Welcome to mirror list, hosted at ThFree Co, Russian Federation.

github.com/mpc-hc/mpc-hc.git - Unnamed repository; edit this file 'description' to name the repository.
summaryrefslogtreecommitdiff
diff options
context:
space:
mode:
authorXhmikosR <xhmikosr@users.sourceforge.net>2010-04-09 18:12:59 +0400
committerXhmikosR <xhmikosr@users.sourceforge.net>2010-04-09 18:12:59 +0400
commitefbc9d9043ff8ff92716ddd00a5f61412d535593 (patch)
tree8f3e621f756cf1f5b4d64d97964c7e7abd8aaf08 /src/filters/transform/MPCVideoDec/ffmpeg/libavcodec/jrevdct.c
parentdf6b139a6d9027156f614b68687e039e3a5854db (diff)
revert r1783
git-svn-id: https://mpc-hc.svn.sourceforge.net/svnroot/mpc-hc/trunk@1785 10f7b99b-c216-0410-bff0-8a66a9350fd8
Diffstat (limited to 'src/filters/transform/MPCVideoDec/ffmpeg/libavcodec/jrevdct.c')
-rw-r--r--src/filters/transform/MPCVideoDec/ffmpeg/libavcodec/jrevdct.c1832
1 files changed, 848 insertions, 984 deletions
diff --git a/src/filters/transform/MPCVideoDec/ffmpeg/libavcodec/jrevdct.c b/src/filters/transform/MPCVideoDec/ffmpeg/libavcodec/jrevdct.c
index 1ddc28e83..46a692bd8 100644
--- a/src/filters/transform/MPCVideoDec/ffmpeg/libavcodec/jrevdct.c
+++ b/src/filters/transform/MPCVideoDec/ffmpeg/libavcodec/jrevdct.c
@@ -85,7 +85,7 @@ typedef DCTELEM DCTBLOCK[DCTSIZE2];
*/
#if DCTSIZE != 8
-Sorry, this code only copes with 8x8 DCTs. /* deliberate syntax err */
+ Sorry, this code only copes with 8x8 DCTs. /* deliberate syntax err */
#endif
@@ -211,69 +211,64 @@ ones here or successive P-frames will drift too much with Reference frame coding
void j_rev_dct(DCTBLOCK data)
{
- int32_t tmp0, tmp1, tmp2, tmp3;
- int32_t tmp10, tmp11, tmp12, tmp13;
- int32_t z1, z2, z3, z4, z5;
- int32_t d0, d1, d2, d3, d4, d5, d6, d7;
- register DCTELEM *dataptr;
- int rowctr;
-
- /* Pass 1: process rows. */
- /* Note results are scaled up by sqrt(8) compared to a true IDCT; */
- /* furthermore, we scale the results by 2**PASS1_BITS. */
-
- dataptr = data;
-
- for(rowctr = DCTSIZE - 1; rowctr >= 0; rowctr--)
- {
- /* Due to quantization, we will usually find that many of the input
- * coefficients are zero, especially the AC terms. We can exploit this
- * by short-circuiting the IDCT calculation for any row in which all
- * the AC terms are zero. In that case each output is equal to the
- * DC coefficient (with scale factor as needed).
- * With typical images and quantization tables, half or more of the
- * row DCT calculations can be simplified this way.
- */
-
- register int *idataptr = (int*)dataptr;
-
- /* WARNING: we do the same permutation as MMX idct to simplify the
- video core */
- d0 = dataptr[0];
- d2 = dataptr[1];
- d4 = dataptr[2];
- d6 = dataptr[3];
- d1 = dataptr[4];
- d3 = dataptr[5];
- d5 = dataptr[6];
- d7 = dataptr[7];
-
- if((d1 | d2 | d3 | d4 | d5 | d6 | d7) == 0)
- {
- /* AC terms all zero */
- if(d0)
- {
- /* Compute a 32 bit value to assign. */
- DCTELEM dcval = (DCTELEM)(d0 << PASS1_BITS);
- register int v = (dcval & 0xffff) | ((dcval << 16) & 0xffff0000);
-
- idataptr[0] = v;
- idataptr[1] = v;
- idataptr[2] = v;
- idataptr[3] = v;
- }
-
- dataptr += DCTSIZE; /* advance pointer to next row */
- continue;
- }
+ int32_t tmp0, tmp1, tmp2, tmp3;
+ int32_t tmp10, tmp11, tmp12, tmp13;
+ int32_t z1, z2, z3, z4, z5;
+ int32_t d0, d1, d2, d3, d4, d5, d6, d7;
+ register DCTELEM *dataptr;
+ int rowctr;
+
+ /* Pass 1: process rows. */
+ /* Note results are scaled up by sqrt(8) compared to a true IDCT; */
+ /* furthermore, we scale the results by 2**PASS1_BITS. */
+
+ dataptr = data;
+
+ for (rowctr = DCTSIZE-1; rowctr >= 0; rowctr--) {
+ /* Due to quantization, we will usually find that many of the input
+ * coefficients are zero, especially the AC terms. We can exploit this
+ * by short-circuiting the IDCT calculation for any row in which all
+ * the AC terms are zero. In that case each output is equal to the
+ * DC coefficient (with scale factor as needed).
+ * With typical images and quantization tables, half or more of the
+ * row DCT calculations can be simplified this way.
+ */
+
+ register int *idataptr = (int*)dataptr;
+
+ /* WARNING: we do the same permutation as MMX idct to simplify the
+ video core */
+ d0 = dataptr[0];
+ d2 = dataptr[1];
+ d4 = dataptr[2];
+ d6 = dataptr[3];
+ d1 = dataptr[4];
+ d3 = dataptr[5];
+ d5 = dataptr[6];
+ d7 = dataptr[7];
+
+ if ((d1 | d2 | d3 | d4 | d5 | d6 | d7) == 0) {
+ /* AC terms all zero */
+ if (d0) {
+ /* Compute a 32 bit value to assign. */
+ DCTELEM dcval = (DCTELEM) (d0 << PASS1_BITS);
+ register int v = (dcval & 0xffff) | ((dcval << 16) & 0xffff0000);
+
+ idataptr[0] = v;
+ idataptr[1] = v;
+ idataptr[2] = v;
+ idataptr[3] = v;
+ }
+
+ dataptr += DCTSIZE; /* advance pointer to next row */
+ continue;
+ }
- /* Even part: reverse the even part of the forward DCT. */
- /* The rotator is sqrt(2)*c(-6). */
- {
- if(d6)
- {
- if(d2)
- {
+ /* Even part: reverse the even part of the forward DCT. */
+ /* The rotator is sqrt(2)*c(-6). */
+{
+ if (d6) {
+ if (d2) {
/* d0 != 0, d2 != 0, d4 != 0, d6 != 0 */
z1 = MULTIPLY(d2 + d6, FIX_0_541196100);
tmp2 = z1 + MULTIPLY(-d6, FIX_1_847759065);
@@ -286,9 +281,7 @@ void j_rev_dct(DCTBLOCK data)
tmp13 = tmp0 - tmp3;
tmp11 = tmp1 + tmp2;
tmp12 = tmp1 - tmp2;
- }
- else
- {
+ } else {
/* d0 != 0, d2 == 0, d4 != 0, d6 != 0 */
tmp2 = MULTIPLY(-d6, FIX_1_306562965);
tmp3 = MULTIPLY(d6, FIX_0_541196100);
@@ -300,12 +293,9 @@ void j_rev_dct(DCTBLOCK data)
tmp13 = tmp0 - tmp3;
tmp11 = tmp1 + tmp2;
tmp12 = tmp1 - tmp2;
- }
}
- else
- {
- if(d2)
- {
+ } else {
+ if (d2) {
/* d0 != 0, d2 != 0, d4 != 0, d6 == 0 */
tmp2 = MULTIPLY(d2, FIX_0_541196100);
tmp3 = MULTIPLY(d2, FIX_1_306562965);
@@ -317,742 +307,640 @@ void j_rev_dct(DCTBLOCK data)
tmp13 = tmp0 - tmp3;
tmp11 = tmp1 + tmp2;
tmp12 = tmp1 - tmp2;
- }
- else
- {
+ } else {
/* d0 != 0, d2 == 0, d4 != 0, d6 == 0 */
tmp10 = tmp13 = (d0 + d4) << CONST_BITS;
tmp11 = tmp12 = (d0 - d4) << CONST_BITS;
- }
}
-
- /* Odd part per figure 8; the matrix is unitary and hence its
- * transpose is its inverse. i0..i3 are y7,y5,y3,y1 respectively.
- */
-
- if(d7)
- {
- if(d5)
- {
- if(d3)
- {
- if(d1)
- {
- /* d1 != 0, d3 != 0, d5 != 0, d7 != 0 */
- z1 = d7 + d1;
- z2 = d5 + d3;
- z3 = d7 + d3;
- z4 = d5 + d1;
- z5 = MULTIPLY(z3 + z4, FIX_1_175875602);
-
- tmp0 = MULTIPLY(d7, FIX_0_298631336);
- tmp1 = MULTIPLY(d5, FIX_2_053119869);
- tmp2 = MULTIPLY(d3, FIX_3_072711026);
- tmp3 = MULTIPLY(d1, FIX_1_501321110);
- z1 = MULTIPLY(-z1, FIX_0_899976223);
- z2 = MULTIPLY(-z2, FIX_2_562915447);
- z3 = MULTIPLY(-z3, FIX_1_961570560);
- z4 = MULTIPLY(-z4, FIX_0_390180644);
-
- z3 += z5;
- z4 += z5;
-
- tmp0 += z1 + z3;
- tmp1 += z2 + z4;
- tmp2 += z2 + z3;
- tmp3 += z1 + z4;
- }
- else
- {
- /* d1 == 0, d3 != 0, d5 != 0, d7 != 0 */
- z2 = d5 + d3;
- z3 = d7 + d3;
- z5 = MULTIPLY(z3 + d5, FIX_1_175875602);
-
- tmp0 = MULTIPLY(d7, FIX_0_298631336);
- tmp1 = MULTIPLY(d5, FIX_2_053119869);
- tmp2 = MULTIPLY(d3, FIX_3_072711026);
- z1 = MULTIPLY(-d7, FIX_0_899976223);
- z2 = MULTIPLY(-z2, FIX_2_562915447);
- z3 = MULTIPLY(-z3, FIX_1_961570560);
- z4 = MULTIPLY(-d5, FIX_0_390180644);
-
- z3 += z5;
- z4 += z5;
-
- tmp0 += z1 + z3;
- tmp1 += z2 + z4;
- tmp2 += z2 + z3;
- tmp3 = z1 + z4;
- }
- }
- else
- {
- if(d1)
- {
- /* d1 != 0, d3 == 0, d5 != 0, d7 != 0 */
- z1 = d7 + d1;
- z4 = d5 + d1;
- z5 = MULTIPLY(d7 + z4, FIX_1_175875602);
-
- tmp0 = MULTIPLY(d7, FIX_0_298631336);
- tmp1 = MULTIPLY(d5, FIX_2_053119869);
- tmp3 = MULTIPLY(d1, FIX_1_501321110);
- z1 = MULTIPLY(-z1, FIX_0_899976223);
- z2 = MULTIPLY(-d5, FIX_2_562915447);
- z3 = MULTIPLY(-d7, FIX_1_961570560);
- z4 = MULTIPLY(-z4, FIX_0_390180644);
-
- z3 += z5;
- z4 += z5;
-
- tmp0 += z1 + z3;
- tmp1 += z2 + z4;
- tmp2 = z2 + z3;
- tmp3 += z1 + z4;
- }
- else
- {
- /* d1 == 0, d3 == 0, d5 != 0, d7 != 0 */
- tmp0 = MULTIPLY(-d7, FIX_0_601344887);
- z1 = MULTIPLY(-d7, FIX_0_899976223);
- z3 = MULTIPLY(-d7, FIX_1_961570560);
- tmp1 = MULTIPLY(-d5, FIX_0_509795579);
- z2 = MULTIPLY(-d5, FIX_2_562915447);
- z4 = MULTIPLY(-d5, FIX_0_390180644);
- z5 = MULTIPLY(d5 + d7, FIX_1_175875602);
-
- z3 += z5;
- z4 += z5;
-
- tmp0 += z3;
- tmp1 += z4;
- tmp2 = z2 + z3;
- tmp3 = z1 + z4;
- }
- }
+ }
+
+ /* Odd part per figure 8; the matrix is unitary and hence its
+ * transpose is its inverse. i0..i3 are y7,y5,y3,y1 respectively.
+ */
+
+ if (d7) {
+ if (d5) {
+ if (d3) {
+ if (d1) {
+ /* d1 != 0, d3 != 0, d5 != 0, d7 != 0 */
+ z1 = d7 + d1;
+ z2 = d5 + d3;
+ z3 = d7 + d3;
+ z4 = d5 + d1;
+ z5 = MULTIPLY(z3 + z4, FIX_1_175875602);
+
+ tmp0 = MULTIPLY(d7, FIX_0_298631336);
+ tmp1 = MULTIPLY(d5, FIX_2_053119869);
+ tmp2 = MULTIPLY(d3, FIX_3_072711026);
+ tmp3 = MULTIPLY(d1, FIX_1_501321110);
+ z1 = MULTIPLY(-z1, FIX_0_899976223);
+ z2 = MULTIPLY(-z2, FIX_2_562915447);
+ z3 = MULTIPLY(-z3, FIX_1_961570560);
+ z4 = MULTIPLY(-z4, FIX_0_390180644);
+
+ z3 += z5;
+ z4 += z5;
+
+ tmp0 += z1 + z3;
+ tmp1 += z2 + z4;
+ tmp2 += z2 + z3;
+ tmp3 += z1 + z4;
+ } else {
+ /* d1 == 0, d3 != 0, d5 != 0, d7 != 0 */
+ z2 = d5 + d3;
+ z3 = d7 + d3;
+ z5 = MULTIPLY(z3 + d5, FIX_1_175875602);
+
+ tmp0 = MULTIPLY(d7, FIX_0_298631336);
+ tmp1 = MULTIPLY(d5, FIX_2_053119869);
+ tmp2 = MULTIPLY(d3, FIX_3_072711026);
+ z1 = MULTIPLY(-d7, FIX_0_899976223);
+ z2 = MULTIPLY(-z2, FIX_2_562915447);
+ z3 = MULTIPLY(-z3, FIX_1_961570560);
+ z4 = MULTIPLY(-d5, FIX_0_390180644);
+
+ z3 += z5;
+ z4 += z5;
+
+ tmp0 += z1 + z3;
+ tmp1 += z2 + z4;
+ tmp2 += z2 + z3;
+ tmp3 = z1 + z4;
}
- else
- {
- if(d3)
- {
- if(d1)
- {
- /* d1 != 0, d3 != 0, d5 == 0, d7 != 0 */
- z1 = d7 + d1;
- z3 = d7 + d3;
- z5 = MULTIPLY(z3 + d1, FIX_1_175875602);
-
- tmp0 = MULTIPLY(d7, FIX_0_298631336);
- tmp2 = MULTIPLY(d3, FIX_3_072711026);
- tmp3 = MULTIPLY(d1, FIX_1_501321110);
- z1 = MULTIPLY(-z1, FIX_0_899976223);
- z2 = MULTIPLY(-d3, FIX_2_562915447);
- z3 = MULTIPLY(-z3, FIX_1_961570560);
- z4 = MULTIPLY(-d1, FIX_0_390180644);
-
- z3 += z5;
- z4 += z5;
-
- tmp0 += z1 + z3;
- tmp1 = z2 + z4;
- tmp2 += z2 + z3;
- tmp3 += z1 + z4;
- }
- else
- {
- /* d1 == 0, d3 != 0, d5 == 0, d7 != 0 */
- z3 = d7 + d3;
-
- tmp0 = MULTIPLY(-d7, FIX_0_601344887);
- z1 = MULTIPLY(-d7, FIX_0_899976223);
- tmp2 = MULTIPLY(d3, FIX_0_509795579);
- z2 = MULTIPLY(-d3, FIX_2_562915447);
- z5 = MULTIPLY(z3, FIX_1_175875602);
- z3 = MULTIPLY(-z3, FIX_0_785694958);
-
- tmp0 += z3;
- tmp1 = z2 + z5;
- tmp2 += z3;
- tmp3 = z1 + z5;
- }
- }
- else
- {
- if(d1)
- {
- /* d1 != 0, d3 == 0, d5 == 0, d7 != 0 */
- z1 = d7 + d1;
- z5 = MULTIPLY(z1, FIX_1_175875602);
-
- z1 = MULTIPLY(z1, FIX_0_275899380);
- z3 = MULTIPLY(-d7, FIX_1_961570560);
- tmp0 = MULTIPLY(-d7, FIX_1_662939225);
- z4 = MULTIPLY(-d1, FIX_0_390180644);
- tmp3 = MULTIPLY(d1, FIX_1_111140466);
-
- tmp0 += z1;
- tmp1 = z4 + z5;
- tmp2 = z3 + z5;
- tmp3 += z1;
- }
- else
- {
- /* d1 == 0, d3 == 0, d5 == 0, d7 != 0 */
- tmp0 = MULTIPLY(-d7, FIX_1_387039845);
- tmp1 = MULTIPLY(d7, FIX_1_175875602);
- tmp2 = MULTIPLY(-d7, FIX_0_785694958);
- tmp3 = MULTIPLY(d7, FIX_0_275899380);
- }
- }
+ } else {
+ if (d1) {
+ /* d1 != 0, d3 == 0, d5 != 0, d7 != 0 */
+ z1 = d7 + d1;
+ z4 = d5 + d1;
+ z5 = MULTIPLY(d7 + z4, FIX_1_175875602);
+
+ tmp0 = MULTIPLY(d7, FIX_0_298631336);
+ tmp1 = MULTIPLY(d5, FIX_2_053119869);
+ tmp3 = MULTIPLY(d1, FIX_1_501321110);
+ z1 = MULTIPLY(-z1, FIX_0_899976223);
+ z2 = MULTIPLY(-d5, FIX_2_562915447);
+ z3 = MULTIPLY(-d7, FIX_1_961570560);
+ z4 = MULTIPLY(-z4, FIX_0_390180644);
+
+ z3 += z5;
+ z4 += z5;
+
+ tmp0 += z1 + z3;
+ tmp1 += z2 + z4;
+ tmp2 = z2 + z3;
+ tmp3 += z1 + z4;
+ } else {
+ /* d1 == 0, d3 == 0, d5 != 0, d7 != 0 */
+ tmp0 = MULTIPLY(-d7, FIX_0_601344887);
+ z1 = MULTIPLY(-d7, FIX_0_899976223);
+ z3 = MULTIPLY(-d7, FIX_1_961570560);
+ tmp1 = MULTIPLY(-d5, FIX_0_509795579);
+ z2 = MULTIPLY(-d5, FIX_2_562915447);
+ z4 = MULTIPLY(-d5, FIX_0_390180644);
+ z5 = MULTIPLY(d5 + d7, FIX_1_175875602);
+
+ z3 += z5;
+ z4 += z5;
+
+ tmp0 += z3;
+ tmp1 += z4;
+ tmp2 = z2 + z3;
+ tmp3 = z1 + z4;
}
}
- else
- {
- if(d5)
- {
- if(d3)
- {
- if(d1)
- {
- /* d1 != 0, d3 != 0, d5 != 0, d7 == 0 */
- z2 = d5 + d3;
- z4 = d5 + d1;
- z5 = MULTIPLY(d3 + z4, FIX_1_175875602);
-
- tmp1 = MULTIPLY(d5, FIX_2_053119869);
- tmp2 = MULTIPLY(d3, FIX_3_072711026);
- tmp3 = MULTIPLY(d1, FIX_1_501321110);
- z1 = MULTIPLY(-d1, FIX_0_899976223);
- z2 = MULTIPLY(-z2, FIX_2_562915447);
- z3 = MULTIPLY(-d3, FIX_1_961570560);
- z4 = MULTIPLY(-z4, FIX_0_390180644);
-
- z3 += z5;
- z4 += z5;
-
- tmp0 = z1 + z3;
- tmp1 += z2 + z4;
- tmp2 += z2 + z3;
- tmp3 += z1 + z4;
- }
- else
- {
- /* d1 == 0, d3 != 0, d5 != 0, d7 == 0 */
- z2 = d5 + d3;
-
- z5 = MULTIPLY(z2, FIX_1_175875602);
- tmp1 = MULTIPLY(d5, FIX_1_662939225);
- z4 = MULTIPLY(-d5, FIX_0_390180644);
- z2 = MULTIPLY(-z2, FIX_1_387039845);
- tmp2 = MULTIPLY(d3, FIX_1_111140466);
- z3 = MULTIPLY(-d3, FIX_1_961570560);
-
- tmp0 = z3 + z5;
- tmp1 += z2;
- tmp2 += z2;
- tmp3 = z4 + z5;
- }
- }
- else
- {
- if(d1)
- {
- /* d1 != 0, d3 == 0, d5 != 0, d7 == 0 */
- z4 = d5 + d1;
-
- z5 = MULTIPLY(z4, FIX_1_175875602);
- z1 = MULTIPLY(-d1, FIX_0_899976223);
- tmp3 = MULTIPLY(d1, FIX_0_601344887);
- tmp1 = MULTIPLY(-d5, FIX_0_509795579);
- z2 = MULTIPLY(-d5, FIX_2_562915447);
- z4 = MULTIPLY(z4, FIX_0_785694958);
-
- tmp0 = z1 + z5;
- tmp1 += z4;
- tmp2 = z2 + z5;
- tmp3 += z4;
- }
- else
- {
- /* d1 == 0, d3 == 0, d5 != 0, d7 == 0 */
- tmp0 = MULTIPLY(d5, FIX_1_175875602);
- tmp1 = MULTIPLY(d5, FIX_0_275899380);
- tmp2 = MULTIPLY(-d5, FIX_1_387039845);
- tmp3 = MULTIPLY(d5, FIX_0_785694958);
- }
- }
+ } else {
+ if (d3) {
+ if (d1) {
+ /* d1 != 0, d3 != 0, d5 == 0, d7 != 0 */
+ z1 = d7 + d1;
+ z3 = d7 + d3;
+ z5 = MULTIPLY(z3 + d1, FIX_1_175875602);
+
+ tmp0 = MULTIPLY(d7, FIX_0_298631336);
+ tmp2 = MULTIPLY(d3, FIX_3_072711026);
+ tmp3 = MULTIPLY(d1, FIX_1_501321110);
+ z1 = MULTIPLY(-z1, FIX_0_899976223);
+ z2 = MULTIPLY(-d3, FIX_2_562915447);
+ z3 = MULTIPLY(-z3, FIX_1_961570560);
+ z4 = MULTIPLY(-d1, FIX_0_390180644);
+
+ z3 += z5;
+ z4 += z5;
+
+ tmp0 += z1 + z3;
+ tmp1 = z2 + z4;
+ tmp2 += z2 + z3;
+ tmp3 += z1 + z4;
+ } else {
+ /* d1 == 0, d3 != 0, d5 == 0, d7 != 0 */
+ z3 = d7 + d3;
+
+ tmp0 = MULTIPLY(-d7, FIX_0_601344887);
+ z1 = MULTIPLY(-d7, FIX_0_899976223);
+ tmp2 = MULTIPLY(d3, FIX_0_509795579);
+ z2 = MULTIPLY(-d3, FIX_2_562915447);
+ z5 = MULTIPLY(z3, FIX_1_175875602);
+ z3 = MULTIPLY(-z3, FIX_0_785694958);
+
+ tmp0 += z3;
+ tmp1 = z2 + z5;
+ tmp2 += z3;
+ tmp3 = z1 + z5;
}
- else
- {
- if(d3)
- {
- if(d1)
- {
- /* d1 != 0, d3 != 0, d5 == 0, d7 == 0 */
- z5 = d1 + d3;
- tmp3 = MULTIPLY(d1, FIX_0_211164243);
- tmp2 = MULTIPLY(-d3, FIX_1_451774981);
- z1 = MULTIPLY(d1, FIX_1_061594337);
- z2 = MULTIPLY(-d3, FIX_2_172734803);
- z4 = MULTIPLY(z5, FIX_0_785694958);
- z5 = MULTIPLY(z5, FIX_1_175875602);
-
- tmp0 = z1 - z4;
- tmp1 = z2 + z4;
- tmp2 += z5;
- tmp3 += z5;
- }
- else
- {
- /* d1 == 0, d3 != 0, d5 == 0, d7 == 0 */
- tmp0 = MULTIPLY(-d3, FIX_0_785694958);
- tmp1 = MULTIPLY(-d3, FIX_1_387039845);
- tmp2 = MULTIPLY(-d3, FIX_0_275899380);
- tmp3 = MULTIPLY(d3, FIX_1_175875602);
- }
- }
- else
- {
- if(d1)
- {
- /* d1 != 0, d3 == 0, d5 == 0, d7 == 0 */
- tmp0 = MULTIPLY(d1, FIX_0_275899380);
- tmp1 = MULTIPLY(d1, FIX_0_785694958);
- tmp2 = MULTIPLY(d1, FIX_1_175875602);
- tmp3 = MULTIPLY(d1, FIX_1_387039845);
- }
- else
- {
- /* d1 == 0, d3 == 0, d5 == 0, d7 == 0 */
- tmp0 = tmp1 = tmp2 = tmp3 = 0;
- }
- }
+ } else {
+ if (d1) {
+ /* d1 != 0, d3 == 0, d5 == 0, d7 != 0 */
+ z1 = d7 + d1;
+ z5 = MULTIPLY(z1, FIX_1_175875602);
+
+ z1 = MULTIPLY(z1, FIX_0_275899380);
+ z3 = MULTIPLY(-d7, FIX_1_961570560);
+ tmp0 = MULTIPLY(-d7, FIX_1_662939225);
+ z4 = MULTIPLY(-d1, FIX_0_390180644);
+ tmp3 = MULTIPLY(d1, FIX_1_111140466);
+
+ tmp0 += z1;
+ tmp1 = z4 + z5;
+ tmp2 = z3 + z5;
+ tmp3 += z1;
+ } else {
+ /* d1 == 0, d3 == 0, d5 == 0, d7 != 0 */
+ tmp0 = MULTIPLY(-d7, FIX_1_387039845);
+ tmp1 = MULTIPLY(d7, FIX_1_175875602);
+ tmp2 = MULTIPLY(-d7, FIX_0_785694958);
+ tmp3 = MULTIPLY(d7, FIX_0_275899380);
}
}
}
- /* Final output stage: inputs are tmp10..tmp13, tmp0..tmp3 */
-
- dataptr[0] = (DCTELEM) DESCALE(tmp10 + tmp3, CONST_BITS - PASS1_BITS);
- dataptr[7] = (DCTELEM) DESCALE(tmp10 - tmp3, CONST_BITS - PASS1_BITS);
- dataptr[1] = (DCTELEM) DESCALE(tmp11 + tmp2, CONST_BITS - PASS1_BITS);
- dataptr[6] = (DCTELEM) DESCALE(tmp11 - tmp2, CONST_BITS - PASS1_BITS);
- dataptr[2] = (DCTELEM) DESCALE(tmp12 + tmp1, CONST_BITS - PASS1_BITS);
- dataptr[5] = (DCTELEM) DESCALE(tmp12 - tmp1, CONST_BITS - PASS1_BITS);
- dataptr[3] = (DCTELEM) DESCALE(tmp13 + tmp0, CONST_BITS - PASS1_BITS);
- dataptr[4] = (DCTELEM) DESCALE(tmp13 - tmp0, CONST_BITS - PASS1_BITS);
-
- dataptr += DCTSIZE; /* advance pointer to next row */
- }
-
- /* Pass 2: process columns. */
- /* Note that we must descale the results by a factor of 8 == 2**3, */
- /* and also undo the PASS1_BITS scaling. */
-
- dataptr = data;
- for(rowctr = DCTSIZE - 1; rowctr >= 0; rowctr--)
- {
- /* Columns of zeroes can be exploited in the same way as we did with rows.
- * However, the row calculation has created many nonzero AC terms, so the
- * simplification applies less often (typically 5% to 10% of the time).
- * On machines with very fast multiplication, it's possible that the
- * test takes more time than it's worth. In that case this section
- * may be commented out.
- */
-
- d0 = dataptr[DCTSIZE*0];
- d1 = dataptr[DCTSIZE*1];
- d2 = dataptr[DCTSIZE*2];
- d3 = dataptr[DCTSIZE*3];
- d4 = dataptr[DCTSIZE*4];
- d5 = dataptr[DCTSIZE*5];
- d6 = dataptr[DCTSIZE*6];
- d7 = dataptr[DCTSIZE*7];
-
- /* Even part: reverse the even part of the forward DCT. */
- /* The rotator is sqrt(2)*c(-6). */
- if(d6)
- {
- if(d2)
- {
- /* d0 != 0, d2 != 0, d4 != 0, d6 != 0 */
- z1 = MULTIPLY(d2 + d6, FIX_0_541196100);
- tmp2 = z1 + MULTIPLY(-d6, FIX_1_847759065);
- tmp3 = z1 + MULTIPLY(d2, FIX_0_765366865);
-
- tmp0 = (d0 + d4) << CONST_BITS;
- tmp1 = (d0 - d4) << CONST_BITS;
-
- tmp10 = tmp0 + tmp3;
- tmp13 = tmp0 - tmp3;
- tmp11 = tmp1 + tmp2;
- tmp12 = tmp1 - tmp2;
+ } else {
+ if (d5) {
+ if (d3) {
+ if (d1) {
+ /* d1 != 0, d3 != 0, d5 != 0, d7 == 0 */
+ z2 = d5 + d3;
+ z4 = d5 + d1;
+ z5 = MULTIPLY(d3 + z4, FIX_1_175875602);
+
+ tmp1 = MULTIPLY(d5, FIX_2_053119869);
+ tmp2 = MULTIPLY(d3, FIX_3_072711026);
+ tmp3 = MULTIPLY(d1, FIX_1_501321110);
+ z1 = MULTIPLY(-d1, FIX_0_899976223);
+ z2 = MULTIPLY(-z2, FIX_2_562915447);
+ z3 = MULTIPLY(-d3, FIX_1_961570560);
+ z4 = MULTIPLY(-z4, FIX_0_390180644);
+
+ z3 += z5;
+ z4 += z5;
+
+ tmp0 = z1 + z3;
+ tmp1 += z2 + z4;
+ tmp2 += z2 + z3;
+ tmp3 += z1 + z4;
+ } else {
+ /* d1 == 0, d3 != 0, d5 != 0, d7 == 0 */
+ z2 = d5 + d3;
+
+ z5 = MULTIPLY(z2, FIX_1_175875602);
+ tmp1 = MULTIPLY(d5, FIX_1_662939225);
+ z4 = MULTIPLY(-d5, FIX_0_390180644);
+ z2 = MULTIPLY(-z2, FIX_1_387039845);
+ tmp2 = MULTIPLY(d3, FIX_1_111140466);
+ z3 = MULTIPLY(-d3, FIX_1_961570560);
+
+ tmp0 = z3 + z5;
+ tmp1 += z2;
+ tmp2 += z2;
+ tmp3 = z4 + z5;
+ }
+ } else {
+ if (d1) {
+ /* d1 != 0, d3 == 0, d5 != 0, d7 == 0 */
+ z4 = d5 + d1;
+
+ z5 = MULTIPLY(z4, FIX_1_175875602);
+ z1 = MULTIPLY(-d1, FIX_0_899976223);
+ tmp3 = MULTIPLY(d1, FIX_0_601344887);
+ tmp1 = MULTIPLY(-d5, FIX_0_509795579);
+ z2 = MULTIPLY(-d5, FIX_2_562915447);
+ z4 = MULTIPLY(z4, FIX_0_785694958);
+
+ tmp0 = z1 + z5;
+ tmp1 += z4;
+ tmp2 = z2 + z5;
+ tmp3 += z4;
+ } else {
+ /* d1 == 0, d3 == 0, d5 != 0, d7 == 0 */
+ tmp0 = MULTIPLY(d5, FIX_1_175875602);
+ tmp1 = MULTIPLY(d5, FIX_0_275899380);
+ tmp2 = MULTIPLY(-d5, FIX_1_387039845);
+ tmp3 = MULTIPLY(d5, FIX_0_785694958);
+ }
}
- else
- {
- /* d0 != 0, d2 == 0, d4 != 0, d6 != 0 */
- tmp2 = MULTIPLY(-d6, FIX_1_306562965);
- tmp3 = MULTIPLY(d6, FIX_0_541196100);
-
- tmp0 = (d0 + d4) << CONST_BITS;
- tmp1 = (d0 - d4) << CONST_BITS;
-
- tmp10 = tmp0 + tmp3;
- tmp13 = tmp0 - tmp3;
- tmp11 = tmp1 + tmp2;
- tmp12 = tmp1 - tmp2;
+ } else {
+ if (d3) {
+ if (d1) {
+ /* d1 != 0, d3 != 0, d5 == 0, d7 == 0 */
+ z5 = d1 + d3;
+ tmp3 = MULTIPLY(d1, FIX_0_211164243);
+ tmp2 = MULTIPLY(-d3, FIX_1_451774981);
+ z1 = MULTIPLY(d1, FIX_1_061594337);
+ z2 = MULTIPLY(-d3, FIX_2_172734803);
+ z4 = MULTIPLY(z5, FIX_0_785694958);
+ z5 = MULTIPLY(z5, FIX_1_175875602);
+
+ tmp0 = z1 - z4;
+ tmp1 = z2 + z4;
+ tmp2 += z5;
+ tmp3 += z5;
+ } else {
+ /* d1 == 0, d3 != 0, d5 == 0, d7 == 0 */
+ tmp0 = MULTIPLY(-d3, FIX_0_785694958);
+ tmp1 = MULTIPLY(-d3, FIX_1_387039845);
+ tmp2 = MULTIPLY(-d3, FIX_0_275899380);
+ tmp3 = MULTIPLY(d3, FIX_1_175875602);
+ }
+ } else {
+ if (d1) {
+ /* d1 != 0, d3 == 0, d5 == 0, d7 == 0 */
+ tmp0 = MULTIPLY(d1, FIX_0_275899380);
+ tmp1 = MULTIPLY(d1, FIX_0_785694958);
+ tmp2 = MULTIPLY(d1, FIX_1_175875602);
+ tmp3 = MULTIPLY(d1, FIX_1_387039845);
+ } else {
+ /* d1 == 0, d3 == 0, d5 == 0, d7 == 0 */
+ tmp0 = tmp1 = tmp2 = tmp3 = 0;
+ }
}
}
- else
- {
- if(d2)
- {
- /* d0 != 0, d2 != 0, d4 != 0, d6 == 0 */
- tmp2 = MULTIPLY(d2, FIX_0_541196100);
- tmp3 = MULTIPLY(d2, FIX_1_306562965);
-
- tmp0 = (d0 + d4) << CONST_BITS;
- tmp1 = (d0 - d4) << CONST_BITS;
-
- tmp10 = tmp0 + tmp3;
- tmp13 = tmp0 - tmp3;
- tmp11 = tmp1 + tmp2;
- tmp12 = tmp1 - tmp2;
+ }
+}
+ /* Final output stage: inputs are tmp10..tmp13, tmp0..tmp3 */
+
+ dataptr[0] = (DCTELEM) DESCALE(tmp10 + tmp3, CONST_BITS-PASS1_BITS);
+ dataptr[7] = (DCTELEM) DESCALE(tmp10 - tmp3, CONST_BITS-PASS1_BITS);
+ dataptr[1] = (DCTELEM) DESCALE(tmp11 + tmp2, CONST_BITS-PASS1_BITS);
+ dataptr[6] = (DCTELEM) DESCALE(tmp11 - tmp2, CONST_BITS-PASS1_BITS);
+ dataptr[2] = (DCTELEM) DESCALE(tmp12 + tmp1, CONST_BITS-PASS1_BITS);
+ dataptr[5] = (DCTELEM) DESCALE(tmp12 - tmp1, CONST_BITS-PASS1_BITS);
+ dataptr[3] = (DCTELEM) DESCALE(tmp13 + tmp0, CONST_BITS-PASS1_BITS);
+ dataptr[4] = (DCTELEM) DESCALE(tmp13 - tmp0, CONST_BITS-PASS1_BITS);
+
+ dataptr += DCTSIZE; /* advance pointer to next row */
+ }
+
+ /* Pass 2: process columns. */
+ /* Note that we must descale the results by a factor of 8 == 2**3, */
+ /* and also undo the PASS1_BITS scaling. */
+
+ dataptr = data;
+ for (rowctr = DCTSIZE-1; rowctr >= 0; rowctr--) {
+ /* Columns of zeroes can be exploited in the same way as we did with rows.
+ * However, the row calculation has created many nonzero AC terms, so the
+ * simplification applies less often (typically 5% to 10% of the time).
+ * On machines with very fast multiplication, it's possible that the
+ * test takes more time than it's worth. In that case this section
+ * may be commented out.
+ */
+
+ d0 = dataptr[DCTSIZE*0];
+ d1 = dataptr[DCTSIZE*1];
+ d2 = dataptr[DCTSIZE*2];
+ d3 = dataptr[DCTSIZE*3];
+ d4 = dataptr[DCTSIZE*4];
+ d5 = dataptr[DCTSIZE*5];
+ d6 = dataptr[DCTSIZE*6];
+ d7 = dataptr[DCTSIZE*7];
+
+ /* Even part: reverse the even part of the forward DCT. */
+ /* The rotator is sqrt(2)*c(-6). */
+ if (d6) {
+ if (d2) {
+ /* d0 != 0, d2 != 0, d4 != 0, d6 != 0 */
+ z1 = MULTIPLY(d2 + d6, FIX_0_541196100);
+ tmp2 = z1 + MULTIPLY(-d6, FIX_1_847759065);
+ tmp3 = z1 + MULTIPLY(d2, FIX_0_765366865);
+
+ tmp0 = (d0 + d4) << CONST_BITS;
+ tmp1 = (d0 - d4) << CONST_BITS;
+
+ tmp10 = tmp0 + tmp3;
+ tmp13 = tmp0 - tmp3;
+ tmp11 = tmp1 + tmp2;
+ tmp12 = tmp1 - tmp2;
+ } else {
+ /* d0 != 0, d2 == 0, d4 != 0, d6 != 0 */
+ tmp2 = MULTIPLY(-d6, FIX_1_306562965);
+ tmp3 = MULTIPLY(d6, FIX_0_541196100);
+
+ tmp0 = (d0 + d4) << CONST_BITS;
+ tmp1 = (d0 - d4) << CONST_BITS;
+
+ tmp10 = tmp0 + tmp3;
+ tmp13 = tmp0 - tmp3;
+ tmp11 = tmp1 + tmp2;
+ tmp12 = tmp1 - tmp2;
}
- else
- {
- /* d0 != 0, d2 == 0, d4 != 0, d6 == 0 */
- tmp10 = tmp13 = (d0 + d4) << CONST_BITS;
- tmp11 = tmp12 = (d0 - d4) << CONST_BITS;
+ } else {
+ if (d2) {
+ /* d0 != 0, d2 != 0, d4 != 0, d6 == 0 */
+ tmp2 = MULTIPLY(d2, FIX_0_541196100);
+ tmp3 = MULTIPLY(d2, FIX_1_306562965);
+
+ tmp0 = (d0 + d4) << CONST_BITS;
+ tmp1 = (d0 - d4) << CONST_BITS;
+
+ tmp10 = tmp0 + tmp3;
+ tmp13 = tmp0 - tmp3;
+ tmp11 = tmp1 + tmp2;
+ tmp12 = tmp1 - tmp2;
+ } else {
+ /* d0 != 0, d2 == 0, d4 != 0, d6 == 0 */
+ tmp10 = tmp13 = (d0 + d4) << CONST_BITS;
+ tmp11 = tmp12 = (d0 - d4) << CONST_BITS;
}
- }
+ }
- /* Odd part per figure 8; the matrix is unitary and hence its
- * transpose is its inverse. i0..i3 are y7,y5,y3,y1 respectively.
- */
- if(d7)
- {
- if(d5)
- {
- if(d3)
- {
- if(d1)
- {
- /* d1 != 0, d3 != 0, d5 != 0, d7 != 0 */
- z1 = d7 + d1;
- z2 = d5 + d3;
- z3 = d7 + d3;
- z4 = d5 + d1;
- z5 = MULTIPLY(z3 + z4, FIX_1_175875602);
-
- tmp0 = MULTIPLY(d7, FIX_0_298631336);
- tmp1 = MULTIPLY(d5, FIX_2_053119869);
- tmp2 = MULTIPLY(d3, FIX_3_072711026);
- tmp3 = MULTIPLY(d1, FIX_1_501321110);
- z1 = MULTIPLY(-z1, FIX_0_899976223);
- z2 = MULTIPLY(-z2, FIX_2_562915447);
- z3 = MULTIPLY(-z3, FIX_1_961570560);
- z4 = MULTIPLY(-z4, FIX_0_390180644);
-
- z3 += z5;
- z4 += z5;
-
- tmp0 += z1 + z3;
- tmp1 += z2 + z4;
- tmp2 += z2 + z3;
- tmp3 += z1 + z4;
- }
- else
- {
- /* d1 == 0, d3 != 0, d5 != 0, d7 != 0 */
- z2 = d5 + d3;
- z3 = d7 + d3;
- z5 = MULTIPLY(z3 + d5, FIX_1_175875602);
-
- tmp0 = MULTIPLY(d7, FIX_0_298631336);
- tmp1 = MULTIPLY(d5, FIX_2_053119869);
- tmp2 = MULTIPLY(d3, FIX_3_072711026);
- z1 = MULTIPLY(-d7, FIX_0_899976223);
- z2 = MULTIPLY(-z2, FIX_2_562915447);
- z3 = MULTIPLY(-z3, FIX_1_961570560);
- z4 = MULTIPLY(-d5, FIX_0_390180644);
-
- z3 += z5;
- z4 += z5;
-
- tmp0 += z1 + z3;
- tmp1 += z2 + z4;
- tmp2 += z2 + z3;
- tmp3 = z1 + z4;
- }
+ /* Odd part per figure 8; the matrix is unitary and hence its
+ * transpose is its inverse. i0..i3 are y7,y5,y3,y1 respectively.
+ */
+ if (d7) {
+ if (d5) {
+ if (d3) {
+ if (d1) {
+ /* d1 != 0, d3 != 0, d5 != 0, d7 != 0 */
+ z1 = d7 + d1;
+ z2 = d5 + d3;
+ z3 = d7 + d3;
+ z4 = d5 + d1;
+ z5 = MULTIPLY(z3 + z4, FIX_1_175875602);
+
+ tmp0 = MULTIPLY(d7, FIX_0_298631336);
+ tmp1 = MULTIPLY(d5, FIX_2_053119869);
+ tmp2 = MULTIPLY(d3, FIX_3_072711026);
+ tmp3 = MULTIPLY(d1, FIX_1_501321110);
+ z1 = MULTIPLY(-z1, FIX_0_899976223);
+ z2 = MULTIPLY(-z2, FIX_2_562915447);
+ z3 = MULTIPLY(-z3, FIX_1_961570560);
+ z4 = MULTIPLY(-z4, FIX_0_390180644);
+
+ z3 += z5;
+ z4 += z5;
+
+ tmp0 += z1 + z3;
+ tmp1 += z2 + z4;
+ tmp2 += z2 + z3;
+ tmp3 += z1 + z4;
+ } else {
+ /* d1 == 0, d3 != 0, d5 != 0, d7 != 0 */
+ z2 = d5 + d3;
+ z3 = d7 + d3;
+ z5 = MULTIPLY(z3 + d5, FIX_1_175875602);
+
+ tmp0 = MULTIPLY(d7, FIX_0_298631336);
+ tmp1 = MULTIPLY(d5, FIX_2_053119869);
+ tmp2 = MULTIPLY(d3, FIX_3_072711026);
+ z1 = MULTIPLY(-d7, FIX_0_899976223);
+ z2 = MULTIPLY(-z2, FIX_2_562915447);
+ z3 = MULTIPLY(-z3, FIX_1_961570560);
+ z4 = MULTIPLY(-d5, FIX_0_390180644);
+
+ z3 += z5;
+ z4 += z5;
+
+ tmp0 += z1 + z3;
+ tmp1 += z2 + z4;
+ tmp2 += z2 + z3;
+ tmp3 = z1 + z4;
}
- else
- {
- if(d1)
- {
- /* d1 != 0, d3 == 0, d5 != 0, d7 != 0 */
- z1 = d7 + d1;
- z3 = d7;
- z4 = d5 + d1;
- z5 = MULTIPLY(z3 + z4, FIX_1_175875602);
-
- tmp0 = MULTIPLY(d7, FIX_0_298631336);
- tmp1 = MULTIPLY(d5, FIX_2_053119869);
- tmp3 = MULTIPLY(d1, FIX_1_501321110);
- z1 = MULTIPLY(-z1, FIX_0_899976223);
- z2 = MULTIPLY(-d5, FIX_2_562915447);
- z3 = MULTIPLY(-d7, FIX_1_961570560);
- z4 = MULTIPLY(-z4, FIX_0_390180644);
-
- z3 += z5;
- z4 += z5;
-
- tmp0 += z1 + z3;
- tmp1 += z2 + z4;
- tmp2 = z2 + z3;
- tmp3 += z1 + z4;
- }
- else
- {
- /* d1 == 0, d3 == 0, d5 != 0, d7 != 0 */
- tmp0 = MULTIPLY(-d7, FIX_0_601344887);
- z1 = MULTIPLY(-d7, FIX_0_899976223);
- z3 = MULTIPLY(-d7, FIX_1_961570560);
- tmp1 = MULTIPLY(-d5, FIX_0_509795579);
- z2 = MULTIPLY(-d5, FIX_2_562915447);
- z4 = MULTIPLY(-d5, FIX_0_390180644);
- z5 = MULTIPLY(d5 + d7, FIX_1_175875602);
-
- z3 += z5;
- z4 += z5;
-
- tmp0 += z3;
- tmp1 += z4;
- tmp2 = z2 + z3;
- tmp3 = z1 + z4;
- }
+ } else {
+ if (d1) {
+ /* d1 != 0, d3 == 0, d5 != 0, d7 != 0 */
+ z1 = d7 + d1;
+ z3 = d7;
+ z4 = d5 + d1;
+ z5 = MULTIPLY(z3 + z4, FIX_1_175875602);
+
+ tmp0 = MULTIPLY(d7, FIX_0_298631336);
+ tmp1 = MULTIPLY(d5, FIX_2_053119869);
+ tmp3 = MULTIPLY(d1, FIX_1_501321110);
+ z1 = MULTIPLY(-z1, FIX_0_899976223);
+ z2 = MULTIPLY(-d5, FIX_2_562915447);
+ z3 = MULTIPLY(-d7, FIX_1_961570560);
+ z4 = MULTIPLY(-z4, FIX_0_390180644);
+
+ z3 += z5;
+ z4 += z5;
+
+ tmp0 += z1 + z3;
+ tmp1 += z2 + z4;
+ tmp2 = z2 + z3;
+ tmp3 += z1 + z4;
+ } else {
+ /* d1 == 0, d3 == 0, d5 != 0, d7 != 0 */
+ tmp0 = MULTIPLY(-d7, FIX_0_601344887);
+ z1 = MULTIPLY(-d7, FIX_0_899976223);
+ z3 = MULTIPLY(-d7, FIX_1_961570560);
+ tmp1 = MULTIPLY(-d5, FIX_0_509795579);
+ z2 = MULTIPLY(-d5, FIX_2_562915447);
+ z4 = MULTIPLY(-d5, FIX_0_390180644);
+ z5 = MULTIPLY(d5 + d7, FIX_1_175875602);
+
+ z3 += z5;
+ z4 += z5;
+
+ tmp0 += z3;
+ tmp1 += z4;
+ tmp2 = z2 + z3;
+ tmp3 = z1 + z4;
}
}
- else
- {
- if(d3)
- {
- if(d1)
- {
- /* d1 != 0, d3 != 0, d5 == 0, d7 != 0 */
- z1 = d7 + d1;
- z3 = d7 + d3;
- z5 = MULTIPLY(z3 + d1, FIX_1_175875602);
-
- tmp0 = MULTIPLY(d7, FIX_0_298631336);
- tmp2 = MULTIPLY(d3, FIX_3_072711026);
- tmp3 = MULTIPLY(d1, FIX_1_501321110);
- z1 = MULTIPLY(-z1, FIX_0_899976223);
- z2 = MULTIPLY(-d3, FIX_2_562915447);
- z3 = MULTIPLY(-z3, FIX_1_961570560);
- z4 = MULTIPLY(-d1, FIX_0_390180644);
-
- z3 += z5;
- z4 += z5;
-
- tmp0 += z1 + z3;
- tmp1 = z2 + z4;
- tmp2 += z2 + z3;
- tmp3 += z1 + z4;
- }
- else
- {
- /* d1 == 0, d3 != 0, d5 == 0, d7 != 0 */
- z3 = d7 + d3;
-
- tmp0 = MULTIPLY(-d7, FIX_0_601344887);
- z1 = MULTIPLY(-d7, FIX_0_899976223);
- tmp2 = MULTIPLY(d3, FIX_0_509795579);
- z2 = MULTIPLY(-d3, FIX_2_562915447);
- z5 = MULTIPLY(z3, FIX_1_175875602);
- z3 = MULTIPLY(-z3, FIX_0_785694958);
-
- tmp0 += z3;
- tmp1 = z2 + z5;
- tmp2 += z3;
- tmp3 = z1 + z5;
- }
+ } else {
+ if (d3) {
+ if (d1) {
+ /* d1 != 0, d3 != 0, d5 == 0, d7 != 0 */
+ z1 = d7 + d1;
+ z3 = d7 + d3;
+ z5 = MULTIPLY(z3 + d1, FIX_1_175875602);
+
+ tmp0 = MULTIPLY(d7, FIX_0_298631336);
+ tmp2 = MULTIPLY(d3, FIX_3_072711026);
+ tmp3 = MULTIPLY(d1, FIX_1_501321110);
+ z1 = MULTIPLY(-z1, FIX_0_899976223);
+ z2 = MULTIPLY(-d3, FIX_2_562915447);
+ z3 = MULTIPLY(-z3, FIX_1_961570560);
+ z4 = MULTIPLY(-d1, FIX_0_390180644);
+
+ z3 += z5;
+ z4 += z5;
+
+ tmp0 += z1 + z3;
+ tmp1 = z2 + z4;
+ tmp2 += z2 + z3;
+ tmp3 += z1 + z4;
+ } else {
+ /* d1 == 0, d3 != 0, d5 == 0, d7 != 0 */
+ z3 = d7 + d3;
+
+ tmp0 = MULTIPLY(-d7, FIX_0_601344887);
+ z1 = MULTIPLY(-d7, FIX_0_899976223);
+ tmp2 = MULTIPLY(d3, FIX_0_509795579);
+ z2 = MULTIPLY(-d3, FIX_2_562915447);
+ z5 = MULTIPLY(z3, FIX_1_175875602);
+ z3 = MULTIPLY(-z3, FIX_0_785694958);
+
+ tmp0 += z3;
+ tmp1 = z2 + z5;
+ tmp2 += z3;
+ tmp3 = z1 + z5;
}
- else
- {
- if(d1)
- {
- /* d1 != 0, d3 == 0, d5 == 0, d7 != 0 */
- z1 = d7 + d1;
- z5 = MULTIPLY(z1, FIX_1_175875602);
-
- z1 = MULTIPLY(z1, FIX_0_275899380);
- z3 = MULTIPLY(-d7, FIX_1_961570560);
- tmp0 = MULTIPLY(-d7, FIX_1_662939225);
- z4 = MULTIPLY(-d1, FIX_0_390180644);
- tmp3 = MULTIPLY(d1, FIX_1_111140466);
-
- tmp0 += z1;
- tmp1 = z4 + z5;
- tmp2 = z3 + z5;
- tmp3 += z1;
- }
- else
- {
- /* d1 == 0, d3 == 0, d5 == 0, d7 != 0 */
- tmp0 = MULTIPLY(-d7, FIX_1_387039845);
- tmp1 = MULTIPLY(d7, FIX_1_175875602);
- tmp2 = MULTIPLY(-d7, FIX_0_785694958);
- tmp3 = MULTIPLY(d7, FIX_0_275899380);
- }
+ } else {
+ if (d1) {
+ /* d1 != 0, d3 == 0, d5 == 0, d7 != 0 */
+ z1 = d7 + d1;
+ z5 = MULTIPLY(z1, FIX_1_175875602);
+
+ z1 = MULTIPLY(z1, FIX_0_275899380);
+ z3 = MULTIPLY(-d7, FIX_1_961570560);
+ tmp0 = MULTIPLY(-d7, FIX_1_662939225);
+ z4 = MULTIPLY(-d1, FIX_0_390180644);
+ tmp3 = MULTIPLY(d1, FIX_1_111140466);
+
+ tmp0 += z1;
+ tmp1 = z4 + z5;
+ tmp2 = z3 + z5;
+ tmp3 += z1;
+ } else {
+ /* d1 == 0, d3 == 0, d5 == 0, d7 != 0 */
+ tmp0 = MULTIPLY(-d7, FIX_1_387039845);
+ tmp1 = MULTIPLY(d7, FIX_1_175875602);
+ tmp2 = MULTIPLY(-d7, FIX_0_785694958);
+ tmp3 = MULTIPLY(d7, FIX_0_275899380);
}
}
}
- else
- {
- if(d5)
- {
- if(d3)
- {
- if(d1)
- {
- /* d1 != 0, d3 != 0, d5 != 0, d7 == 0 */
- z2 = d5 + d3;
- z4 = d5 + d1;
- z5 = MULTIPLY(d3 + z4, FIX_1_175875602);
-
- tmp1 = MULTIPLY(d5, FIX_2_053119869);
- tmp2 = MULTIPLY(d3, FIX_3_072711026);
- tmp3 = MULTIPLY(d1, FIX_1_501321110);
- z1 = MULTIPLY(-d1, FIX_0_899976223);
- z2 = MULTIPLY(-z2, FIX_2_562915447);
- z3 = MULTIPLY(-d3, FIX_1_961570560);
- z4 = MULTIPLY(-z4, FIX_0_390180644);
-
- z3 += z5;
- z4 += z5;
-
- tmp0 = z1 + z3;
- tmp1 += z2 + z4;
- tmp2 += z2 + z3;
- tmp3 += z1 + z4;
- }
- else
- {
- /* d1 == 0, d3 != 0, d5 != 0, d7 == 0 */
- z2 = d5 + d3;
-
- z5 = MULTIPLY(z2, FIX_1_175875602);
- tmp1 = MULTIPLY(d5, FIX_1_662939225);
- z4 = MULTIPLY(-d5, FIX_0_390180644);
- z2 = MULTIPLY(-z2, FIX_1_387039845);
- tmp2 = MULTIPLY(d3, FIX_1_111140466);
- z3 = MULTIPLY(-d3, FIX_1_961570560);
-
- tmp0 = z3 + z5;
- tmp1 += z2;
- tmp2 += z2;
- tmp3 = z4 + z5;
- }
+ } else {
+ if (d5) {
+ if (d3) {
+ if (d1) {
+ /* d1 != 0, d3 != 0, d5 != 0, d7 == 0 */
+ z2 = d5 + d3;
+ z4 = d5 + d1;
+ z5 = MULTIPLY(d3 + z4, FIX_1_175875602);
+
+ tmp1 = MULTIPLY(d5, FIX_2_053119869);
+ tmp2 = MULTIPLY(d3, FIX_3_072711026);
+ tmp3 = MULTIPLY(d1, FIX_1_501321110);
+ z1 = MULTIPLY(-d1, FIX_0_899976223);
+ z2 = MULTIPLY(-z2, FIX_2_562915447);
+ z3 = MULTIPLY(-d3, FIX_1_961570560);
+ z4 = MULTIPLY(-z4, FIX_0_390180644);
+
+ z3 += z5;
+ z4 += z5;
+
+ tmp0 = z1 + z3;
+ tmp1 += z2 + z4;
+ tmp2 += z2 + z3;
+ tmp3 += z1 + z4;
+ } else {
+ /* d1 == 0, d3 != 0, d5 != 0, d7 == 0 */
+ z2 = d5 + d3;
+
+ z5 = MULTIPLY(z2, FIX_1_175875602);
+ tmp1 = MULTIPLY(d5, FIX_1_662939225);
+ z4 = MULTIPLY(-d5, FIX_0_390180644);
+ z2 = MULTIPLY(-z2, FIX_1_387039845);
+ tmp2 = MULTIPLY(d3, FIX_1_111140466);
+ z3 = MULTIPLY(-d3, FIX_1_961570560);
+
+ tmp0 = z3 + z5;
+ tmp1 += z2;
+ tmp2 += z2;
+ tmp3 = z4 + z5;
}
- else
- {
- if(d1)
- {
- /* d1 != 0, d3 == 0, d5 != 0, d7 == 0 */
- z4 = d5 + d1;
-
- z5 = MULTIPLY(z4, FIX_1_175875602);
- z1 = MULTIPLY(-d1, FIX_0_899976223);
- tmp3 = MULTIPLY(d1, FIX_0_601344887);
- tmp1 = MULTIPLY(-d5, FIX_0_509795579);
- z2 = MULTIPLY(-d5, FIX_2_562915447);
- z4 = MULTIPLY(z4, FIX_0_785694958);
-
- tmp0 = z1 + z5;
- tmp1 += z4;
- tmp2 = z2 + z5;
- tmp3 += z4;
- }
- else
- {
- /* d1 == 0, d3 == 0, d5 != 0, d7 == 0 */
- tmp0 = MULTIPLY(d5, FIX_1_175875602);
- tmp1 = MULTIPLY(d5, FIX_0_275899380);
- tmp2 = MULTIPLY(-d5, FIX_1_387039845);
- tmp3 = MULTIPLY(d5, FIX_0_785694958);
- }
+ } else {
+ if (d1) {
+ /* d1 != 0, d3 == 0, d5 != 0, d7 == 0 */
+ z4 = d5 + d1;
+
+ z5 = MULTIPLY(z4, FIX_1_175875602);
+ z1 = MULTIPLY(-d1, FIX_0_899976223);
+ tmp3 = MULTIPLY(d1, FIX_0_601344887);
+ tmp1 = MULTIPLY(-d5, FIX_0_509795579);
+ z2 = MULTIPLY(-d5, FIX_2_562915447);
+ z4 = MULTIPLY(z4, FIX_0_785694958);
+
+ tmp0 = z1 + z5;
+ tmp1 += z4;
+ tmp2 = z2 + z5;
+ tmp3 += z4;
+ } else {
+ /* d1 == 0, d3 == 0, d5 != 0, d7 == 0 */
+ tmp0 = MULTIPLY(d5, FIX_1_175875602);
+ tmp1 = MULTIPLY(d5, FIX_0_275899380);
+ tmp2 = MULTIPLY(-d5, FIX_1_387039845);
+ tmp3 = MULTIPLY(d5, FIX_0_785694958);
}
}
- else
- {
- if(d3)
- {
- if(d1)
- {
- /* d1 != 0, d3 != 0, d5 == 0, d7 == 0 */
- z5 = d1 + d3;
- tmp3 = MULTIPLY(d1, FIX_0_211164243);
- tmp2 = MULTIPLY(-d3, FIX_1_451774981);
- z1 = MULTIPLY(d1, FIX_1_061594337);
- z2 = MULTIPLY(-d3, FIX_2_172734803);
- z4 = MULTIPLY(z5, FIX_0_785694958);
- z5 = MULTIPLY(z5, FIX_1_175875602);
-
- tmp0 = z1 - z4;
- tmp1 = z2 + z4;
- tmp2 += z5;
- tmp3 += z5;
- }
- else
- {
- /* d1 == 0, d3 != 0, d5 == 0, d7 == 0 */
- tmp0 = MULTIPLY(-d3, FIX_0_785694958);
- tmp1 = MULTIPLY(-d3, FIX_1_387039845);
- tmp2 = MULTIPLY(-d3, FIX_0_275899380);
- tmp3 = MULTIPLY(d3, FIX_1_175875602);
- }
+ } else {
+ if (d3) {
+ if (d1) {
+ /* d1 != 0, d3 != 0, d5 == 0, d7 == 0 */
+ z5 = d1 + d3;
+ tmp3 = MULTIPLY(d1, FIX_0_211164243);
+ tmp2 = MULTIPLY(-d3, FIX_1_451774981);
+ z1 = MULTIPLY(d1, FIX_1_061594337);
+ z2 = MULTIPLY(-d3, FIX_2_172734803);
+ z4 = MULTIPLY(z5, FIX_0_785694958);
+ z5 = MULTIPLY(z5, FIX_1_175875602);
+
+ tmp0 = z1 - z4;
+ tmp1 = z2 + z4;
+ tmp2 += z5;
+ tmp3 += z5;
+ } else {
+ /* d1 == 0, d3 != 0, d5 == 0, d7 == 0 */
+ tmp0 = MULTIPLY(-d3, FIX_0_785694958);
+ tmp1 = MULTIPLY(-d3, FIX_1_387039845);
+ tmp2 = MULTIPLY(-d3, FIX_0_275899380);
+ tmp3 = MULTIPLY(d3, FIX_1_175875602);
}
- else
- {
- if(d1)
- {
- /* d1 != 0, d3 == 0, d5 == 0, d7 == 0 */
- tmp0 = MULTIPLY(d1, FIX_0_275899380);
- tmp1 = MULTIPLY(d1, FIX_0_785694958);
- tmp2 = MULTIPLY(d1, FIX_1_175875602);
- tmp3 = MULTIPLY(d1, FIX_1_387039845);
- }
- else
- {
- /* d1 == 0, d3 == 0, d5 == 0, d7 == 0 */
- tmp0 = tmp1 = tmp2 = tmp3 = 0;
- }
+ } else {
+ if (d1) {
+ /* d1 != 0, d3 == 0, d5 == 0, d7 == 0 */
+ tmp0 = MULTIPLY(d1, FIX_0_275899380);
+ tmp1 = MULTIPLY(d1, FIX_0_785694958);
+ tmp2 = MULTIPLY(d1, FIX_1_175875602);
+ tmp3 = MULTIPLY(d1, FIX_1_387039845);
+ } else {
+ /* d1 == 0, d3 == 0, d5 == 0, d7 == 0 */
+ tmp0 = tmp1 = tmp2 = tmp3 = 0;
}
}
}
-
- /* Final output stage: inputs are tmp10..tmp13, tmp0..tmp3 */
-
- dataptr[DCTSIZE*0] = (DCTELEM) DESCALE(tmp10 + tmp3,
- CONST_BITS + PASS1_BITS + 3);
- dataptr[DCTSIZE*7] = (DCTELEM) DESCALE(tmp10 - tmp3,
- CONST_BITS + PASS1_BITS + 3);
- dataptr[DCTSIZE*1] = (DCTELEM) DESCALE(tmp11 + tmp2,
- CONST_BITS + PASS1_BITS + 3);
- dataptr[DCTSIZE*6] = (DCTELEM) DESCALE(tmp11 - tmp2,
- CONST_BITS + PASS1_BITS + 3);
- dataptr[DCTSIZE*2] = (DCTELEM) DESCALE(tmp12 + tmp1,
- CONST_BITS + PASS1_BITS + 3);
- dataptr[DCTSIZE*5] = (DCTELEM) DESCALE(tmp12 - tmp1,
- CONST_BITS + PASS1_BITS + 3);
- dataptr[DCTSIZE*3] = (DCTELEM) DESCALE(tmp13 + tmp0,
- CONST_BITS + PASS1_BITS + 3);
- dataptr[DCTSIZE*4] = (DCTELEM) DESCALE(tmp13 - tmp0,
- CONST_BITS + PASS1_BITS + 3);
-
- dataptr++; /* advance pointer to next column */
}
+
+ /* Final output stage: inputs are tmp10..tmp13, tmp0..tmp3 */
+
+ dataptr[DCTSIZE*0] = (DCTELEM) DESCALE(tmp10 + tmp3,
+ CONST_BITS+PASS1_BITS+3);
+ dataptr[DCTSIZE*7] = (DCTELEM) DESCALE(tmp10 - tmp3,
+ CONST_BITS+PASS1_BITS+3);
+ dataptr[DCTSIZE*1] = (DCTELEM) DESCALE(tmp11 + tmp2,
+ CONST_BITS+PASS1_BITS+3);
+ dataptr[DCTSIZE*6] = (DCTELEM) DESCALE(tmp11 - tmp2,
+ CONST_BITS+PASS1_BITS+3);
+ dataptr[DCTSIZE*2] = (DCTELEM) DESCALE(tmp12 + tmp1,
+ CONST_BITS+PASS1_BITS+3);
+ dataptr[DCTSIZE*5] = (DCTELEM) DESCALE(tmp12 - tmp1,
+ CONST_BITS+PASS1_BITS+3);
+ dataptr[DCTSIZE*3] = (DCTELEM) DESCALE(tmp13 + tmp0,
+ CONST_BITS+PASS1_BITS+3);
+ dataptr[DCTSIZE*4] = (DCTELEM) DESCALE(tmp13 - tmp0,
+ CONST_BITS+PASS1_BITS+3);
+
+ dataptr++; /* advance pointer to next column */
+ }
}
#undef DCTSIZE
@@ -1061,232 +949,208 @@ void j_rev_dct(DCTBLOCK data)
void j_rev_dct4(DCTBLOCK data)
{
- int32_t tmp0, tmp1, tmp2, tmp3;
- int32_t tmp10, tmp11, tmp12, tmp13;
- int32_t z1;
- int32_t d0, d2, d4, d6;
- register DCTELEM *dataptr;
- int rowctr;
-
- /* Pass 1: process rows. */
- /* Note results are scaled up by sqrt(8) compared to a true IDCT; */
- /* furthermore, we scale the results by 2**PASS1_BITS. */
-
- data[0] += 4;
-
- dataptr = data;
-
- for(rowctr = DCTSIZE - 1; rowctr >= 0; rowctr--)
- {
- /* Due to quantization, we will usually find that many of the input
- * coefficients are zero, especially the AC terms. We can exploit this
- * by short-circuiting the IDCT calculation for any row in which all
- * the AC terms are zero. In that case each output is equal to the
- * DC coefficient (with scale factor as needed).
- * With typical images and quantization tables, half or more of the
- * row DCT calculations can be simplified this way.
- */
-
- register int *idataptr = (int*)dataptr;
-
- d0 = dataptr[0];
- d2 = dataptr[1];
- d4 = dataptr[2];
- d6 = dataptr[3];
-
- if((d2 | d4 | d6) == 0)
- {
- /* AC terms all zero */
- if(d0)
- {
- /* Compute a 32 bit value to assign. */
- DCTELEM dcval = (DCTELEM)(d0 << PASS1_BITS);
- register int v = (dcval & 0xffff) | ((dcval << 16) & 0xffff0000);
-
- idataptr[0] = v;
- idataptr[1] = v;
- }
+ int32_t tmp0, tmp1, tmp2, tmp3;
+ int32_t tmp10, tmp11, tmp12, tmp13;
+ int32_t z1;
+ int32_t d0, d2, d4, d6;
+ register DCTELEM *dataptr;
+ int rowctr;
+
+ /* Pass 1: process rows. */
+ /* Note results are scaled up by sqrt(8) compared to a true IDCT; */
+ /* furthermore, we scale the results by 2**PASS1_BITS. */
+
+ data[0] += 4;
+
+ dataptr = data;
+
+ for (rowctr = DCTSIZE-1; rowctr >= 0; rowctr--) {
+ /* Due to quantization, we will usually find that many of the input
+ * coefficients are zero, especially the AC terms. We can exploit this
+ * by short-circuiting the IDCT calculation for any row in which all
+ * the AC terms are zero. In that case each output is equal to the
+ * DC coefficient (with scale factor as needed).
+ * With typical images and quantization tables, half or more of the
+ * row DCT calculations can be simplified this way.
+ */
+
+ register int *idataptr = (int*)dataptr;
+
+ d0 = dataptr[0];
+ d2 = dataptr[1];
+ d4 = dataptr[2];
+ d6 = dataptr[3];
+
+ if ((d2 | d4 | d6) == 0) {
+ /* AC terms all zero */
+ if (d0) {
+ /* Compute a 32 bit value to assign. */
+ DCTELEM dcval = (DCTELEM) (d0 << PASS1_BITS);
+ register int v = (dcval & 0xffff) | ((dcval << 16) & 0xffff0000);
+
+ idataptr[0] = v;
+ idataptr[1] = v;
+ }
+
+ dataptr += DCTSTRIDE; /* advance pointer to next row */
+ continue;
+ }
- dataptr += DCTSTRIDE; /* advance pointer to next row */
- continue;
- }
+ /* Even part: reverse the even part of the forward DCT. */
+ /* The rotator is sqrt(2)*c(-6). */
+ if (d6) {
+ if (d2) {
+ /* d0 != 0, d2 != 0, d4 != 0, d6 != 0 */
+ z1 = MULTIPLY(d2 + d6, FIX_0_541196100);
+ tmp2 = z1 + MULTIPLY(-d6, FIX_1_847759065);
+ tmp3 = z1 + MULTIPLY(d2, FIX_0_765366865);
- /* Even part: reverse the even part of the forward DCT. */
- /* The rotator is sqrt(2)*c(-6). */
- if(d6)
- {
- if(d2)
- {
- /* d0 != 0, d2 != 0, d4 != 0, d6 != 0 */
- z1 = MULTIPLY(d2 + d6, FIX_0_541196100);
- tmp2 = z1 + MULTIPLY(-d6, FIX_1_847759065);
- tmp3 = z1 + MULTIPLY(d2, FIX_0_765366865);
-
- tmp0 = (d0 + d4) << CONST_BITS;
- tmp1 = (d0 - d4) << CONST_BITS;
-
- tmp10 = tmp0 + tmp3;
- tmp13 = tmp0 - tmp3;
- tmp11 = tmp1 + tmp2;
- tmp12 = tmp1 - tmp2;
- }
- else
- {
- /* d0 != 0, d2 == 0, d4 != 0, d6 != 0 */
- tmp2 = MULTIPLY(-d6, FIX_1_306562965);
- tmp3 = MULTIPLY(d6, FIX_0_541196100);
-
- tmp0 = (d0 + d4) << CONST_BITS;
- tmp1 = (d0 - d4) << CONST_BITS;
-
- tmp10 = tmp0 + tmp3;
- tmp13 = tmp0 - tmp3;
- tmp11 = tmp1 + tmp2;
- tmp12 = tmp1 - tmp2;
- }
- }
- else
- {
- if(d2)
- {
- /* d0 != 0, d2 != 0, d4 != 0, d6 == 0 */
- tmp2 = MULTIPLY(d2, FIX_0_541196100);
- tmp3 = MULTIPLY(d2, FIX_1_306562965);
-
- tmp0 = (d0 + d4) << CONST_BITS;
- tmp1 = (d0 - d4) << CONST_BITS;
-
- tmp10 = tmp0 + tmp3;
- tmp13 = tmp0 - tmp3;
- tmp11 = tmp1 + tmp2;
- tmp12 = tmp1 - tmp2;
+ tmp0 = (d0 + d4) << CONST_BITS;
+ tmp1 = (d0 - d4) << CONST_BITS;
+
+ tmp10 = tmp0 + tmp3;
+ tmp13 = tmp0 - tmp3;
+ tmp11 = tmp1 + tmp2;
+ tmp12 = tmp1 - tmp2;
+ } else {
+ /* d0 != 0, d2 == 0, d4 != 0, d6 != 0 */
+ tmp2 = MULTIPLY(-d6, FIX_1_306562965);
+ tmp3 = MULTIPLY(d6, FIX_0_541196100);
+
+ tmp0 = (d0 + d4) << CONST_BITS;
+ tmp1 = (d0 - d4) << CONST_BITS;
+
+ tmp10 = tmp0 + tmp3;
+ tmp13 = tmp0 - tmp3;
+ tmp11 = tmp1 + tmp2;
+ tmp12 = tmp1 - tmp2;
}
- else
- {
- /* d0 != 0, d2 == 0, d4 != 0, d6 == 0 */
- tmp10 = tmp13 = (d0 + d4) << CONST_BITS;
- tmp11 = tmp12 = (d0 - d4) << CONST_BITS;
+ } else {
+ if (d2) {
+ /* d0 != 0, d2 != 0, d4 != 0, d6 == 0 */
+ tmp2 = MULTIPLY(d2, FIX_0_541196100);
+ tmp3 = MULTIPLY(d2, FIX_1_306562965);
+
+ tmp0 = (d0 + d4) << CONST_BITS;
+ tmp1 = (d0 - d4) << CONST_BITS;
+
+ tmp10 = tmp0 + tmp3;
+ tmp13 = tmp0 - tmp3;
+ tmp11 = tmp1 + tmp2;
+ tmp12 = tmp1 - tmp2;
+ } else {
+ /* d0 != 0, d2 == 0, d4 != 0, d6 == 0 */
+ tmp10 = tmp13 = (d0 + d4) << CONST_BITS;
+ tmp11 = tmp12 = (d0 - d4) << CONST_BITS;
}
- }
+ }
+
+ /* Final output stage: inputs are tmp10..tmp13, tmp0..tmp3 */
+
+ dataptr[0] = (DCTELEM) DESCALE(tmp10, CONST_BITS-PASS1_BITS);
+ dataptr[1] = (DCTELEM) DESCALE(tmp11, CONST_BITS-PASS1_BITS);
+ dataptr[2] = (DCTELEM) DESCALE(tmp12, CONST_BITS-PASS1_BITS);
+ dataptr[3] = (DCTELEM) DESCALE(tmp13, CONST_BITS-PASS1_BITS);
+
+ dataptr += DCTSTRIDE; /* advance pointer to next row */
+ }
+
+ /* Pass 2: process columns. */
+ /* Note that we must descale the results by a factor of 8 == 2**3, */
+ /* and also undo the PASS1_BITS scaling. */
+
+ dataptr = data;
+ for (rowctr = DCTSIZE-1; rowctr >= 0; rowctr--) {
+ /* Columns of zeroes can be exploited in the same way as we did with rows.
+ * However, the row calculation has created many nonzero AC terms, so the
+ * simplification applies less often (typically 5% to 10% of the time).
+ * On machines with very fast multiplication, it's possible that the
+ * test takes more time than it's worth. In that case this section
+ * may be commented out.
+ */
+
+ d0 = dataptr[DCTSTRIDE*0];
+ d2 = dataptr[DCTSTRIDE*1];
+ d4 = dataptr[DCTSTRIDE*2];
+ d6 = dataptr[DCTSTRIDE*3];
+
+ /* Even part: reverse the even part of the forward DCT. */
+ /* The rotator is sqrt(2)*c(-6). */
+ if (d6) {
+ if (d2) {
+ /* d0 != 0, d2 != 0, d4 != 0, d6 != 0 */
+ z1 = MULTIPLY(d2 + d6, FIX_0_541196100);
+ tmp2 = z1 + MULTIPLY(-d6, FIX_1_847759065);
+ tmp3 = z1 + MULTIPLY(d2, FIX_0_765366865);
- /* Final output stage: inputs are tmp10..tmp13, tmp0..tmp3 */
+ tmp0 = (d0 + d4) << CONST_BITS;
+ tmp1 = (d0 - d4) << CONST_BITS;
- dataptr[0] = (DCTELEM) DESCALE(tmp10, CONST_BITS - PASS1_BITS);
- dataptr[1] = (DCTELEM) DESCALE(tmp11, CONST_BITS - PASS1_BITS);
- dataptr[2] = (DCTELEM) DESCALE(tmp12, CONST_BITS - PASS1_BITS);
- dataptr[3] = (DCTELEM) DESCALE(tmp13, CONST_BITS - PASS1_BITS);
+ tmp10 = tmp0 + tmp3;
+ tmp13 = tmp0 - tmp3;
+ tmp11 = tmp1 + tmp2;
+ tmp12 = tmp1 - tmp2;
+ } else {
+ /* d0 != 0, d2 == 0, d4 != 0, d6 != 0 */
+ tmp2 = MULTIPLY(-d6, FIX_1_306562965);
+ tmp3 = MULTIPLY(d6, FIX_0_541196100);
- dataptr += DCTSTRIDE; /* advance pointer to next row */
- }
+ tmp0 = (d0 + d4) << CONST_BITS;
+ tmp1 = (d0 - d4) << CONST_BITS;
- /* Pass 2: process columns. */
- /* Note that we must descale the results by a factor of 8 == 2**3, */
- /* and also undo the PASS1_BITS scaling. */
-
- dataptr = data;
- for(rowctr = DCTSIZE - 1; rowctr >= 0; rowctr--)
- {
- /* Columns of zeroes can be exploited in the same way as we did with rows.
- * However, the row calculation has created many nonzero AC terms, so the
- * simplification applies less often (typically 5% to 10% of the time).
- * On machines with very fast multiplication, it's possible that the
- * test takes more time than it's worth. In that case this section
- * may be commented out.
- */
-
- d0 = dataptr[DCTSTRIDE*0];
- d2 = dataptr[DCTSTRIDE*1];
- d4 = dataptr[DCTSTRIDE*2];
- d6 = dataptr[DCTSTRIDE*3];
-
- /* Even part: reverse the even part of the forward DCT. */
- /* The rotator is sqrt(2)*c(-6). */
- if(d6)
- {
- if(d2)
- {
- /* d0 != 0, d2 != 0, d4 != 0, d6 != 0 */
- z1 = MULTIPLY(d2 + d6, FIX_0_541196100);
- tmp2 = z1 + MULTIPLY(-d6, FIX_1_847759065);
- tmp3 = z1 + MULTIPLY(d2, FIX_0_765366865);
-
- tmp0 = (d0 + d4) << CONST_BITS;
- tmp1 = (d0 - d4) << CONST_BITS;
-
- tmp10 = tmp0 + tmp3;
- tmp13 = tmp0 - tmp3;
- tmp11 = tmp1 + tmp2;
- tmp12 = tmp1 - tmp2;
- }
- else
- {
- /* d0 != 0, d2 == 0, d4 != 0, d6 != 0 */
- tmp2 = MULTIPLY(-d6, FIX_1_306562965);
- tmp3 = MULTIPLY(d6, FIX_0_541196100);
-
- tmp0 = (d0 + d4) << CONST_BITS;
- tmp1 = (d0 - d4) << CONST_BITS;
-
- tmp10 = tmp0 + tmp3;
- tmp13 = tmp0 - tmp3;
- tmp11 = tmp1 + tmp2;
- tmp12 = tmp1 - tmp2;
- }
- }
- else
- {
- if(d2)
- {
- /* d0 != 0, d2 != 0, d4 != 0, d6 == 0 */
- tmp2 = MULTIPLY(d2, FIX_0_541196100);
- tmp3 = MULTIPLY(d2, FIX_1_306562965);
-
- tmp0 = (d0 + d4) << CONST_BITS;
- tmp1 = (d0 - d4) << CONST_BITS;
-
- tmp10 = tmp0 + tmp3;
- tmp13 = tmp0 - tmp3;
- tmp11 = tmp1 + tmp2;
- tmp12 = tmp1 - tmp2;
+ tmp10 = tmp0 + tmp3;
+ tmp13 = tmp0 - tmp3;
+ tmp11 = tmp1 + tmp2;
+ tmp12 = tmp1 - tmp2;
}
- else
- {
- /* d0 != 0, d2 == 0, d4 != 0, d6 == 0 */
- tmp10 = tmp13 = (d0 + d4) << CONST_BITS;
- tmp11 = tmp12 = (d0 - d4) << CONST_BITS;
+ } else {
+ if (d2) {
+ /* d0 != 0, d2 != 0, d4 != 0, d6 == 0 */
+ tmp2 = MULTIPLY(d2, FIX_0_541196100);
+ tmp3 = MULTIPLY(d2, FIX_1_306562965);
+
+ tmp0 = (d0 + d4) << CONST_BITS;
+ tmp1 = (d0 - d4) << CONST_BITS;
+
+ tmp10 = tmp0 + tmp3;
+ tmp13 = tmp0 - tmp3;
+ tmp11 = tmp1 + tmp2;
+ tmp12 = tmp1 - tmp2;
+ } else {
+ /* d0 != 0, d2 == 0, d4 != 0, d6 == 0 */
+ tmp10 = tmp13 = (d0 + d4) << CONST_BITS;
+ tmp11 = tmp12 = (d0 - d4) << CONST_BITS;
}
- }
+ }
- /* Final output stage: inputs are tmp10..tmp13, tmp0..tmp3 */
+ /* Final output stage: inputs are tmp10..tmp13, tmp0..tmp3 */
- dataptr[DCTSTRIDE*0] = tmp10 >> (CONST_BITS + PASS1_BITS + 3);
- dataptr[DCTSTRIDE*1] = tmp11 >> (CONST_BITS + PASS1_BITS + 3);
- dataptr[DCTSTRIDE*2] = tmp12 >> (CONST_BITS + PASS1_BITS + 3);
- dataptr[DCTSTRIDE*3] = tmp13 >> (CONST_BITS + PASS1_BITS + 3);
+ dataptr[DCTSTRIDE*0] = tmp10 >> (CONST_BITS+PASS1_BITS+3);
+ dataptr[DCTSTRIDE*1] = tmp11 >> (CONST_BITS+PASS1_BITS+3);
+ dataptr[DCTSTRIDE*2] = tmp12 >> (CONST_BITS+PASS1_BITS+3);
+ dataptr[DCTSTRIDE*3] = tmp13 >> (CONST_BITS+PASS1_BITS+3);
- dataptr++; /* advance pointer to next column */
- }
+ dataptr++; /* advance pointer to next column */
+ }
}
-void j_rev_dct2(DCTBLOCK data)
-{
- int d00, d01, d10, d11;
-
- data[0] += 4;
- d00 = data[0+0*DCTSTRIDE] + data[1+0*DCTSTRIDE];
- d01 = data[0+0*DCTSTRIDE] - data[1+0*DCTSTRIDE];
- d10 = data[0+1*DCTSTRIDE] + data[1+1*DCTSTRIDE];
- d11 = data[0+1*DCTSTRIDE] - data[1+1*DCTSTRIDE];
-
- data[0+0*DCTSTRIDE] = (d00 + d10) >> 3;
- data[1+0*DCTSTRIDE] = (d01 + d11) >> 3;
- data[0+1*DCTSTRIDE] = (d00 - d10) >> 3;
- data[1+1*DCTSTRIDE] = (d01 - d11) >> 3;
+void j_rev_dct2(DCTBLOCK data){
+ int d00, d01, d10, d11;
+
+ data[0] += 4;
+ d00 = data[0+0*DCTSTRIDE] + data[1+0*DCTSTRIDE];
+ d01 = data[0+0*DCTSTRIDE] - data[1+0*DCTSTRIDE];
+ d10 = data[0+1*DCTSTRIDE] + data[1+1*DCTSTRIDE];
+ d11 = data[0+1*DCTSTRIDE] - data[1+1*DCTSTRIDE];
+
+ data[0+0*DCTSTRIDE]= (d00 + d10)>>3;
+ data[1+0*DCTSTRIDE]= (d01 + d11)>>3;
+ data[0+1*DCTSTRIDE]= (d00 - d10)>>3;
+ data[1+1*DCTSTRIDE]= (d01 - d11)>>3;
}
-void j_rev_dct1(DCTBLOCK data)
-{
- data[0] = (data[0] + 4) >> 3;
+void j_rev_dct1(DCTBLOCK data){
+ data[0] = (data[0] + 4)>>3;
}
#undef FIX