Welcome to mirror list, hosted at ThFree Co, Russian Federation.

github.com/mpc-hc/mpc-hc.git - Unnamed repository; edit this file 'description' to name the repository.
summaryrefslogtreecommitdiff
diff options
context:
space:
mode:
authorXhmikosR <xhmikosr@users.sourceforge.net>2011-07-14 19:53:11 +0400
committerXhmikosR <xhmikosr@users.sourceforge.net>2011-07-14 19:53:11 +0400
commit4b616e3b7c79b34ea29d62caa2116ed274713a38 (patch)
treef9083c4bf19b5df59324e27db306b0e2f7009649 /src/thirdparty/SoundTouch/source/RateTransposer.cpp
parent9d042ba4e8c0ee43a173134aa755317b5f3e3629 (diff)
legacy branch: merge r3209-r3382 from trunk (the translations aren't up to date with any implications this may have)legacy
git-svn-id: https://mpc-hc.svn.sourceforge.net/svnroot/mpc-hc/branches/legacy@3383 10f7b99b-c216-0410-bff0-8a66a9350fd8
Diffstat (limited to 'src/thirdparty/SoundTouch/source/RateTransposer.cpp')
-rw-r--r--src/thirdparty/SoundTouch/source/RateTransposer.cpp628
1 files changed, 628 insertions, 0 deletions
diff --git a/src/thirdparty/SoundTouch/source/RateTransposer.cpp b/src/thirdparty/SoundTouch/source/RateTransposer.cpp
new file mode 100644
index 000000000..c288fddb9
--- /dev/null
+++ b/src/thirdparty/SoundTouch/source/RateTransposer.cpp
@@ -0,0 +1,628 @@
+////////////////////////////////////////////////////////////////////////////////
+///
+/// Sample rate transposer. Changes sample rate by using linear interpolation
+/// together with anti-alias filtering (first order interpolation with anti-
+/// alias filtering should be quite adequate for this application)
+///
+/// Author : Copyright (c) Olli Parviainen
+/// Author e-mail : oparviai 'at' iki.fi
+/// SoundTouch WWW: http://www.surina.net/soundtouch
+///
+////////////////////////////////////////////////////////////////////////////////
+//
+// Last changed : $Date$
+// File revision : $Revision: 4 $
+//
+// $Id$
+//
+////////////////////////////////////////////////////////////////////////////////
+//
+// License :
+//
+// SoundTouch audio processing library
+// Copyright (c) Olli Parviainen
+//
+// This library is free software; you can redistribute it and/or
+// modify it under the terms of the GNU Lesser General Public
+// License as published by the Free Software Foundation; either
+// version 2.1 of the License, or (at your option) any later version.
+//
+// This library is distributed in the hope that it will be useful,
+// but WITHOUT ANY WARRANTY; without even the implied warranty of
+// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
+// Lesser General Public License for more details.
+//
+// You should have received a copy of the GNU Lesser General Public
+// License along with this library; if not, write to the Free Software
+// Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
+//
+////////////////////////////////////////////////////////////////////////////////
+
+#include <memory.h>
+#include <assert.h>
+#include <stdlib.h>
+#include <stdio.h>
+#include <stdexcept>
+#include "RateTransposer.h"
+#include "AAFilter.h"
+
+using namespace std;
+using namespace soundtouch;
+
+
+/// A linear samplerate transposer class that uses integer arithmetics.
+/// for the transposing.
+class RateTransposerInteger : public RateTransposer
+{
+protected:
+ int iSlopeCount;
+ int iRate;
+ SAMPLETYPE sPrevSampleL, sPrevSampleR;
+
+ virtual void resetRegisters();
+
+ virtual uint transposeStereo(SAMPLETYPE *dest,
+ const SAMPLETYPE *src,
+ uint numSamples);
+ virtual uint transposeMono(SAMPLETYPE *dest,
+ const SAMPLETYPE *src,
+ uint numSamples);
+
+public:
+ RateTransposerInteger();
+ virtual ~RateTransposerInteger();
+
+ /// Sets new target rate. Normal rate = 1.0, smaller values represent slower
+ /// rate, larger faster rates.
+ virtual void setRate(float newRate);
+
+};
+
+
+/// A linear samplerate transposer class that uses floating point arithmetics
+/// for the transposing.
+class RateTransposerFloat : public RateTransposer
+{
+protected:
+ float fSlopeCount;
+ SAMPLETYPE sPrevSampleL, sPrevSampleR;
+
+ virtual void resetRegisters();
+
+ virtual uint transposeStereo(SAMPLETYPE *dest,
+ const SAMPLETYPE *src,
+ uint numSamples);
+ virtual uint transposeMono(SAMPLETYPE *dest,
+ const SAMPLETYPE *src,
+ uint numSamples);
+
+public:
+ RateTransposerFloat();
+ virtual ~RateTransposerFloat();
+};
+
+
+
+
+// Operator 'new' is overloaded so that it automatically creates a suitable instance
+// depending on if we've a MMX/SSE/etc-capable CPU available or not.
+void * RateTransposer::operator new(size_t /*s*/)
+{
+ throw runtime_error("Error in RateTransoser::new: don't use \"new TDStretch\" directly, use \"newInstance\" to create a new instance instead!");
+ return NULL;
+}
+
+
+RateTransposer *RateTransposer::newInstance()
+{
+#ifdef SOUNDTOUCH_INTEGER_SAMPLES
+ return ::new RateTransposerInteger;
+#else
+ return ::new RateTransposerFloat;
+#endif
+}
+
+
+// Constructor
+RateTransposer::RateTransposer() : FIFOProcessor(&outputBuffer)
+{
+ numChannels = 2;
+ bUseAAFilter = TRUE;
+ fRate = 0;
+
+ // Instantiates the anti-alias filter with default tap length
+ // of 32
+ pAAFilter = new AAFilter(32);
+}
+
+
+
+RateTransposer::~RateTransposer()
+{
+ delete pAAFilter;
+}
+
+
+
+/// Enables/disables the anti-alias filter. Zero to disable, nonzero to enable
+void RateTransposer::enableAAFilter(BOOL newMode)
+{
+ bUseAAFilter = newMode;
+}
+
+
+/// Returns nonzero if anti-alias filter is enabled.
+BOOL RateTransposer::isAAFilterEnabled() const
+{
+ return bUseAAFilter;
+}
+
+
+AAFilter *RateTransposer::getAAFilter()
+{
+ return pAAFilter;
+}
+
+
+
+// Sets new target iRate. Normal iRate = 1.0, smaller values represent slower
+// iRate, larger faster iRates.
+void RateTransposer::setRate(float newRate)
+{
+ double fCutoff;
+
+ fRate = newRate;
+
+ // design a new anti-alias filter
+ if (newRate > 1.0f)
+ {
+ fCutoff = 0.5f / newRate;
+ }
+ else
+ {
+ fCutoff = 0.5f * newRate;
+ }
+ pAAFilter->setCutoffFreq(fCutoff);
+}
+
+
+// Outputs as many samples of the 'outputBuffer' as possible, and if there's
+// any room left, outputs also as many of the incoming samples as possible.
+// The goal is to drive the outputBuffer empty.
+//
+// It's allowed for 'output' and 'input' parameters to point to the same
+// memory position.
+/*
+void RateTransposer::flushStoreBuffer()
+{
+ if (storeBuffer.isEmpty()) return;
+
+ outputBuffer.moveSamples(storeBuffer);
+}
+*/
+
+
+// Adds 'nSamples' pcs of samples from the 'samples' memory position into
+// the input of the object.
+void RateTransposer::putSamples(const SAMPLETYPE *samples, uint nSamples)
+{
+ processSamples(samples, nSamples);
+}
+
+
+
+// Transposes up the sample rate, causing the observed playback 'rate' of the
+// sound to decrease
+void RateTransposer::upsample(const SAMPLETYPE *src, uint nSamples)
+{
+ uint count, sizeTemp, num;
+
+ // If the parameter 'uRate' value is smaller than 'SCALE', first transpose
+ // the samples and then apply the anti-alias filter to remove aliasing.
+
+ // First check that there's enough room in 'storeBuffer'
+ // (+16 is to reserve some slack in the destination buffer)
+ sizeTemp = (uint)((float)nSamples / fRate + 16.0f);
+
+ // Transpose the samples, store the result into the end of "storeBuffer"
+ count = transpose(storeBuffer.ptrEnd(sizeTemp), src, nSamples);
+ storeBuffer.putSamples(count);
+
+ // Apply the anti-alias filter to samples in "store output", output the
+ // result to "dest"
+ num = storeBuffer.numSamples();
+ count = pAAFilter->evaluate(outputBuffer.ptrEnd(num),
+ storeBuffer.ptrBegin(), num, (uint)numChannels);
+ outputBuffer.putSamples(count);
+
+ // Remove the processed samples from "storeBuffer"
+ storeBuffer.receiveSamples(count);
+}
+
+
+// Transposes down the sample rate, causing the observed playback 'rate' of the
+// sound to increase
+void RateTransposer::downsample(const SAMPLETYPE *src, uint nSamples)
+{
+ uint count, sizeTemp;
+
+ // If the parameter 'uRate' value is larger than 'SCALE', first apply the
+ // anti-alias filter to remove high frequencies (prevent them from folding
+ // over the lover frequencies), then transpose.
+
+ // Add the new samples to the end of the storeBuffer
+ storeBuffer.putSamples(src, nSamples);
+
+ // Anti-alias filter the samples to prevent folding and output the filtered
+ // data to tempBuffer. Note : because of the FIR filter length, the
+ // filtering routine takes in 'filter_length' more samples than it outputs.
+ assert(tempBuffer.isEmpty());
+ sizeTemp = storeBuffer.numSamples();
+
+ count = pAAFilter->evaluate(tempBuffer.ptrEnd(sizeTemp),
+ storeBuffer.ptrBegin(), sizeTemp, (uint)numChannels);
+
+ if (count == 0) return;
+
+ // Remove the filtered samples from 'storeBuffer'
+ storeBuffer.receiveSamples(count);
+
+ // Transpose the samples (+16 is to reserve some slack in the destination buffer)
+ sizeTemp = (uint)((float)nSamples / fRate + 16.0f);
+ count = transpose(outputBuffer.ptrEnd(sizeTemp), tempBuffer.ptrBegin(), count);
+ outputBuffer.putSamples(count);
+}
+
+
+// Transposes sample rate by applying anti-alias filter to prevent folding.
+// Returns amount of samples returned in the "dest" buffer.
+// The maximum amount of samples that can be returned at a time is set by
+// the 'set_returnBuffer_size' function.
+void RateTransposer::processSamples(const SAMPLETYPE *src, uint nSamples)
+{
+ uint count;
+ uint sizeReq;
+
+ if (nSamples == 0) return;
+ assert(pAAFilter);
+
+ // If anti-alias filter is turned off, simply transpose without applying
+ // the filter
+ if (bUseAAFilter == FALSE)
+ {
+ sizeReq = (uint)((float)nSamples / fRate + 1.0f);
+ count = transpose(outputBuffer.ptrEnd(sizeReq), src, nSamples);
+ outputBuffer.putSamples(count);
+ return;
+ }
+
+ // Transpose with anti-alias filter
+ if (fRate < 1.0f)
+ {
+ upsample(src, nSamples);
+ }
+ else
+ {
+ downsample(src, nSamples);
+ }
+}
+
+
+// Transposes the sample rate of the given samples using linear interpolation.
+// Returns the number of samples returned in the "dest" buffer
+inline uint RateTransposer::transpose(SAMPLETYPE *dest, const SAMPLETYPE *src, uint nSamples)
+{
+ if (numChannels == 2)
+ {
+ return transposeStereo(dest, src, nSamples);
+ }
+ else
+ {
+ return transposeMono(dest, src, nSamples);
+ }
+}
+
+
+// Sets the number of channels, 1 = mono, 2 = stereo
+void RateTransposer::setChannels(int nChannels)
+{
+ assert(nChannels > 0);
+ if (numChannels == nChannels) return;
+
+ assert(nChannels == 1 || nChannels == 2);
+ numChannels = nChannels;
+
+ storeBuffer.setChannels(numChannels);
+ tempBuffer.setChannels(numChannels);
+ outputBuffer.setChannels(numChannels);
+
+ // Inits the linear interpolation registers
+ resetRegisters();
+}
+
+
+// Clears all the samples in the object
+void RateTransposer::clear()
+{
+ outputBuffer.clear();
+ storeBuffer.clear();
+}
+
+
+// Returns nonzero if there aren't any samples available for outputting.
+int RateTransposer::isEmpty() const
+{
+ int res;
+
+ res = FIFOProcessor::isEmpty();
+ if (res == 0) return 0;
+ return storeBuffer.isEmpty();
+}
+
+
+//////////////////////////////////////////////////////////////////////////////
+//
+// RateTransposerInteger - integer arithmetic implementation
+//
+
+/// fixed-point interpolation routine precision
+#define SCALE 65536
+
+// Constructor
+RateTransposerInteger::RateTransposerInteger() : RateTransposer()
+{
+ // Notice: use local function calling syntax for sake of clarity,
+ // to indicate the fact that C++ constructor can't call virtual functions.
+ RateTransposerInteger::resetRegisters();
+ RateTransposerInteger::setRate(1.0f);
+}
+
+
+RateTransposerInteger::~RateTransposerInteger()
+{
+}
+
+
+void RateTransposerInteger::resetRegisters()
+{
+ iSlopeCount = 0;
+ sPrevSampleL =
+ sPrevSampleR = 0;
+}
+
+
+
+// Transposes the sample rate of the given samples using linear interpolation.
+// 'Mono' version of the routine. Returns the number of samples returned in
+// the "dest" buffer
+uint RateTransposerInteger::transposeMono(SAMPLETYPE *dest, const SAMPLETYPE *src, uint nSamples)
+{
+ unsigned int i, used;
+ LONG_SAMPLETYPE temp, vol1;
+
+ if (nSamples == 0) return 0; // no samples, no work
+
+ used = 0;
+ i = 0;
+
+ // Process the last sample saved from the previous call first...
+ while (iSlopeCount <= SCALE)
+ {
+ vol1 = (LONG_SAMPLETYPE)(SCALE - iSlopeCount);
+ temp = vol1 * sPrevSampleL + iSlopeCount * src[0];
+ dest[i] = (SAMPLETYPE)(temp / SCALE);
+ i++;
+ iSlopeCount += iRate;
+ }
+ // now always (iSlopeCount > SCALE)
+ iSlopeCount -= SCALE;
+
+ while (1)
+ {
+ while (iSlopeCount > SCALE)
+ {
+ iSlopeCount -= SCALE;
+ used ++;
+ if (used >= nSamples - 1) goto end;
+ }
+ vol1 = (LONG_SAMPLETYPE)(SCALE - iSlopeCount);
+ temp = src[used] * vol1 + iSlopeCount * src[used + 1];
+ dest[i] = (SAMPLETYPE)(temp / SCALE);
+
+ i++;
+ iSlopeCount += iRate;
+ }
+end:
+ // Store the last sample for the next round
+ sPrevSampleL = src[nSamples - 1];
+
+ return i;
+}
+
+
+// Transposes the sample rate of the given samples using linear interpolation.
+// 'Stereo' version of the routine. Returns the number of samples returned in
+// the "dest" buffer
+uint RateTransposerInteger::transposeStereo(SAMPLETYPE *dest, const SAMPLETYPE *src, uint nSamples)
+{
+ unsigned int srcPos, i, used;
+ LONG_SAMPLETYPE temp, vol1;
+
+ if (nSamples == 0) return 0; // no samples, no work
+
+ used = 0;
+ i = 0;
+
+ // Process the last sample saved from the sPrevSampleLious call first...
+ while (iSlopeCount <= SCALE)
+ {
+ vol1 = (LONG_SAMPLETYPE)(SCALE - iSlopeCount);
+ temp = vol1 * sPrevSampleL + iSlopeCount * src[0];
+ dest[2 * i] = (SAMPLETYPE)(temp / SCALE);
+ temp = vol1 * sPrevSampleR + iSlopeCount * src[1];
+ dest[2 * i + 1] = (SAMPLETYPE)(temp / SCALE);
+ i++;
+ iSlopeCount += iRate;
+ }
+ // now always (iSlopeCount > SCALE)
+ iSlopeCount -= SCALE;
+
+ while (1)
+ {
+ while (iSlopeCount > SCALE)
+ {
+ iSlopeCount -= SCALE;
+ used ++;
+ if (used >= nSamples - 1) goto end;
+ }
+ srcPos = 2 * used;
+ vol1 = (LONG_SAMPLETYPE)(SCALE - iSlopeCount);
+ temp = src[srcPos] * vol1 + iSlopeCount * src[srcPos + 2];
+ dest[2 * i] = (SAMPLETYPE)(temp / SCALE);
+ temp = src[srcPos + 1] * vol1 + iSlopeCount * src[srcPos + 3];
+ dest[2 * i + 1] = (SAMPLETYPE)(temp / SCALE);
+
+ i++;
+ iSlopeCount += iRate;
+ }
+end:
+ // Store the last sample for the next round
+ sPrevSampleL = src[2 * nSamples - 2];
+ sPrevSampleR = src[2 * nSamples - 1];
+
+ return i;
+}
+
+
+// Sets new target iRate. Normal iRate = 1.0, smaller values represent slower
+// iRate, larger faster iRates.
+void RateTransposerInteger::setRate(float newRate)
+{
+ iRate = (int)(newRate * SCALE + 0.5f);
+ RateTransposer::setRate(newRate);
+}
+
+
+//////////////////////////////////////////////////////////////////////////////
+//
+// RateTransposerFloat - floating point arithmetic implementation
+//
+//////////////////////////////////////////////////////////////////////////////
+
+// Constructor
+RateTransposerFloat::RateTransposerFloat() : RateTransposer()
+{
+ // Notice: use local function calling syntax for sake of clarity,
+ // to indicate the fact that C++ constructor can't call virtual functions.
+ RateTransposerFloat::resetRegisters();
+ RateTransposerFloat::setRate(1.0f);
+}
+
+
+RateTransposerFloat::~RateTransposerFloat()
+{
+}
+
+
+void RateTransposerFloat::resetRegisters()
+{
+ fSlopeCount = 0;
+ sPrevSampleL =
+ sPrevSampleR = 0;
+}
+
+
+
+// Transposes the sample rate of the given samples using linear interpolation.
+// 'Mono' version of the routine. Returns the number of samples returned in
+// the "dest" buffer
+uint RateTransposerFloat::transposeMono(SAMPLETYPE *dest, const SAMPLETYPE *src, uint nSamples)
+{
+ unsigned int i, used;
+
+ used = 0;
+ i = 0;
+
+ // Process the last sample saved from the previous call first...
+ while (fSlopeCount <= 1.0f)
+ {
+ dest[i] = (SAMPLETYPE)((1.0f - fSlopeCount) * sPrevSampleL + fSlopeCount * src[0]);
+ i++;
+ fSlopeCount += fRate;
+ }
+ fSlopeCount -= 1.0f;
+
+ if (nSamples > 1)
+ {
+ while (1)
+ {
+ while (fSlopeCount > 1.0f)
+ {
+ fSlopeCount -= 1.0f;
+ used ++;
+ if (used >= nSamples - 1) goto end;
+ }
+ dest[i] = (SAMPLETYPE)((1.0f - fSlopeCount) * src[used] + fSlopeCount * src[used + 1]);
+ i++;
+ fSlopeCount += fRate;
+ }
+ }
+end:
+ // Store the last sample for the next round
+ sPrevSampleL = src[nSamples - 1];
+
+ return i;
+}
+
+
+// Transposes the sample rate of the given samples using linear interpolation.
+// 'Mono' version of the routine. Returns the number of samples returned in
+// the "dest" buffer
+uint RateTransposerFloat::transposeStereo(SAMPLETYPE *dest, const SAMPLETYPE *src, uint nSamples)
+{
+ unsigned int srcPos, i, used;
+
+ if (nSamples == 0) return 0; // no samples, no work
+
+ used = 0;
+ i = 0;
+
+ // Process the last sample saved from the sPrevSampleLious call first...
+ while (fSlopeCount <= 1.0f)
+ {
+ dest[2 * i] = (SAMPLETYPE)((1.0f - fSlopeCount) * sPrevSampleL + fSlopeCount * src[0]);
+ dest[2 * i + 1] = (SAMPLETYPE)((1.0f - fSlopeCount) * sPrevSampleR + fSlopeCount * src[1]);
+ i++;
+ fSlopeCount += fRate;
+ }
+ // now always (iSlopeCount > 1.0f)
+ fSlopeCount -= 1.0f;
+
+ if (nSamples > 1)
+ {
+ while (1)
+ {
+ while (fSlopeCount > 1.0f)
+ {
+ fSlopeCount -= 1.0f;
+ used ++;
+ if (used >= nSamples - 1) goto end;
+ }
+ srcPos = 2 * used;
+
+ dest[2 * i] = (SAMPLETYPE)((1.0f - fSlopeCount) * src[srcPos]
+ + fSlopeCount * src[srcPos + 2]);
+ dest[2 * i + 1] = (SAMPLETYPE)((1.0f - fSlopeCount) * src[srcPos + 1]
+ + fSlopeCount * src[srcPos + 3]);
+
+ i++;
+ fSlopeCount += fRate;
+ }
+ }
+end:
+ // Store the last sample for the next round
+ sPrevSampleL = src[2 * nSamples - 2];
+ sPrevSampleR = src[2 * nSamples - 1];
+
+ return i;
+}