Welcome to mirror list, hosted at ThFree Co, Russian Federation.

github.com/mpc-hc/FFmpeg.git - Unnamed repository; edit this file 'description' to name the repository.
summaryrefslogtreecommitdiff
diff options
context:
space:
mode:
Diffstat (limited to 'libswresample/resample.c')
-rw-r--r--libswresample/resample.c617
1 files changed, 617 insertions, 0 deletions
diff --git a/libswresample/resample.c b/libswresample/resample.c
new file mode 100644
index 0000000000..8f3428f512
--- /dev/null
+++ b/libswresample/resample.c
@@ -0,0 +1,617 @@
+/*
+ * audio resampling
+ * Copyright (c) 2004-2012 Michael Niedermayer <michaelni@gmx.at>
+ * bessel function: Copyright (c) 2006 Xiaogang Zhang
+ *
+ * This file is part of FFmpeg.
+ *
+ * FFmpeg is free software; you can redistribute it and/or
+ * modify it under the terms of the GNU Lesser General Public
+ * License as published by the Free Software Foundation; either
+ * version 2.1 of the License, or (at your option) any later version.
+ *
+ * FFmpeg is distributed in the hope that it will be useful,
+ * but WITHOUT ANY WARRANTY; without even the implied warranty of
+ * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
+ * Lesser General Public License for more details.
+ *
+ * You should have received a copy of the GNU Lesser General Public
+ * License along with FFmpeg; if not, write to the Free Software
+ * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
+ */
+
+/**
+ * @file
+ * audio resampling
+ * @author Michael Niedermayer <michaelni@gmx.at>
+ */
+
+#include "libavutil/avassert.h"
+#include "resample.h"
+
+static inline double eval_poly(const double *coeff, int size, double x) {
+ double sum = coeff[size-1];
+ int i;
+ for (i = size-2; i >= 0; --i) {
+ sum *= x;
+ sum += coeff[i];
+ }
+ return sum;
+}
+
+/**
+ * 0th order modified bessel function of the first kind.
+ * Algorithm taken from the Boost project, source:
+ * https://searchcode.com/codesearch/view/14918379/
+ * Use, modification and distribution are subject to the
+ * Boost Software License, Version 1.0 (see notice below).
+ * Boost Software License - Version 1.0 - August 17th, 2003
+Permission is hereby granted, free of charge, to any person or organization
+obtaining a copy of the software and accompanying documentation covered by
+this license (the "Software") to use, reproduce, display, distribute,
+execute, and transmit the Software, and to prepare derivative works of the
+Software, and to permit third-parties to whom the Software is furnished to
+do so, all subject to the following:
+
+The copyright notices in the Software and this entire statement, including
+the above license grant, this restriction and the following disclaimer,
+must be included in all copies of the Software, in whole or in part, and
+all derivative works of the Software, unless such copies or derivative
+works are solely in the form of machine-executable object code generated by
+a source language processor.
+
+THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
+IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
+FITNESS FOR A PARTICULAR PURPOSE, TITLE AND NON-INFRINGEMENT. IN NO EVENT
+SHALL THE COPYRIGHT HOLDERS OR ANYONE DISTRIBUTING THE SOFTWARE BE LIABLE
+FOR ANY DAMAGES OR OTHER LIABILITY, WHETHER IN CONTRACT, TORT OR OTHERWISE,
+ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
+DEALINGS IN THE SOFTWARE.
+ */
+
+static double bessel(double x) {
+// Modified Bessel function of the first kind of order zero
+// minimax rational approximations on intervals, see
+// Blair and Edwards, Chalk River Report AECL-4928, 1974
+ static const double p1[] = {
+ -2.2335582639474375249e+15,
+ -5.5050369673018427753e+14,
+ -3.2940087627407749166e+13,
+ -8.4925101247114157499e+11,
+ -1.1912746104985237192e+10,
+ -1.0313066708737980747e+08,
+ -5.9545626019847898221e+05,
+ -2.4125195876041896775e+03,
+ -7.0935347449210549190e+00,
+ -1.5453977791786851041e-02,
+ -2.5172644670688975051e-05,
+ -3.0517226450451067446e-08,
+ -2.6843448573468483278e-11,
+ -1.5982226675653184646e-14,
+ -5.2487866627945699800e-18,
+ };
+ static const double q1[] = {
+ -2.2335582639474375245e+15,
+ 7.8858692566751002988e+12,
+ -1.2207067397808979846e+10,
+ 1.0377081058062166144e+07,
+ -4.8527560179962773045e+03,
+ 1.0,
+ };
+ static const double p2[] = {
+ -2.2210262233306573296e-04,
+ 1.3067392038106924055e-02,
+ -4.4700805721174453923e-01,
+ 5.5674518371240761397e+00,
+ -2.3517945679239481621e+01,
+ 3.1611322818701131207e+01,
+ -9.6090021968656180000e+00,
+ };
+ static const double q2[] = {
+ -5.5194330231005480228e-04,
+ 3.2547697594819615062e-02,
+ -1.1151759188741312645e+00,
+ 1.3982595353892851542e+01,
+ -6.0228002066743340583e+01,
+ 8.5539563258012929600e+01,
+ -3.1446690275135491500e+01,
+ 1.0,
+ };
+ double y, r, factor;
+ if (x == 0)
+ return 1.0;
+ x = fabs(x);
+ if (x <= 15) {
+ y = x * x;
+ return eval_poly(p1, FF_ARRAY_ELEMS(p1), y) / eval_poly(q1, FF_ARRAY_ELEMS(q1), y);
+ }
+ else {
+ y = 1 / x - 1.0 / 15;
+ r = eval_poly(p2, FF_ARRAY_ELEMS(p2), y) / eval_poly(q2, FF_ARRAY_ELEMS(q2), y);
+ factor = exp(x) / sqrt(x);
+ return factor * r;
+ }
+}
+
+/**
+ * builds a polyphase filterbank.
+ * @param factor resampling factor
+ * @param scale wanted sum of coefficients for each filter
+ * @param filter_type filter type
+ * @param kaiser_beta kaiser window beta
+ * @return 0 on success, negative on error
+ */
+static int build_filter(ResampleContext *c, void *filter, double factor, int tap_count, int alloc, int phase_count, int scale,
+ int filter_type, double kaiser_beta){
+ int ph, i;
+ int ph_nb = phase_count % 2 ? phase_count : phase_count / 2 + 1;
+ double x, y, w, t, s;
+ double *tab = av_malloc_array(tap_count+1, sizeof(*tab));
+ double *sin_lut = av_malloc_array(ph_nb, sizeof(*sin_lut));
+ const int center= (tap_count-1)/2;
+ double norm = 0;
+ int ret = AVERROR(ENOMEM);
+
+ if (!tab || !sin_lut)
+ goto fail;
+
+ av_assert0(tap_count == 1 || tap_count % 2 == 0);
+
+ /* if upsampling, only need to interpolate, no filter */
+ if (factor > 1.0)
+ factor = 1.0;
+
+ if (factor == 1.0) {
+ for (ph = 0; ph < ph_nb; ph++)
+ sin_lut[ph] = sin(M_PI * ph / phase_count) * (center & 1 ? 1 : -1);
+ }
+ for(ph = 0; ph < ph_nb; ph++) {
+ s = sin_lut[ph];
+ for(i=0;i<tap_count;i++) {
+ x = M_PI * ((double)(i - center) - (double)ph / phase_count) * factor;
+ if (x == 0) y = 1.0;
+ else if (factor == 1.0)
+ y = s / x;
+ else
+ y = sin(x) / x;
+ switch(filter_type){
+ case SWR_FILTER_TYPE_CUBIC:{
+ const float d= -0.5; //first order derivative = -0.5
+ x = fabs(((double)(i - center) - (double)ph / phase_count) * factor);
+ if(x<1.0) y= 1 - 3*x*x + 2*x*x*x + d*( -x*x + x*x*x);
+ else y= d*(-4 + 8*x - 5*x*x + x*x*x);
+ break;}
+ case SWR_FILTER_TYPE_BLACKMAN_NUTTALL:
+ w = 2.0*x / (factor*tap_count);
+ t = -cos(w);
+ y *= 0.3635819 - 0.4891775 * t + 0.1365995 * (2*t*t-1) - 0.0106411 * (4*t*t*t - 3*t);
+ break;
+ case SWR_FILTER_TYPE_KAISER:
+ w = 2.0*x / (factor*tap_count*M_PI);
+ y *= bessel(kaiser_beta*sqrt(FFMAX(1-w*w, 0)));
+ break;
+ default:
+ av_assert0(0);
+ }
+
+ tab[i] = y;
+ s = -s;
+ if (!ph)
+ norm += y;
+ }
+
+ /* normalize so that an uniform color remains the same */
+ switch(c->format){
+ case AV_SAMPLE_FMT_S16P:
+ for(i=0;i<tap_count;i++)
+ ((int16_t*)filter)[ph * alloc + i] = av_clip_int16(lrintf(tab[i] * scale / norm));
+ if (phase_count % 2) break;
+ for (i = 0; i < tap_count; i++)
+ ((int16_t*)filter)[(phase_count-ph) * alloc + tap_count-1-i] = ((int16_t*)filter)[ph * alloc + i];
+ break;
+ case AV_SAMPLE_FMT_S32P:
+ for(i=0;i<tap_count;i++)
+ ((int32_t*)filter)[ph * alloc + i] = av_clipl_int32(llrint(tab[i] * scale / norm));
+ if (phase_count % 2) break;
+ for (i = 0; i < tap_count; i++)
+ ((int32_t*)filter)[(phase_count-ph) * alloc + tap_count-1-i] = ((int32_t*)filter)[ph * alloc + i];
+ break;
+ case AV_SAMPLE_FMT_FLTP:
+ for(i=0;i<tap_count;i++)
+ ((float*)filter)[ph * alloc + i] = tab[i] * scale / norm;
+ if (phase_count % 2) break;
+ for (i = 0; i < tap_count; i++)
+ ((float*)filter)[(phase_count-ph) * alloc + tap_count-1-i] = ((float*)filter)[ph * alloc + i];
+ break;
+ case AV_SAMPLE_FMT_DBLP:
+ for(i=0;i<tap_count;i++)
+ ((double*)filter)[ph * alloc + i] = tab[i] * scale / norm;
+ if (phase_count % 2) break;
+ for (i = 0; i < tap_count; i++)
+ ((double*)filter)[(phase_count-ph) * alloc + tap_count-1-i] = ((double*)filter)[ph * alloc + i];
+ break;
+ }
+ }
+#if 0
+ {
+#define LEN 1024
+ int j,k;
+ double sine[LEN + tap_count];
+ double filtered[LEN];
+ double maxff=-2, minff=2, maxsf=-2, minsf=2;
+ for(i=0; i<LEN; i++){
+ double ss=0, sf=0, ff=0;
+ for(j=0; j<LEN+tap_count; j++)
+ sine[j]= cos(i*j*M_PI/LEN);
+ for(j=0; j<LEN; j++){
+ double sum=0;
+ ph=0;
+ for(k=0; k<tap_count; k++)
+ sum += filter[ph * tap_count + k] * sine[k+j];
+ filtered[j]= sum / (1<<FILTER_SHIFT);
+ ss+= sine[j + center] * sine[j + center];
+ ff+= filtered[j] * filtered[j];
+ sf+= sine[j + center] * filtered[j];
+ }
+ ss= sqrt(2*ss/LEN);
+ ff= sqrt(2*ff/LEN);
+ sf= 2*sf/LEN;
+ maxff= FFMAX(maxff, ff);
+ minff= FFMIN(minff, ff);
+ maxsf= FFMAX(maxsf, sf);
+ minsf= FFMIN(minsf, sf);
+ if(i%11==0){
+ av_log(NULL, AV_LOG_ERROR, "i:%4d ss:%f ff:%13.6e-%13.6e sf:%13.6e-%13.6e\n", i, ss, maxff, minff, maxsf, minsf);
+ minff=minsf= 2;
+ maxff=maxsf= -2;
+ }
+ }
+ }
+#endif
+
+ ret = 0;
+fail:
+ av_free(tab);
+ av_free(sin_lut);
+ return ret;
+}
+
+static ResampleContext *resample_init(ResampleContext *c, int out_rate, int in_rate, int filter_size, int phase_shift, int linear,
+ double cutoff0, enum AVSampleFormat format, enum SwrFilterType filter_type, double kaiser_beta,
+ double precision, int cheby, int exact_rational)
+{
+ double cutoff = cutoff0? cutoff0 : 0.97;
+ double factor= FFMIN(out_rate * cutoff / in_rate, 1.0);
+ int phase_count= 1<<phase_shift;
+ int phase_count_compensation = phase_count;
+ int filter_length = FFMAX((int)ceil(filter_size/factor), 1);
+
+ if (filter_length > 1)
+ filter_length = FFALIGN(filter_length, 2);
+
+ if (exact_rational) {
+ int phase_count_exact, phase_count_exact_den;
+
+ av_reduce(&phase_count_exact, &phase_count_exact_den, out_rate, in_rate, INT_MAX);
+ if (phase_count_exact <= phase_count) {
+ phase_count_compensation = phase_count_exact * (phase_count / phase_count_exact);
+ phase_count = phase_count_exact;
+ }
+ }
+
+ if (!c || c->phase_count != phase_count || c->linear!=linear || c->factor != factor
+ || c->filter_length != filter_length || c->format != format
+ || c->filter_type != filter_type || c->kaiser_beta != kaiser_beta) {
+ c = av_mallocz(sizeof(*c));
+ if (!c)
+ return NULL;
+
+ c->format= format;
+
+ c->felem_size= av_get_bytes_per_sample(c->format);
+
+ switch(c->format){
+ case AV_SAMPLE_FMT_S16P:
+ c->filter_shift = 15;
+ break;
+ case AV_SAMPLE_FMT_S32P:
+ c->filter_shift = 30;
+ break;
+ case AV_SAMPLE_FMT_FLTP:
+ case AV_SAMPLE_FMT_DBLP:
+ c->filter_shift = 0;
+ break;
+ default:
+ av_log(NULL, AV_LOG_ERROR, "Unsupported sample format\n");
+ av_assert0(0);
+ }
+
+ if (filter_size/factor > INT32_MAX/256) {
+ av_log(NULL, AV_LOG_ERROR, "Filter length too large\n");
+ goto error;
+ }
+
+ c->phase_count = phase_count;
+ c->linear = linear;
+ c->factor = factor;
+ c->filter_length = filter_length;
+ c->filter_alloc = FFALIGN(c->filter_length, 8);
+ c->filter_bank = av_calloc(c->filter_alloc, (phase_count+1)*c->felem_size);
+ c->filter_type = filter_type;
+ c->kaiser_beta = kaiser_beta;
+ c->phase_count_compensation = phase_count_compensation;
+ if (!c->filter_bank)
+ goto error;
+ if (build_filter(c, (void*)c->filter_bank, factor, c->filter_length, c->filter_alloc, phase_count, 1<<c->filter_shift, filter_type, kaiser_beta))
+ goto error;
+ memcpy(c->filter_bank + (c->filter_alloc*phase_count+1)*c->felem_size, c->filter_bank, (c->filter_alloc-1)*c->felem_size);
+ memcpy(c->filter_bank + (c->filter_alloc*phase_count )*c->felem_size, c->filter_bank + (c->filter_alloc - 1)*c->felem_size, c->felem_size);
+ }
+
+ c->compensation_distance= 0;
+ if(!av_reduce(&c->src_incr, &c->dst_incr, out_rate, in_rate * (int64_t)phase_count, INT32_MAX/2))
+ goto error;
+ while (c->dst_incr < (1<<20) && c->src_incr < (1<<20)) {
+ c->dst_incr *= 2;
+ c->src_incr *= 2;
+ }
+ c->ideal_dst_incr = c->dst_incr;
+ c->dst_incr_div = c->dst_incr / c->src_incr;
+ c->dst_incr_mod = c->dst_incr % c->src_incr;
+
+ c->index= -phase_count*((c->filter_length-1)/2);
+ c->frac= 0;
+
+ swri_resample_dsp_init(c);
+
+ return c;
+error:
+ av_freep(&c->filter_bank);
+ av_free(c);
+ return NULL;
+}
+
+static void resample_free(ResampleContext **c){
+ if(!*c)
+ return;
+ av_freep(&(*c)->filter_bank);
+ av_freep(c);
+}
+
+static int rebuild_filter_bank_with_compensation(ResampleContext *c)
+{
+ uint8_t *new_filter_bank;
+ int new_src_incr, new_dst_incr;
+ int phase_count = c->phase_count_compensation;
+ int ret;
+
+ if (phase_count == c->phase_count)
+ return 0;
+
+ av_assert0(!c->frac && !c->dst_incr_mod && !c->compensation_distance);
+
+ new_filter_bank = av_calloc(c->filter_alloc, (phase_count + 1) * c->felem_size);
+ if (!new_filter_bank)
+ return AVERROR(ENOMEM);
+
+ ret = build_filter(c, new_filter_bank, c->factor, c->filter_length, c->filter_alloc,
+ phase_count, 1 << c->filter_shift, c->filter_type, c->kaiser_beta);
+ if (ret < 0) {
+ av_freep(&new_filter_bank);
+ return ret;
+ }
+ memcpy(new_filter_bank + (c->filter_alloc*phase_count+1)*c->felem_size, new_filter_bank, (c->filter_alloc-1)*c->felem_size);
+ memcpy(new_filter_bank + (c->filter_alloc*phase_count )*c->felem_size, new_filter_bank + (c->filter_alloc - 1)*c->felem_size, c->felem_size);
+
+ if (!av_reduce(&new_src_incr, &new_dst_incr, c->src_incr,
+ c->dst_incr * (int64_t)(phase_count/c->phase_count), INT32_MAX/2))
+ {
+ av_freep(&new_filter_bank);
+ return AVERROR(EINVAL);
+ }
+
+ c->src_incr = new_src_incr;
+ c->dst_incr = new_dst_incr;
+ while (c->dst_incr < (1<<20) && c->src_incr < (1<<20)) {
+ c->dst_incr *= 2;
+ c->src_incr *= 2;
+ }
+ c->ideal_dst_incr = c->dst_incr;
+ c->dst_incr_div = c->dst_incr / c->src_incr;
+ c->dst_incr_mod = c->dst_incr % c->src_incr;
+ c->index *= phase_count / c->phase_count;
+ c->phase_count = phase_count;
+ av_freep(&c->filter_bank);
+ c->filter_bank = new_filter_bank;
+ return 0;
+}
+
+static int set_compensation(ResampleContext *c, int sample_delta, int compensation_distance){
+ int ret;
+
+ if (compensation_distance && sample_delta) {
+ ret = rebuild_filter_bank_with_compensation(c);
+ if (ret < 0)
+ return ret;
+ }
+
+ c->compensation_distance= compensation_distance;
+ if (compensation_distance)
+ c->dst_incr = c->ideal_dst_incr - c->ideal_dst_incr * (int64_t)sample_delta / compensation_distance;
+ else
+ c->dst_incr = c->ideal_dst_incr;
+
+ c->dst_incr_div = c->dst_incr / c->src_incr;
+ c->dst_incr_mod = c->dst_incr % c->src_incr;
+
+ return 0;
+}
+
+static int multiple_resample(ResampleContext *c, AudioData *dst, int dst_size, AudioData *src, int src_size, int *consumed){
+ int i;
+ int av_unused mm_flags = av_get_cpu_flags();
+ int need_emms = c->format == AV_SAMPLE_FMT_S16P && ARCH_X86_32 &&
+ (mm_flags & (AV_CPU_FLAG_MMX2 | AV_CPU_FLAG_SSE2)) == AV_CPU_FLAG_MMX2;
+ int64_t max_src_size = (INT64_MAX/2 / c->phase_count) / c->src_incr;
+
+ if (c->compensation_distance)
+ dst_size = FFMIN(dst_size, c->compensation_distance);
+ src_size = FFMIN(src_size, max_src_size);
+
+ *consumed = 0;
+
+ if (c->filter_length == 1 && c->phase_count == 1) {
+ int64_t index2= (1LL<<32)*c->frac/c->src_incr + (1LL<<32)*c->index;
+ int64_t incr= (1LL<<32) * c->dst_incr / c->src_incr;
+ int new_size = (src_size * (int64_t)c->src_incr - c->frac + c->dst_incr - 1) / c->dst_incr;
+
+ dst_size = FFMAX(FFMIN(dst_size, new_size), 0);
+ if (dst_size > 0) {
+ for (i = 0; i < dst->ch_count; i++) {
+ c->dsp.resample_one(dst->ch[i], src->ch[i], dst_size, index2, incr);
+ if (i+1 == dst->ch_count) {
+ c->index += dst_size * c->dst_incr_div;
+ c->index += (c->frac + dst_size * (int64_t)c->dst_incr_mod) / c->src_incr;
+ av_assert2(c->index >= 0);
+ *consumed = c->index;
+ c->frac = (c->frac + dst_size * (int64_t)c->dst_incr_mod) % c->src_incr;
+ c->index = 0;
+ }
+ }
+ }
+ } else {
+ int64_t end_index = (1LL + src_size - c->filter_length) * c->phase_count;
+ int64_t delta_frac = (end_index - c->index) * c->src_incr - c->frac;
+ int delta_n = (delta_frac + c->dst_incr - 1) / c->dst_incr;
+ int (*resample_func)(struct ResampleContext *c, void *dst,
+ const void *src, int n, int update_ctx);
+
+ dst_size = FFMAX(FFMIN(dst_size, delta_n), 0);
+ if (dst_size > 0) {
+ /* resample_linear and resample_common should have same behavior
+ * when frac and dst_incr_mod are zero */
+ resample_func = (c->linear && (c->frac || c->dst_incr_mod)) ?
+ c->dsp.resample_linear : c->dsp.resample_common;
+ for (i = 0; i < dst->ch_count; i++)
+ *consumed = resample_func(c, dst->ch[i], src->ch[i], dst_size, i+1 == dst->ch_count);
+ }
+ }
+
+ if(need_emms)
+ emms_c();
+
+ if (c->compensation_distance) {
+ c->compensation_distance -= dst_size;
+ if (!c->compensation_distance) {
+ c->dst_incr = c->ideal_dst_incr;
+ c->dst_incr_div = c->dst_incr / c->src_incr;
+ c->dst_incr_mod = c->dst_incr % c->src_incr;
+ }
+ }
+
+ return dst_size;
+}
+
+static int64_t get_delay(struct SwrContext *s, int64_t base){
+ ResampleContext *c = s->resample;
+ int64_t num = s->in_buffer_count - (c->filter_length-1)/2;
+ num *= c->phase_count;
+ num -= c->index;
+ num *= c->src_incr;
+ num -= c->frac;
+ return av_rescale(num, base, s->in_sample_rate*(int64_t)c->src_incr * c->phase_count);
+}
+
+static int64_t get_out_samples(struct SwrContext *s, int in_samples) {
+ ResampleContext *c = s->resample;
+ // The + 2 are added to allow implementations to be slightly inaccurate, they should not be needed currently.
+ // They also make it easier to proof that changes and optimizations do not
+ // break the upper bound.
+ int64_t num = s->in_buffer_count + 2LL + in_samples;
+ num *= c->phase_count;
+ num -= c->index;
+ num = av_rescale_rnd(num, s->out_sample_rate, ((int64_t)s->in_sample_rate) * c->phase_count, AV_ROUND_UP) + 2;
+
+ if (c->compensation_distance) {
+ if (num > INT_MAX)
+ return AVERROR(EINVAL);
+
+ num = FFMAX(num, (num * c->ideal_dst_incr - 1) / c->dst_incr + 1);
+ }
+ return num;
+}
+
+static int resample_flush(struct SwrContext *s) {
+ AudioData *a= &s->in_buffer;
+ int i, j, ret;
+ if((ret = swri_realloc_audio(a, s->in_buffer_index + 2*s->in_buffer_count)) < 0)
+ return ret;
+ av_assert0(a->planar);
+ for(i=0; i<a->ch_count; i++){
+ for(j=0; j<s->in_buffer_count; j++){
+ memcpy(a->ch[i] + (s->in_buffer_index+s->in_buffer_count+j )*a->bps,
+ a->ch[i] + (s->in_buffer_index+s->in_buffer_count-j-1)*a->bps, a->bps);
+ }
+ }
+ s->in_buffer_count += (s->in_buffer_count+1)/2;
+ return 0;
+}
+
+// in fact the whole handle multiple ridiculously small buffers might need more thinking...
+static int invert_initial_buffer(ResampleContext *c, AudioData *dst, const AudioData *src,
+ int in_count, int *out_idx, int *out_sz)
+{
+ int n, ch, num = FFMIN(in_count + *out_sz, c->filter_length + 1), res;
+
+ if (c->index >= 0)
+ return 0;
+
+ if ((res = swri_realloc_audio(dst, c->filter_length * 2 + 1)) < 0)
+ return res;
+
+ // copy
+ for (n = *out_sz; n < num; n++) {
+ for (ch = 0; ch < src->ch_count; ch++) {
+ memcpy(dst->ch[ch] + ((c->filter_length + n) * c->felem_size),
+ src->ch[ch] + ((n - *out_sz) * c->felem_size), c->felem_size);
+ }
+ }
+
+ // if not enough data is in, return and wait for more
+ if (num < c->filter_length + 1) {
+ *out_sz = num;
+ *out_idx = c->filter_length;
+ return INT_MAX;
+ }
+
+ // else invert
+ for (n = 1; n <= c->filter_length; n++) {
+ for (ch = 0; ch < src->ch_count; ch++) {
+ memcpy(dst->ch[ch] + ((c->filter_length - n) * c->felem_size),
+ dst->ch[ch] + ((c->filter_length + n) * c->felem_size),
+ c->felem_size);
+ }
+ }
+
+ res = num - *out_sz;
+ *out_idx = c->filter_length;
+ while (c->index < 0) {
+ --*out_idx;
+ c->index += c->phase_count;
+ }
+ *out_sz = FFMAX(*out_sz + c->filter_length,
+ 1 + c->filter_length * 2) - *out_idx;
+
+ return FFMAX(res, 0);
+}
+
+struct Resampler const swri_resampler={
+ resample_init,
+ resample_free,
+ multiple_resample,
+ resample_flush,
+ set_compensation,
+ get_delay,
+ invert_initial_buffer,
+ get_out_samples,
+};