase &phraseS, const Phrase &phraseT, const AlignmentInfo &alignment) const
{

  size_t tsize = phraseT.GetSize();
  size_t ssize = phraseS.GetSize();
  AlignVector alignedToT (tsize);
  AlignVector alignedToS (ssize);
  AlignmentInfo::const_iterator iter;

  for (iter = alignment.begin(); iter != alignment.end(); ++iter) {
    const pair<size_t,size_t> &alignPair = *iter;
    size_t s = alignPair.first;
    size_t t = alignPair.second;
    if (s >= ssize || t >= tsize) {
      cerr << "Error: inconsistent alignment for phrase pair: " << phraseS << " - " << phraseT << endl;
      cerr << "phrase pair will be discarded" << endl;
      throw AlignmentException();
    }
    alignedToT[t].insert( s );
    alignedToS[s].insert( t );
  }
  return make_pair(alignedToT,alignedToS);
}


double PhraseDictionaryMultiModelCounts::ComputeWeightedLexicalTranslation( const Phrase &phraseS, const Phrase &phraseT, AlignVector &alignment, const vector<lexicalTable*> &tables, vector<float> &multimodelweights, const vector<FactorType> &input_factors, const vector<FactorType> &output_factors ) const
{
  // lexical translation probability

  double lexScore = 1.0;
  string null = "NULL";

  // all target words have to be explained
  for(size_t ti=0; ti<alignment.size(); ti++) {
    const set< size_t > & srcIndices = alignment[ ti ];
    Word t_word = phraseT.GetWord(ti);
    string ti_str = t_word.GetString(output_factors, false);
    if (srcIndices.empty()) {
      // explain unaligned word by NULL
      lexScore *= GetLexicalProbability( null, ti_str, tables, multimodelweights );
    } else {
      // go through all the aligned words to compute average
      double thisWordScore = 0;
      for (set< size_t >::const_iterator si(srcIndices.begin()); si != srcIndices.end(); ++si) {
        string s_str = phraseS.GetWord(*si).GetString(input_factors, false);
        thisWordScore += GetLexicalProbability( s_str, ti_str, tables, multimodelweights );
      }
      lexScore *= thisWordScore / srcIndices.size();
    }
  }
  return lexScore;
}


lexicalCache PhraseDictionaryMultiModelCounts::CacheLexicalStatistics( const Phrase &phraseS, const Phrase &phraseT, AlignVector &alignment, const vector<lexicalTable*> &tables, const vector<FactorType> &input_factors, const vector<FactorType> &output_factors )
{
//do all the necessary lexical table lookups and get counts, but don't apply weights yet

  string null = "NULL";
  lexicalCache ret;

  // all target words have to be explained
  for(size_t ti=0; ti<alignment.size(); ti++) {
    const set< size_t > & srcIndices = alignment[ ti ];
    Word t_word = phraseT.GetWord(ti);
    string ti_str = t_word.GetString(output_factors, false);

    vector<lexicalPair> ti_vector;
    if (srcIndices.empty()) {
      // explain unaligned word by NULL
      vector<float> joint_count (m_numModels);
      vector<float> marginals (m_numModels);

      FillLexicalCountsJoint(null, ti_str, joint_count, tables);
      FillLexicalCountsMarginal(null, marginals, tables);

      ti_vector.push_back(make_pair(joint_count, marginals));

    } else {
      for (set< size_t >::const_iterator si(srcIndices.begin()); si != srcIndices.end(); ++si) {
        string s_str = phraseS.GetWord(*si).GetString(input_factors, false);
        vector<float> joint_count (m_numModels);
        vector<float> marginals (m_numModels);

        FillLexicalCountsJoint(s_str, ti_str, joint_count, tables);
        FillLexicalCountsMarginal(s_str, marginals, tables);

        ti_vector.push_back(make_pair(joint_count, marginals));
      }
    }
    ret.push_back(ti_vector);
  }
  return ret;
}


double PhraseDictionaryMultiModelCounts::ComputeWeightedLexicalTranslationFromCache( lexicalCache &cache, vector<float> &weights ) const
{
  // lexical translation probability

  double lexScore = 1.0;

  for (lexicalCache::const_iterator iter = cache.begin();  iter != cache.end(); ++iter) {
    vector<lexicalPair> t_vector = *iter;
    double thisWordScore = 0;
    for ( vector<lexicalPair>::const_iterator iter2 = t_vector.begin();  iter2 != t_vector.end(); ++iter2) {
      vector<float> joint_count = iter2->first;
      vector<float> marginal = iter2->second;
      thisWordScore += m_combineFunction(joint_count, marginal, weights);
    }
    lexScore *= thisWordScore / t_vector.size();
  }
  return lexScore;
}

// get lexical probability for single word alignment pair
double PhraseDictionaryMultiModelCounts::GetLexicalProbability( string &wordS, string &wordT, const vector<lexicalTable*> &tables, vector<float> &multimodelweights ) const
{
  vector<float> joint_count (m_numModels);
  vector<float> marginals (m_numModels);

  FillLexicalCountsJoint(wordS, wordT, joint_count, tables);
  FillLexicalCountsMarginal(wordS, marginals, tables);

  double lexProb = m_combineFunction(joint_count, marginals, multimodelweights);

  return lexProb;
}


void PhraseDictionaryMultiModelCounts::FillLexicalCountsJoint(string &wordS, string &wordT, vector<float> &count, const vector<lexicalTable*> &tables) const
{
  for (size_t i=0; i < m_numModels; i++) {
    lexicalMapJoint::iterator joint_s = tables[i]->joint.find( wordS );
    if (joint_s == tables[i]->joint.end()) count[i] = 0.0;
    else {
      lexicalMap::iterator joint_t = joint_s->second.find( wordT );
      if (joint_t == joint_s->second.end()) count[i] = 0.0;
      else count[i] = joint_t->second;
    }
  }
}

void PhraseDictionaryMultiModelCounts::FillLexicalCountsMarginal(string &wordS, vector<float> &count, const vector<lexicalTable*> &tables) const
{
  for (size_t i=0; i < m_numModels; i++) {
    lexicalMap::iterator marginal_s = tables[i]->marginal.find( wordS );
    if (marginal_s == tables[i]->marginal.end()) count[i] = 0.0;
    else count[i] = marginal_s->second;
  }
}


void PhraseDictionaryMultiModelCounts::LoadLexicalTable( string &fileName, lexicalTable* ltable)
{

  cerr << "Loading lexical translation table from " << fileName;
  ifstream inFile;
  inFile.open(fileName.c_str());
  if (inFile.fail()) {
    cerr << " - ERROR: could not open file\n";
    exit(1);
  }
  istream *inFileP = &inFile;

  char line[LINE_MAX_LENGTH];

  int i=0;
  while(true) {
    i++;
    if (i%100000 == 0) cerr << "." << flush;
    SAFE_GETLINE((*inFileP), line, LINE_MAX_LENGTH, '\n', __FILE__);
    if (inFileP->eof()) break;

    vector<string> token = tokenize( line );
    if (token.size() != 4) {
      cerr << "line " << i << " in " << fileName
           << " has wrong number of tokens, skipping:\n"
           << token.size() << " " << token[0] << " " << line << endl;
      continue;
    }

    double joint = atof( token[2].c_str() );
    double marginal = atof( token[3].c_str() );
    string wordT = token[0];
    string wordS = token[1];
    ltable->joint[ wordS ][ wordT ] = joint;
    ltable->marginal[ wordS ] = marginal;
  }
  cerr << endl;

}


#ifdef WITH_DLIB
vector<float> PhraseDictionaryMultiModelCounts::MinimizePerplexity(vector<pair<string, string> > &phrase_pair_vector)
{

  const StaticData &staticData = StaticData::Instance();
  const string& factorDelimiter = staticData.GetFactorDelimiter();

  map<pair<string, string>, size_t> phrase_pair_map;

  for ( vector<pair<string, string> >::const_iterator iter = phrase_pair_vector.begin(); iter != phrase_pair_vector.end(); ++iter ) {
    phrase_pair_map[*iter] += 1;
  }

  vector<multiModelCountsStatisticsOptimization*> optimizerStats;

  for ( map<pair<string, string>, size_t>::iterator iter = phrase_pair_map.begin(); iter != phrase_pair_map.end(); ++iter ) {

    pair<string, string> phrase_pair = iter->first;
    string source_string = phrase_pair.first;
    string target_string = phrase_pair.second;

    vector<float> fs(m_numModels);
    map<string,multiModelCountsStatistics*>* allStats = new(map<string,multiModelCountsStatistics*>);

    Phrase sourcePhrase(0);
    sourcePhrase.CreateFromString(Input, m_input, source_string, factorDelimiter, NULL);

    CollectSufficientStatistics(sourcePhrase, fs, allStats); //optimization potential: only call this once per source phrase

    //phrase pair not found; leave cache empty
    if (allStats->find(target_string) == allStats->end()) {
      RemoveAllInMap(*allStats);
      delete allStats;
      continue;
    }

    multiModelCountsStatisticsOptimization * targetStatistics = new multiModelCountsStatisticsOptimization();
    targetStatistics->targetPhrase = new TargetPhrase(*(*allStats)[target_string]->targetPhrase);
    targetStatistics->fs = fs;
    targetStatistics->fst = (*allStats)[target_string]->fst;
    targetStatistics->ft = (*allStats)[target_string]->ft;
    targetStatistics->f = iter->second;

    try {
      pair<vector< set<size_t> >, vector< set<size_t> > > alignment = GetAlignmentsForLexWeights(sourcePhrase, static_cast<const Phrase&>(*targetStatistics->targetPhrase), targetStatistics->targetPhrase->GetAlignTerm());
      targetStatistics->lexCachee2f = CacheLexicalStatistics(static_cast<const Phrase&>(*targetStatistics->targetPhrase), sourcePhrase, alignment.second, m_lexTable_e2f, m_output, m_input );
      targetStatistics->lexCachef2e = CacheLexicalStatistics(sourcePhrase, static_cast<const Phrase&>(*targetStatistics->targetPhrase), alignment.first, m_lexTable_f2e, m_input, m_output );

      optimizerStats.push_back(targetStatistics);
    } catch (AlignmentException& e) {}

    RemoveAllInMap(*allStats);
    delete allStats;
  }

  Sentence sentence;
  CleanUpAfterSentenceProcessing(sentence); // free memory used by compact phrase tables

  vector<float> ret (m_numModels*4);
  for (size_t iFeature=0; iFeature < 4; iFeature++) {

    CrossEntropyCounts * ObjectiveFunction = new CrossEntropyCounts(optimizerStats, this, iFeature);

    vector<float> weight_vector = Optimize(ObjectiveFunction, m_numModels);

    if (m_mode == "interpolate") {
      weight_vector = normalizeWeights(weight_vector);
    } else if (m_mode == "instance_weighting") {
      float first_value = weight_vector[0];
      for (size_t i=0; i < m_numModels; i++) {
        weight_vector[i] = weight_vector[i]/first_value;
      }
    }
    cerr << "Weight vector for feature " << iFeature << ": ";
    for (size_t i=0; i < m_numModels; i++) {
      ret[(iFeature*m_numModels)+i] = weight_vector[i];
      cerr << weight_vector[i] << " ";
    }
    cerr << endl;
    delete ObjectiveFunction;
  }

  RemoveAllInColl(optimizerStats);
  return ret;

}

double CrossEntropyCounts::operator() ( const dlib::matrix<double,0,1>& arg) const
{
  double total = 0.0;
  double n = 0.0;
  std::vector<float> weight_vector (m_model->m_numModels);

  for (int i=0; i < arg.nr(); i++) {
    weight_vector[i] = arg(i);
  }
  if (m_model->m_mode == "interpolate") {
    weight_vector = m_model->normalizeWeights(weight_vector);
  }

  for ( std::vector<multiModelCountsStatisticsOptimization*>::const_iterator iter = m_optimizerStats.begin(); iter != m_optimizerStats.end(); ++iter ) {
    multiModelCountsStatisticsOptimization* statistics = *iter;
    size_t f = statistics->f;

    double score;
    if (m_iFeature == 0) {
      score = m_model->m_combineFunction(statistics->fst, statistics->ft, weight_vector);
    } else if (m_iFeature == 1) {
      score = m_model->ComputeWeightedLexicalTranslationFromCache(statistics->lexCachee2f, weight_vector);
    } else if (m_iFeature == 2) {
      score = m_model->m_combineFunction(statistics->fst, statistics->fs, weight_vector);
    } else if (m_iFeature == 3) {
      score = m_model->ComputeWeightedLexicalTranslationFromCache(statistics->lexCachef2e, weight_vector);
    } else {
      score = 0;
      UTIL_THROW(util::Exception, "Trying to optimize feature that I don't know. Aborting");
    }
    total -= (FloorScore(TransformScore(score))/TransformScore(2))*f;
    n += f;
  }
  return total/n;
}

#endif

// calculate weighted probability based on instance weighting of joint counts and marginal counts
double InstanceWeighting(vector<float> &joint_counts, vector<float> &marginals, vector<float> &multimodelweights)
{

  double joint_counts_weighted =  inner_product(joint_counts.begin(), joint_counts.end(), multimodelweights.begin(), 0.0);
  double marginals_weighted = inner_product(marginals.begin(), marginals.end(), multimodelweights.begin(), 0.0);

  if (marginals_weighted == 0) {
    return 0;
  } else {
    return joint_counts_weighted/marginals_weighted;
  }
}


// calculate linear interpolation of relative frequency estimates based on joint count and marginal counts
//unused for now; enable in config?
double LinearInterpolationFromCounts(vector<float> &joint_counts, vector<float> &marginals, vector<float> &multimodelweights)
{

  vector<float> p(marginals.size());

  for (size_t i=0; i < marginals.size(); i++) {
    if (marginals[i] != 0) {
      p[i] = joint_counts[i]/marginals[i];
    }
  }

  double p_weighted = inner_product(p.begin(), p.end(), multimodelweights.begin(), 0.0);

  return p_weighted;
}


} //namespace