Welcome to mirror list, hosted at ThFree Co, Russian Federation.

github.com/mpc-hc/FFmpeg.git - Unnamed repository; edit this file 'description' to name the repository.
summaryrefslogtreecommitdiff
diff options
context:
space:
mode:
Diffstat (limited to 'libavcodec/aacenc_pred.c')
-rw-r--r--libavcodec/aacenc_pred.c347
1 files changed, 347 insertions, 0 deletions
diff --git a/libavcodec/aacenc_pred.c b/libavcodec/aacenc_pred.c
new file mode 100644
index 0000000000..d111192f06
--- /dev/null
+++ b/libavcodec/aacenc_pred.c
@@ -0,0 +1,347 @@
+/*
+ * AAC encoder main-type prediction
+ * Copyright (C) 2015 Rostislav Pehlivanov
+ *
+ * This file is part of FFmpeg.
+ *
+ * FFmpeg is free software; you can redistribute it and/or
+ * modify it under the terms of the GNU Lesser General Public
+ * License as published by the Free Software Foundation; either
+ * version 2.1 of the License, or (at your option) any later version.
+ *
+ * FFmpeg is distributed in the hope that it will be useful,
+ * but WITHOUT ANY WARRANTY; without even the implied warranty of
+ * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
+ * Lesser General Public License for more details.
+ *
+ * You should have received a copy of the GNU Lesser General Public
+ * License along with FFmpeg; if not, write to the Free Software
+ * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
+ */
+
+/**
+ * @file
+ * AAC encoder main-type prediction
+ * @author Rostislav Pehlivanov ( atomnuker gmail com )
+ */
+
+#include "aactab.h"
+#include "aacenc_pred.h"
+#include "aacenc_utils.h"
+#include "aacenc_is.h" /* <- Needed for common window distortions */
+#include "aacenc_quantization.h"
+
+#define RESTORE_PRED(sce, sfb) \
+ if (sce->ics.prediction_used[sfb]) {\
+ sce->ics.prediction_used[sfb] = 0;\
+ sce->band_type[sfb] = sce->band_alt[sfb];\
+ }
+
+static inline float flt16_round(float pf)
+{
+ union av_intfloat32 tmp;
+ tmp.f = pf;
+ tmp.i = (tmp.i + 0x00008000U) & 0xFFFF0000U;
+ return tmp.f;
+}
+
+static inline float flt16_even(float pf)
+{
+ union av_intfloat32 tmp;
+ tmp.f = pf;
+ tmp.i = (tmp.i + 0x00007FFFU + (tmp.i & 0x00010000U >> 16)) & 0xFFFF0000U;
+ return tmp.f;
+}
+
+static inline float flt16_trunc(float pf)
+{
+ union av_intfloat32 pun;
+ pun.f = pf;
+ pun.i &= 0xFFFF0000U;
+ return pun.f;
+}
+
+static inline void predict(PredictorState *ps, float *coef, float *rcoef, int set)
+{
+ float k2;
+ const float a = 0.953125; // 61.0 / 64
+ const float alpha = 0.90625; // 29.0 / 32
+ const float k1 = ps->k1;
+ const float r0 = ps->r0, r1 = ps->r1;
+ const float cor0 = ps->cor0, cor1 = ps->cor1;
+ const float var0 = ps->var0, var1 = ps->var1;
+ const float e0 = *coef - ps->x_est;
+ const float e1 = e0 - k1 * r0;
+
+ if (set)
+ *coef = e0;
+
+ ps->cor1 = flt16_trunc(alpha * cor1 + r1 * e1);
+ ps->var1 = flt16_trunc(alpha * var1 + 0.5f * (r1 * r1 + e1 * e1));
+ ps->cor0 = flt16_trunc(alpha * cor0 + r0 * e0);
+ ps->var0 = flt16_trunc(alpha * var0 + 0.5f * (r0 * r0 + e0 * e0));
+ ps->r1 = flt16_trunc(a * (r0 - k1 * e0));
+ ps->r0 = flt16_trunc(a * e0);
+
+ /* Prediction for next frame */
+ ps->k1 = ps->var0 > 1 ? ps->cor0 * flt16_even(a / ps->var0) : 0;
+ k2 = ps->var1 > 1 ? ps->cor1 * flt16_even(a / ps->var1) : 0;
+ *rcoef = ps->x_est = flt16_round(ps->k1*ps->r0 + k2*ps->r1);
+}
+
+static inline void reset_predict_state(PredictorState *ps)
+{
+ ps->r0 = 0.0f;
+ ps->r1 = 0.0f;
+ ps->k1 = 0.0f;
+ ps->cor0 = 0.0f;
+ ps->cor1 = 0.0f;
+ ps->var0 = 1.0f;
+ ps->var1 = 1.0f;
+ ps->x_est = 0.0f;
+}
+
+static inline void reset_all_predictors(PredictorState *ps)
+{
+ int i;
+ for (i = 0; i < MAX_PREDICTORS; i++)
+ reset_predict_state(&ps[i]);
+}
+
+static inline void reset_predictor_group(SingleChannelElement *sce, int group_num)
+{
+ int i;
+ PredictorState *ps = sce->predictor_state;
+ for (i = group_num - 1; i < MAX_PREDICTORS; i += 30)
+ reset_predict_state(&ps[i]);
+}
+
+void ff_aac_apply_main_pred(AACEncContext *s, SingleChannelElement *sce)
+{
+ int sfb, k;
+ const int pmax = FFMIN(sce->ics.max_sfb, ff_aac_pred_sfb_max[s->samplerate_index]);
+
+ if (sce->ics.window_sequence[0] != EIGHT_SHORT_SEQUENCE) {
+ for (sfb = 0; sfb < pmax; sfb++) {
+ for (k = sce->ics.swb_offset[sfb]; k < sce->ics.swb_offset[sfb + 1]; k++) {
+ predict(&sce->predictor_state[k], &sce->coeffs[k], &sce->prcoeffs[k],
+ sce->ics.predictor_present && sce->ics.prediction_used[sfb]);
+ }
+ }
+ if (sce->ics.predictor_reset_group) {
+ reset_predictor_group(sce, sce->ics.predictor_reset_group);
+ }
+ } else {
+ reset_all_predictors(sce->predictor_state);
+ }
+}
+
+/* If inc = 0 you can check if this returns 0 to see if you can reset freely */
+static inline int update_counters(IndividualChannelStream *ics, int inc)
+{
+ int i;
+ for (i = 1; i < 31; i++) {
+ ics->predictor_reset_count[i] += inc;
+ if (ics->predictor_reset_count[i] > PRED_RESET_FRAME_MIN)
+ return i; /* Reset this immediately */
+ }
+ return 0;
+}
+
+void ff_aac_adjust_common_pred(AACEncContext *s, ChannelElement *cpe)
+{
+ int start, w, w2, g, i, count = 0;
+ SingleChannelElement *sce0 = &cpe->ch[0];
+ SingleChannelElement *sce1 = &cpe->ch[1];
+ const int pmax0 = FFMIN(sce0->ics.max_sfb, ff_aac_pred_sfb_max[s->samplerate_index]);
+ const int pmax1 = FFMIN(sce1->ics.max_sfb, ff_aac_pred_sfb_max[s->samplerate_index]);
+ const int pmax = FFMIN(pmax0, pmax1);
+
+ if (!cpe->common_window ||
+ sce0->ics.window_sequence[0] == EIGHT_SHORT_SEQUENCE ||
+ sce1->ics.window_sequence[0] == EIGHT_SHORT_SEQUENCE)
+ return;
+
+ for (w = 0; w < sce0->ics.num_windows; w += sce0->ics.group_len[w]) {
+ start = 0;
+ for (g = 0; g < sce0->ics.num_swb; g++) {
+ int sfb = w*16+g;
+ int sum = sce0->ics.prediction_used[sfb] + sce1->ics.prediction_used[sfb];
+ float ener0 = 0.0f, ener1 = 0.0f, ener01 = 0.0f;
+ struct AACISError ph_err1, ph_err2, *erf;
+ if (sfb < PRED_SFB_START || sfb > pmax || sum != 2) {
+ RESTORE_PRED(sce0, sfb);
+ RESTORE_PRED(sce1, sfb);
+ start += sce0->ics.swb_sizes[g];
+ continue;
+ }
+ for (w2 = 0; w2 < sce0->ics.group_len[w]; w2++) {
+ for (i = 0; i < sce0->ics.swb_sizes[g]; i++) {
+ float coef0 = sce0->pcoeffs[start+(w+w2)*128+i];
+ float coef1 = sce1->pcoeffs[start+(w+w2)*128+i];
+ ener0 += coef0*coef0;
+ ener1 += coef1*coef1;
+ ener01 += (coef0 + coef1)*(coef0 + coef1);
+ }
+ }
+ ph_err1 = ff_aac_is_encoding_err(s, cpe, start, w, g,
+ ener0, ener1, ener01, 1, -1);
+ ph_err2 = ff_aac_is_encoding_err(s, cpe, start, w, g,
+ ener0, ener1, ener01, 1, +1);
+ erf = ph_err1.error < ph_err2.error ? &ph_err1 : &ph_err2;
+ if (erf->pass) {
+ sce0->ics.prediction_used[sfb] = 1;
+ sce1->ics.prediction_used[sfb] = 1;
+ count++;
+ } else {
+ RESTORE_PRED(sce0, sfb);
+ RESTORE_PRED(sce1, sfb);
+ }
+ start += sce0->ics.swb_sizes[g];
+ }
+ }
+
+ sce1->ics.predictor_present = sce0->ics.predictor_present = !!count;
+}
+
+static void update_pred_resets(SingleChannelElement *sce)
+{
+ int i, max_group_id_c, max_frame = 0;
+ float avg_frame = 0.0f;
+ IndividualChannelStream *ics = &sce->ics;
+
+ /* Update the counters and immediately update any frame behind schedule */
+ if ((ics->predictor_reset_group = update_counters(&sce->ics, 1)))
+ return;
+
+ for (i = 1; i < 31; i++) {
+ /* Count-based */
+ if (ics->predictor_reset_count[i] > max_frame) {
+ max_group_id_c = i;
+ max_frame = ics->predictor_reset_count[i];
+ }
+ avg_frame = (ics->predictor_reset_count[i] + avg_frame)/2;
+ }
+
+ if (max_frame > PRED_RESET_MIN) {
+ ics->predictor_reset_group = max_group_id_c;
+ } else {
+ ics->predictor_reset_group = 0;
+ }
+}
+
+void ff_aac_search_for_pred(AACEncContext *s, SingleChannelElement *sce)
+{
+ int sfb, i, count = 0, cost_coeffs = 0, cost_pred = 0;
+ const int pmax = FFMIN(sce->ics.max_sfb, ff_aac_pred_sfb_max[s->samplerate_index]);
+ float *O34 = &s->scoefs[128*0], *P34 = &s->scoefs[128*1];
+ float *SENT = &s->scoefs[128*2], *S34 = &s->scoefs[128*3];
+ float *QERR = &s->scoefs[128*4];
+
+ if (sce->ics.window_sequence[0] == EIGHT_SHORT_SEQUENCE) {
+ sce->ics.predictor_present = 0;
+ return;
+ }
+
+ if (!sce->ics.predictor_initialized) {
+ reset_all_predictors(sce->predictor_state);
+ sce->ics.predictor_initialized = 1;
+ memcpy(sce->prcoeffs, sce->coeffs, 1024*sizeof(float));
+ for (i = 1; i < 31; i++)
+ sce->ics.predictor_reset_count[i] = i;
+ }
+
+ update_pred_resets(sce);
+ memcpy(sce->band_alt, sce->band_type, sizeof(sce->band_type));
+
+ for (sfb = PRED_SFB_START; sfb < pmax; sfb++) {
+ int cost1, cost2, cb_p;
+ float dist1, dist2, dist_spec_err = 0.0f;
+ const int cb_n = sce->zeroes[sfb] ? 0 : sce->band_type[sfb];
+ const int cb_min = sce->zeroes[sfb] ? 0 : 1;
+ const int cb_max = sce->zeroes[sfb] ? 0 : RESERVED_BT;
+ const int start_coef = sce->ics.swb_offset[sfb];
+ const int num_coeffs = sce->ics.swb_offset[sfb + 1] - start_coef;
+ const FFPsyBand *band = &s->psy.ch[s->cur_channel].psy_bands[sfb];
+
+ if (start_coef + num_coeffs > MAX_PREDICTORS ||
+ (s->cur_channel && sce->band_type[sfb] >= INTENSITY_BT2) ||
+ sce->band_type[sfb] == NOISE_BT)
+ continue;
+
+ /* Normal coefficients */
+ s->abs_pow34(O34, &sce->coeffs[start_coef], num_coeffs);
+ dist1 = quantize_and_encode_band_cost(s, NULL, &sce->coeffs[start_coef], NULL,
+ O34, num_coeffs, sce->sf_idx[sfb],
+ cb_n, s->lambda / band->threshold, INFINITY, &cost1, NULL, 0);
+ cost_coeffs += cost1;
+
+ /* Encoded coefficients - needed for #bits, band type and quant. error */
+ for (i = 0; i < num_coeffs; i++)
+ SENT[i] = sce->coeffs[start_coef + i] - sce->prcoeffs[start_coef + i];
+ s->abs_pow34(S34, SENT, num_coeffs);
+ if (cb_n < RESERVED_BT)
+ cb_p = av_clip(find_min_book(find_max_val(1, num_coeffs, S34), sce->sf_idx[sfb]), cb_min, cb_max);
+ else
+ cb_p = cb_n;
+ quantize_and_encode_band_cost(s, NULL, SENT, QERR, S34, num_coeffs,
+ sce->sf_idx[sfb], cb_p, s->lambda / band->threshold, INFINITY,
+ &cost2, NULL, 0);
+
+ /* Reconstructed coefficients - needed for distortion measurements */
+ for (i = 0; i < num_coeffs; i++)
+ sce->prcoeffs[start_coef + i] += QERR[i] != 0.0f ? (sce->prcoeffs[start_coef + i] - QERR[i]) : 0.0f;
+ s->abs_pow34(P34, &sce->prcoeffs[start_coef], num_coeffs);
+ if (cb_n < RESERVED_BT)
+ cb_p = av_clip(find_min_book(find_max_val(1, num_coeffs, P34), sce->sf_idx[sfb]), cb_min, cb_max);
+ else
+ cb_p = cb_n;
+ dist2 = quantize_and_encode_band_cost(s, NULL, &sce->prcoeffs[start_coef], NULL,
+ P34, num_coeffs, sce->sf_idx[sfb],
+ cb_p, s->lambda / band->threshold, INFINITY, NULL, NULL, 0);
+ for (i = 0; i < num_coeffs; i++)
+ dist_spec_err += (O34[i] - P34[i])*(O34[i] - P34[i]);
+ dist_spec_err *= s->lambda / band->threshold;
+ dist2 += dist_spec_err;
+
+ if (dist2 <= dist1 && cb_p <= cb_n) {
+ cost_pred += cost2;
+ sce->ics.prediction_used[sfb] = 1;
+ sce->band_alt[sfb] = cb_n;
+ sce->band_type[sfb] = cb_p;
+ count++;
+ } else {
+ cost_pred += cost1;
+ sce->band_alt[sfb] = cb_p;
+ }
+ }
+
+ if (count && cost_coeffs < cost_pred) {
+ count = 0;
+ for (sfb = PRED_SFB_START; sfb < pmax; sfb++)
+ RESTORE_PRED(sce, sfb);
+ memset(&sce->ics.prediction_used, 0, sizeof(sce->ics.prediction_used));
+ }
+
+ sce->ics.predictor_present = !!count;
+}
+
+/**
+ * Encoder predictors data.
+ */
+void ff_aac_encode_main_pred(AACEncContext *s, SingleChannelElement *sce)
+{
+ int sfb;
+ IndividualChannelStream *ics = &sce->ics;
+ const int pmax = FFMIN(ics->max_sfb, ff_aac_pred_sfb_max[s->samplerate_index]);
+
+ if (s->profile != FF_PROFILE_AAC_MAIN ||
+ !ics->predictor_present)
+ return;
+
+ put_bits(&s->pb, 1, !!ics->predictor_reset_group);
+ if (ics->predictor_reset_group)
+ put_bits(&s->pb, 5, ics->predictor_reset_group);
+ for (sfb = 0; sfb < pmax; sfb++)
+ put_bits(&s->pb, 1, ics->prediction_used[sfb]);
+}