Welcome to mirror list, hosted at ThFree Co, Russian Federation.

AlignmentGraph.cpp « extract-ghkm « phrase-extract - github.com/moses-smt/mosesdecoder.git - Unnamed repository; edit this file 'description' to name the repository.
summaryrefslogtreecommitdiff
blob: 974188dbd5e1cdf90d7150e7b772bfd853679d19 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
/***********************************************************************
 Moses - statistical machine translation system
 Copyright (C) 2006-2011 University of Edinburgh

 This library is free software; you can redistribute it and/or
 modify it under the terms of the GNU Lesser General Public
 License as published by the Free Software Foundation; either
 version 2.1 of the License, or (at your option) any later version.

 This library is distributed in the hope that it will be useful,
 but WITHOUT ANY WARRANTY; without even the implied warranty of
 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
 Lesser General Public License for more details.

 You should have received a copy of the GNU Lesser General Public
 License along with this library; if not, write to the Free Software
 Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA
***********************************************************************/

#include "AlignmentGraph.h"

#include "ComposedRule.h"
#include "Node.h"
#include "Options.h"
#include "ParseTree.h"
#include "Subgraph.h"

#include <algorithm>
#include <cassert>
#include <memory>
#include <stack>

namespace Moses
{
namespace GHKM
{

AlignmentGraph::AlignmentGraph(const ParseTree *t,
                               const std::vector<std::string> &s,
                               const Alignment &a)
{
  // Copy the parse tree nodes and add them to m_targetNodes.
  m_root = CopyParseTree(t);

  // Create a node for each source word.
  m_sourceNodes.reserve(s.size());
  for (std::vector<std::string>::const_iterator p(s.begin());
       p != s.end(); ++p) {
    m_sourceNodes.push_back(new Node(*p, SOURCE));
  }

  // Connect source nodes to parse tree leaves according to the given word
  // alignment.
  std::vector<Node *> targetTreeLeaves;
  GetTargetTreeLeaves(m_root, targetTreeLeaves);
  for (Alignment::const_iterator p(a.begin()); p != a.end(); ++p) {
    Node *src = m_sourceNodes[p->first];
    Node *tgt = targetTreeLeaves[p->second];
    src->AddParent(tgt);
    tgt->AddChild(src);
  }

  // Attach unaligned source words (if any).
  AttachUnalignedSourceWords();

  // Populate node spans.
  std::vector<Node *>::const_iterator p(m_sourceNodes.begin());
  for (int i = 0; p != m_sourceNodes.end(); ++p, ++i) {
    (*p)->PropagateIndex(i);
  }

  // Calculate complement spans.
  CalcComplementSpans(m_root);
}

AlignmentGraph::~AlignmentGraph()
{
  for (std::vector<Node *>::iterator p(m_sourceNodes.begin());
       p != m_sourceNodes.end(); ++p) {
    delete *p;
  }
  for (std::vector<Node *>::iterator p(m_targetNodes.begin());
       p != m_targetNodes.end(); ++p) {
    delete *p;
  }
}

Subgraph AlignmentGraph::ComputeMinimalFrontierGraphFragment(
  Node *root,
  const std::set<Node *> &frontierSet)
{
  std::stack<Node *> expandableNodes;
  std::set<const Node *> expandedNodes;

  if (root->IsSink()) {
    expandedNodes.insert(root);
  } else {
    expandableNodes.push(root);
  }

  while (!expandableNodes.empty()) {
    Node *n = expandableNodes.top();
    expandableNodes.pop();

    const std::vector<Node *> &children = n->GetChildren();

    for (std::vector<Node *>::const_iterator p(children.begin());
         p != children.end(); ++p) {
      Node *child = *p;
      if (child->IsSink()) {
        expandedNodes.insert(child);
        continue;
      }
      std::set<Node *>::const_iterator q = frontierSet.find(child);
      if (q == frontierSet.end()) { //child is not from the frontier set
        expandableNodes.push(child);
      } else if (child->GetType() == TARGET) { // still need source word
        expandableNodes.push(child);
      } else {
        expandedNodes.insert(child);
      }
    }
  }

  return Subgraph(root, expandedNodes);
}

void AlignmentGraph::ExtractMinimalRules(const Options &options)
{
  // Determine which nodes are frontier nodes.
  std::set<Node *> frontierSet;
  ComputeFrontierSet(m_root, options, frontierSet);

  // Form the minimal frontier graph fragment rooted at each frontier node.
  std::vector<Subgraph> fragments;
  fragments.reserve(frontierSet.size());
  for (std::set<Node *>::iterator p(frontierSet.begin());
       p != frontierSet.end(); ++p) {
    Node *root = *p;
    Subgraph fragment = ComputeMinimalFrontierGraphFragment(root, frontierSet);
    assert(!fragment.IsTrivial());
    // Can it form an SCFG rule?
    // FIXME Does this exclude non-lexical unary rules?
    if (root->GetType() == TREE && !root->GetSpan().empty()) {
      root->AddRule(new Subgraph(fragment));
    }
  }
}

void AlignmentGraph::ExtractComposedRules(const Options &options)
{
  ExtractComposedRules(m_root, options);
}

void AlignmentGraph::ExtractComposedRules(Node *node, const Options &options)
{
  // Extract composed rules for all children first.
  const std::vector<Node *> &children = node->GetChildren();
  for (std::vector<Node *>::const_iterator p(children.begin());
       p != children.end(); ++p) {
    ExtractComposedRules(*p, options);
  }

  // If there is no minimal rule for this node then there are no composed
  // rules.
  const std::vector<const Subgraph*> &rules = node->GetRules();
  assert(rules.size() <= 1);
  if (rules.empty()) {
    return;
  }

  // Construct an initial composition candidate from the minimal rule.
  ComposedRule cr(*(rules[0]));
  if (!cr.GetOpenAttachmentPoint()) {
    // No composition possible.
    return;
  }

  std::queue<ComposedRule> queue;
  queue.push(cr);
  while (!queue.empty()) {
    ComposedRule cr = queue.front();
    queue.pop();
    const Node *attachmentPoint = cr.GetOpenAttachmentPoint();
    assert(attachmentPoint);
    assert(attachmentPoint != node);
    // Create all possible rules by composing this node's minimal rule with the
    // existing rules (both minimal and composed) rooted at the first open
    // attachment point.
    const std::vector<const Subgraph*> &rules = attachmentPoint->GetRules();
    for (std::vector<const Subgraph*>::const_iterator p = rules.begin();
         p != rules.end(); ++p) {
      assert((*p)->GetRoot()->GetType() == TREE);
      ComposedRule *cr2 = cr.AttemptComposition(**p, options);
      if (cr2) {
        node->AddRule(new Subgraph(cr2->CreateSubgraph()));
        if (cr2->GetOpenAttachmentPoint()) {
          queue.push(*cr2);
        }
        delete cr2;
      }
    }
    // Done with this attachment point.  Advance to the next, if any.
    cr.CloseAttachmentPoint();
    if (cr.GetOpenAttachmentPoint()) {
      queue.push(cr);
    }
  }
}

Node *AlignmentGraph::CopyParseTree(const ParseTree *root)
{
  NodeType nodeType = (root->IsLeaf()) ? TARGET : TREE;

  std::auto_ptr<Node> n(new Node(root->GetLabel(), nodeType));

  if (nodeType == TREE) {
    n->SetPcfgScore(root->GetPcfgScore());
  }

  const std::vector<ParseTree *> &children = root->GetChildren();
  std::vector<Node *> childNodes;
  childNodes.reserve(children.size());
  for (std::vector<ParseTree *>::const_iterator p(children.begin());
       p != children.end(); ++p) {
    Node *child = CopyParseTree(*p);
    child->AddParent(n.get());
    childNodes.push_back(child);
  }
  n->SetChildren(childNodes);

  Node *p = n.release();
  m_targetNodes.push_back(p);
  return p;
}

// Finds the set of frontier nodes.  The definition of a frontier node differs
// from Galley et al's (2004) in the following ways:
//
// 1. A node with an empty span is not a frontier node (this excludes
//    unaligned target subtrees).
// 2. Target word nodes are not frontier nodes.
// 3. Source word nodes are not frontier nodes.
// 4. Unless the --AllowUnary option is used, a node is not a frontier node if
//    it has the same span as its parent.
void AlignmentGraph::ComputeFrontierSet(Node *root,
                                        const Options &options,
                                        std::set<Node *> &frontierSet) const
{
  // Don't include word nodes or unaligned target subtrees.
  if (root->GetType() != TREE || root->GetSpan().empty()) {
    return;
  }

  if (!SpansIntersect(root->GetComplementSpan(), Closure(root->GetSpan()))) {
    // Unless unary rules are explicitly allowed, we use Chung et al's (2011)
    // modified defintion of a frontier node to eliminate the production of
    // non-lexical unary rules.
    assert(root->GetParents().size() <= 1);
    if (options.allowUnary
        || root->GetParents().empty()
        || root->GetParents()[0]->GetSpan() != root->GetSpan()) {
      frontierSet.insert(root);
    }
  }

  const std::vector<Node *> &children = root->GetChildren();
  for (std::vector<Node *>::const_iterator p(children.begin());
       p != children.end(); ++p) {
    ComputeFrontierSet(*p, options, frontierSet);
  }
}

void AlignmentGraph::CalcComplementSpans(Node *root)
{
  Span compSpan;
  std::set<Node *> siblings;

  const std::vector<Node *> &parents = root->GetParents();
  for (std::vector<Node *>::const_iterator p(parents.begin());
       p != parents.end(); ++p) {
    const Span &parentCompSpan = (*p)->GetComplementSpan();
    compSpan.insert(parentCompSpan.begin(), parentCompSpan.end());
    const std::vector<Node *> &c = (*p)->GetChildren();
    siblings.insert(c.begin(), c.end());
  }

  for (std::set<Node *>::iterator p(siblings.begin());
       p != siblings.end(); ++p) {
    if (*p == root) {
      continue;
    }
    const Span &siblingSpan = (*p)->GetSpan();
    compSpan.insert(siblingSpan.begin(), siblingSpan.end());
  }

  root->SetComplementSpan(compSpan);

  const std::vector<Node *> &children = root->GetChildren();
  for (std::vector<Node *>::const_iterator p(children.begin());
       p != children.end(); ++p) {
    CalcComplementSpans(*p);
  }
}

void AlignmentGraph::GetTargetTreeLeaves(Node *root,
    std::vector<Node *> &leaves)
{
  if (root->IsSink()) {
    leaves.push_back(root);
  } else {
    const std::vector<Node *> &children = root->GetChildren();
    for (std::vector<Node *>::const_iterator p(children.begin());
         p != children.end(); ++p) {
      GetTargetTreeLeaves(*p, leaves);
    }
  }
}

void AlignmentGraph::AttachUnalignedSourceWords()
{
  // Find the unaligned source words (if any).
  std::set<int> unaligned;
  for (size_t i = 0; i < m_sourceNodes.size(); ++i) {
    const Node &sourceNode = (*m_sourceNodes[i]);
    if (sourceNode.GetParents().empty()) {
      unaligned.insert(i);
    }
  }

  // Determine the attachment point for each one and attach it.
  for (std::set<int>::iterator p = unaligned.begin();
       p != unaligned.end(); ++p) {
    int index = *p;
    Node *attachmentPoint = DetermineAttachmentPoint(index);
    Node *sourceNode = m_sourceNodes[index];
    attachmentPoint->AddChild(sourceNode);
    sourceNode->AddParent(attachmentPoint);
  }
}

Node *AlignmentGraph::DetermineAttachmentPoint(int index)
{
  // Find the nearest aligned neighbour to the left, if any.
  int i = index;
  while (--i >= 0) {
    if (!m_sourceNodes[i]->GetParents().empty()) {
      break;
    }
  }
  // No aligned neighbours to the left, so attach to the root.
  if (i == -1) {
    return m_root;
  }
  // Find the nearest aligned neighbour to the right, if any.
  size_t j = index;
  while (++j < m_sourceNodes.size()) {
    if (!m_sourceNodes[j]->GetParents().empty()) {
      break;
    }
  }
  // No aligned neighbours to the right, so attach to the root.
  if (j == m_sourceNodes.size()) {
    return m_root;
  }
  // Construct the set of target nodes that are aligned to the left and right
  // neighbours.
  const std::vector<Node *> &leftParents = m_sourceNodes[i]->GetParents();
  assert(!leftParents.empty());
  const std::vector<Node *> &rightParents = m_sourceNodes[j]->GetParents();
  assert(!rightParents.empty());
  std::set<Node *> targetSet;
  targetSet.insert(leftParents.begin(), leftParents.end());
  targetSet.insert(rightParents.begin(), rightParents.end());
  // The attachment point is the lowest common ancestor of the target word
  // nodes, unless the LCA is itself a target word, in which case the LCA
  // is the parent.  This is to avoid including introducing new word alignments.
  // It assumes that the parse tree uses preterminals for parts of speech.
  Node *lca = Node::LowestCommonAncestor(targetSet.begin(), targetSet.end());
  if (lca->GetType() == TARGET) {
    assert(lca->GetParents().size() == 1);
    return lca->GetParents()[0];
  }
  return lca;
}

}  // namespace GHKM
}  // namespace Moses