
Mumble protocol 1.2.X reference (WIP)

Stefan Hacker, Mikko Rantanen

June 10, 2013

1

DISCLAIMER

THIS DOCUMENTATION IS PROVIDED BY THE MUMBLE PROJECT ”AS IS”
AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIM-
ITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
MUMBLE PROJECT BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
ARISING IN ANY WAY OUT OF THE USE OF THIS DOCUMENTATION, EVEN
IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

Contents

1 Introduction 4

2 Overview 4

3 Protocol stack (TCP) 5

4 Establishing a connection 6
4.1 Connect . 6
4.2 Version exchange . 7
4.3 Authenticate . 8
4.4 Crypt setup . 8
4.5 Channel states . 9
4.6 User states . 9
4.7 Server sync . 10
4.8 Ping . 10

5 Voice data 10
5.1 Enabling the UDP channel . 10
5.2 Data . 11
5.3 Codecs . 12

5.3.1 Whispering . 12
5.4 varint, 64-bit integer encoding . 13
5.5 TCP tunnel . 13
5.6 Encryption . 13
5.7 Implementation notes . 14

6 Messages 14
6.1 ACL . 14

6.1.1 ACL ChanACL . 14
6.1.2 ACL ChanGroup . 15

6.2 Authenticate . 15
6.3 BanList . 15

6.3.1 BanList BanEntry . 16
6.4 ChannelRemove . 16

2

6.5 ChannelState . 16
6.6 CodecVersion . 17
6.7 ContextAction . 17
6.8 ContextActionAdd . 17

6.8.1 Enumeration: ContextActionAdd Context 17
6.9 CryptSetup . 17
6.10 PermissionDenied . 18

6.10.1 Enumeration: PermissionDenied DenyType 18
6.11 PermissionQuery . 18
6.12 Ping . 19
6.13 QueryUsers . 19
6.14 Reject . 19

6.14.1 Enumeration: Reject RejectType 20
6.15 RequestBlob . 20
6.16 ServerConfig . 20
6.17 ServerSync . 21
6.18 SuggestConfig . 21
6.19 TextMessage . 21
6.20 UDPTunnel . 22
6.21 UserList . 22

6.21.1 UserList User . 22
6.22 UserRemove . 22
6.23 UserState . 23
6.24 UserStats . 24

6.24.1 UserStats Stats . 24
6.25 Version . 25
6.26 VoiceTarget . 25

6.26.1 VoiceTarget Target . 25

A Appendix 26
A.1 Mumble.proto . 26

3

1 Introduction

This document is meant to be a reference for the Mumble VoIP 1.2.X server-client
communication protocol. It reflects the state of the protocol implemented in the Mumble
1.2.4 client and might be outdated by the time you are reading this. Be sure to check
for newer revisions of this document on our website http://www.mumble.info . At the
moment this document is work in progress.

2 Overview

Mumble
Client

Mumble
Client

Murmur
Server

3rd party tool

3rd party tool

Internet / LAN

Database

ZeroC Ice

SQL
TCP/UDP

Figure 1: Mumble system overview

Mumble is based on a standard server-client communication model. It utilizes two
channels of communication, the first one is a TCP connection which is used to reliably
transfer control data between the client and the server. The second one is a UDP
connection which is used for unreliable, low latency transfer of voice data.

Mumble
Client

Murmur
Server

UDP voice channel
(OCB-AES128)

TCP control channel
(TLSv1-AES256-SHA)

Figure 2: Mumble crypto types

Both are protected by strong cryptography, this encryption is mandatory and cannot be
disabled. The TCP control channel uses TLSv1 AES256-SHA1 while the voice channel
is encrypted with OCB-AES1282.

While the TCP connection is mandatory the UDP connection can be compensated by
tunnelling the UDP packets through the TCP connection as described in the protocol
description later.

1http://en.wikipedia.org/wiki/Transport_Layer_Security
2http://www.cs.ucdavis.edu/~rogaway/ocb/ocb-back.htm

4

http://www.mumble.info
http://en.wikipedia.org/wiki/Transport_Layer_Security
http://www.cs.ucdavis.edu/~rogaway/ocb/ocb-back.htm

3 Protocol stack (TCP)

TLS TLS

Protobuf

Prefixing

Protobuf

Prefix
removal

Figure 3: Mumble protocol stack

Mumble has a shallow and easy to understand stack. Basically it uses Google’s Protocol
Buffers3 with simple prefixing to distinguish the different kinds of packets sent through
an TLSv1 encrypted connection. This makes the protocol very easily expandable.

Length
4 B

Type
2 B

UDPTunnel/Protobuf message
0-(8 MiB - 1B) ...

Prefix Payload

Figure 4: Mumble packet

The prefix consists out of the two bytes defining the type of the packet in the payload
and 4 bytes stating the length of the payload in bytes followed by the payload itself.
The following packet types are available in the current protocol and all but UDPTunnel
are simple protobuf messages. If not mentioned otherwise all fields outside the protobuf
encoding are big-endian.

3http://code.google.com/p/protobuf/

5

http://code.google.com/p/protobuf/

Table 1: Packet types

Type Payload

0 Version
1 UDPTunnel
2 Authenticate
3 Ping
4 Reject
5 ServerSync
6 ChannelRemove
7 ChannelState
8 UserRemove
9 UserState
10 BanList
11 TextMessage
12 PermissionDenied
13 ACL
14 QueryUsers
15 CryptSetup
16 ContextActionModify
17 ContextAction
18 UserList
19 VoiceTarget
20 PermissionQuery
21 CodecVersion
22 UserStats
23 RequestBlob
24 ServerConfig
25 SuggestConfig

For raw representation of each packet type see the attached Mumble.proto file.

4 Establishing a connection

This section describes the communication between the server and the client during con-
nection establishing, note that only the TCP connection needs to be established for the
client to be connected. After this the client will be visible to the other clients on the
server and able to send other types of messages.

4.1 Connect

As the basis for the synchronization procedure the client has to first establish the TCP
connection to the server and do a common TLSv1 handshake. To be able to use the
complete feature set of the Mumble protocol it is recommended that the client provides
a strong certificate to the server. This however is not mandatory as you can connect to
the server without providing a certificate. However the server must provide the client
with its certificate and it is recommended that the client checks this.

6

C
L
I
E
N
T

S
E
R
V
E
R

Connect

Version exchange

Authenticate

...
Ping

Crypt setup

Channel states

User states

Server sync

Figure 5: Mumble connection setup

4.2 Version exchange

Once the TLS handshake is completed both sides should transmit their version informa-
tion using the Version message. The message structure is described below.

Version

version uint32
release string
os string
os version string

Figure 6: Version message

The version field is a combination of major, minor and patch version numbers (e.g. 1.2.0)
so that major number takes two bytes and minor and patch numbers take one byte each.
The structure is shown in figure 7. The release, os and os version fields are common
strings containing additional information.

7

Major Minor Patch
2B 1B 1B

Figure 7: version field structure

The version information may be used as part of the SuggestConfig checks, which usually
refer to the standard client versions. The major changes between these versions are listed
in table 2. The release, os and os version information is not interpreted in any way at
the moment.

Table 2: Mumble version differences

Version Major changes

1.2.0 CELT 0.7.0 codec support
1.2.2 CELT 0.7.1 codec support
1.2.3 CELT 0.11.0 codec support, priority speakers
1.2.4 OPUS codec support, SuggestConfig message

4.3 Authenticate

Once the client has sent the version it should follow this with the Authenticate message.
The message structure is described below in figure 8. This message may be sent immedi-
ately after sending the version message. The client does not need to wait for the server
version message.

Authenticate

username string
password string
tokens repeated string

Figure 8: Authenticate message

The username and password are UTF-8 encoded strings. While the client is free to
accept any username from the user the server is allowed to impose further restrictions.
Furthermore if the client certificate has been registered with the server the client is
primarily known with the username they had when the certificate was registered. For
more information see the server documentation.

The password must only be provided if the server is passworded, the client provided
no certificate but wants to authenticate to an account which has a password set, or to
access the SuperUser account.

The third field contains a list of zero or more token strings which act as passwords that
may give the client access to certain ACL groups without actually being a registered
member in them, again see the server documentation for more information.

4.4 Crypt setup

Once the Version packets are exchanged the server will send a CryptSetup packet to
the client. It contains the necessary cryptographic information for the OCB-AES128

8

encryption used in the UDP Voice channel. The packet is described in figure 9. The
encryption itself is described later in section 5.6.

CryptSetup

key bytes
client nonce bytes
server nonce bytes

Figure 9: CryptSetup message

4.5 Channel states

After the client has successfully authenticated the server starts listing the channels by
transmitting partial ChannelState message for every channel on this server. These mes-
sages lack the channel link information as the client does not yet have full picture of all
the channels. Once the initial ChannelState has been transmitted for all channels the
server updates the linked channels by sending new packets for these. The full structure
of these ChanneLState messages is shown in 10.

ChannelState

channel id uint32
parent uint32
name string
links uint32, repeated
description string
links add uint32, repeated
links remove uint32, repeated
temporary bool, optional
position int32, optional

Figure 10: ChannelState message

The server must send a ChannelState for the root channel identified with ID 0.

4.6 User states

After the channels have been synchronized the server continues by listing the connected
users. This is done by sending a UserState message for each user currently on the server,
including the user that is currently connecting. The message structure is shown in figure
11.

9

ChannelState

session uint32
actor uint32
name string
user id uint32
channel id uint32
mute bool
deaf bool
suppress bool
self mute bool
self deaf bool
texture bytes
plugin context bytes
plugin identity string
comment string
hash string
comment hash bytes
texture hash bytes
priority speaker bool
recording bool

Figure 11: UserState message

4.7 Server sync

The client has now received a copy of the parts of the server state he needs to know about.
To complete the synchronization the server transmits a ServerSync message containing
the session id of the clients session, the maximum bandwidth allowed on this server, the
servers welcome text as well as the permissions the client has in the channel he ended
up.

For more information pease refer to Mumble.proto in the appendix.

4.8 Ping

If the client wishes to maintain the connection to the server it is required to ping
the server. If the server does not receive a ping for 30 seconds it will disconnect the
client.

5 Voice data

5.1 Enabling the UDP channel

Before the UDP channel can reliably be used both sides should be certain that the
connection works. Before the server may use the UDP connection to the client the client
must first open a UDP socket and communicate its address to the server by sending a
packet over UDP. Once the server has received an UDP transmission the server should
start using the UDP channel for the voice packets. Respectively the client should not

10

use the UDP channel for voice data until it is certain that the packets go through to the
server.

In practice these requirements are filled with UDP ping. When the server receives a
UDP ping packet (See figure 12) from the client it echoes the packet back. When the
client receives this packet it can ascertain that the UDP channel works for two-way
communication.

byte : type/flags 0010 0000 for Ping
varint : timestamp Timestamp for the client.

Figure 12: UDP Ping packet

If the client stops receiving replies to the UDP packets at some point or never receives
the first one it should immediately start tunneling the voice communication through
TCP as described in section 5.5. When the server receives a tunneled packet over the
TCP connection it must also stop using the UDP for communication. The client may
continue sending UDP ping packets over the UDP channel and the server must echo
these if it receives them. If the client later receives these echoes it may switch back
to the UDP channel for voice communication. When the server receives an UDP voice
communication packet from the client it should stop tunneling the packets as well.

5.2 Data

The voice data is transmitted in variable length packets that consist of header portion,
followed by repeated data segments and an optional position part. The full packet
structure is shown in figure 13. The decrypted data should never be longer than 1020
bytes, this allows the use of 1024 byte UDP buffer even after the 4-byte encryption
header is added to the packet during the encryption. The protocol transfers 64-bit
integers using variable length encoding. This encoding is specified in section 5.4.

Header byte : type/target Bit 1-3: Type, Bit 4-8: Target
varint : session The session number of the source user (only

from server)
varint : sequence

Audio byte : header Bit 1: Terminator, Bit 2-8: Data length
Repeated byte[] : data Encoded voice frames

Position float : Pos 1 Positional audio positions
Optional float : Pos 2 Uses PacketDataStream encoding

float : Pos 3

Figure 13: UDP Voice packet

The first byte of the header contains the packet type and additional target specifier. The
format of this byte is described below. If the voice packet comes from the server, the
type is followed by a varint encoded value that specifies the session this voice packet
originated from – this information is added by the server and the client omits this field.
The last segment in the header is a sequence number for the first audio frame of the

11

packet. If there are for example two frames in the packet, the sequence field of the next
packet should be incremented by two.

The type is stored in the first three bits and specifies the type and encoding of the packet.
Current types are listed in table 3. The remaining 5 bits specify additional packet-wide
options. For voice packets the values specify the voice target as listed in table 4.

Table 3: UDP Types

Type Description

0 CELT Alpha encoded voice data
1 Ping packet (See section 5.1)
2 Speex encoded voice data
3 CELT Beta encoded voice data
4-7 Unused

Table 4: UDP targets

Target Description

0 Normal talking
1 Whisper to channel
2-30 Direct whisper

Always 2 for incoming whisper.
31 Server loopback

The audio frames consist of one byte long header and up to 127 bytes long data portion.
The first bit in the header is the Terminator bit which informs the receiver whether
there are more audio frames after this one. This bit is turned on (value 1) for all but
the last frame in the current UDP packet. Rest of the seven bits in the header specify
the length of the data portion. The data portion is encoded using one of the supported
codecs. The exact codec is specified in the type portion of the whole packet (See table
3). The data in each frame is encoded separately.

5.3 Codecs

Mumble supports two distinct codecs; Low bit rate audio uses Speex and higher quality
audio is encoded with CELT. Both of these codecs must be supported for full support
of the Mumble protocol. Furthermore, as the CELT bitstream has not been frozen yet
which places requirements for the exact CELT version: The clients must support CELT
0.7.1 bitstream. The protocol includes codec negotiation which allows clients to support
other codec versions as well, in which case the server should attempt to negotiate a
version that all clients support. The clients must respect the server resolution.

5.3.1 Whispering

Normal talking can be heard by the users of the current channel and all linked channels
as long as the speaker has Talk permission on these channels. If the speaker wishes to
broadcast the voice to specific users or channels, he may use whispering. This is achieved
by registering a voice target using the VoiceTarget message (See 6.26) and specifying
the target ID as the target in the first byte of the UDP packet.

12

5.4 varint, 64-bit integer encoding

The variable length integer encoding is used to encode long, 64-bit, integers so that
short values do not need the full 8 bytes to be transferred. The basic idea behind the
encoding is prefixing the value with a length prefix and then removing the leading zeroes
from the value. The positive numbers are always right justified. That is to say that the
least significant bit in the encoded presentation matches the least significant bit in the
decoded presentation. Table 5 contains the definitions of the different length prefixes.
The encoded x bits are part of the decoded number while the signifies a unused bit.
Encoding should be done by searching the first decoded description that fits the number
that should be decoded, truncating it to the required bytes and combining it with the
defined encoding prefix.

See the quint64 shift operators in https://github.com/mumble-voip/mumble/blob/

master/src/PacketDataStream.h for a reference implementation.

Table 5: varint prefixes

Encoded Decoded

0xxxxxxx 1 byte with 7 · 8 + 1 leading zeroes
10xxxxxx + 1 byte 2 bytes with 6 · 8 + 2 leading zeroes
110xxxxx + 2 bytes 3 bytes with 5 · 8 + 3 leading zeroes
1110xxxx + 3 bytes 4 bytes with 4 · 8 + 4 leading zeroes
111100 + int (4 bytes) 32-bit positive number
111101 + long (8 bytes) 64-bit number

111110 + varint Negative varint

111111xx Byte-inverted negative two byte number (xx)

5.5 TCP tunnel

If the UDP channel isn’t available the voice packets must be transmitted through the
TCP socket. These messages use the normal TCP prefixing shown in figure : 16-bit
message type followed by 32-bit message length. However unlike other TCP messages,
the UDP packets are not encoded as protocol buffer messages but instead the raw UDP
packet described in chapter should be written to the TCP socket directly.

When the packets are received it is safe to parse the type and length fields normally. If
the type matches that of the UDP tunnel the rest of the message should be processed
as an UDP packet without attempting a protocol buffer decoding.

5.6 Encryption

All the packets are encrypted once during transfer. The actual encryption depends on
the used transport layer. If the packets are tunneled through TCP they are encrypted
using the TLS that encrypts the whole TCP connection and if they are sent directly using
UDP they must be encrypted using the OCB-AES128 encryption. The OCB-AES128
encryption is described in section ??.

13

https://github.com/mumble-voip/mumble/blob/master/src/PacketDataStream.h
https://github.com/mumble-voip/mumble/blob/master/src/PacketDataStream.h

5.7 Implementation notes

When implementing the protocol it is easier to ignore the UDP transfer layer at first and just

tunnel the UDP data through the TCP tunnel. The TCP layer must be implemented for authenti-

cation in any case. Making sure that the voice transmission works before implementing the UDP

protocol simplifies debugging greatly. The UDP protocol is a required part of the specification

though.

6 Messages

6.1 ACL

Field Type Rule Description

channel id uint32 Req. Channel ID of the channel this message af-
fects

inherit acls bool Opt. True if the channel inherits its parent’s
ACLs, Default: true

groups ChanGroup Rep. User group specifications

acls ChanACL Rep. ACL specifications

query bool Opt. True if the message is a query for ACLs in-
stead of setting them, Default: false

6.1.1 ACL ChanACL

Field Type Rule Description

apply here bool Opt. True if this ACL applies to the current
channel, Default: true

apply subs bool Opt. True if this ACL applies to the sub chan-
nels, Default: true

inherited bool Opt. True if the ACL has been inherited from the
parent, Default: true

user id uint32 Opt. ID of the user that is affected by this ACL

group string Opt. ID of the group that is affected by this
group

grant uint32 Opt. Bit flag field of the permissions granted by
this ACL

deny uint32 Opt. Bit flag field of the permissions denied by
this ACL

14

6.1.2 ACL ChanGroup

Field Type Rule Description

name string Req. Name of the channel group, UTF-8 enc-
coded

inherited bool Opt. True if the group has been inherited from
the parent. Read only, Default: true

inherit bool Opt. True if the group members are inherited,
Default: true

inheritable bool Opt. True if the group can be inherited by sub
channels, Default: true

add uint32 Rep. Users explicitly included in this group, iden-
tified by user id

remove uint32 Rep. Users explicitly removed from this group in
this channel if the group has been inherited,
identified by user id

inherited members uint32 Rep. Users inherited, identified by user id

6.2 Authenticate

Used by the client to send the authentication credentials to the server.

Field Type Rule Description

username string Opt. UTF-8 encoded username

password string Opt. Server or user password

tokens string Rep. Additional access tokens for server ACL
groups

celt versions int32 Rep. A list of CELT bitstream version constants
supported by the client.

6.3 BanList

Relays information on the bans. The client may send the BanList message to either
modify the list of bans or query them from the server. The server sends this list only
after a client queries for it.

Field Type Rule Description

bans BanEntry Rep. List of ban entries currently in place

query bool Opt. True if the server should return the list,
False if it should replace old ban list with
this one, Default: false

15

6.3.1 BanList BanEntry

Field Type Rule Description

address bytes Req. Banned IP address

mask uint32 Req. The length of the subnet mask for the ban

name string Opt. User name for identification purposes, does
not affect the ban

hash string Opt. TODO ??

reason string Opt. Reason for the ban, does not affect the ban

start string Opt. Ban start time

duration uint32 Opt. Ban duration in seconds

6.4 ChannelRemove

Sent by the client when it wants a channel removed. Sent by the server when a channel
has been removed and clients should be notified.

Field Type Rule Description

channel id uint32 Req. The channel id of the channel to be re-
moved

6.5 ChannelState

Used to communicate channel properties between the client and the server. Sent by the
server during the login process (See 4.5) or when channel properties are updated. Client
may use this message to update said channel properties.

Field Type Rule Description

channel id uint32 Opt. Unique ID for the channel within the server.

parent uint32 Opt. channel id of the parent channel.

name string Opt. Channel name, UTF-8 encoded.

links uint32 Rep. A collection of channel id values of the
linked channels. Absent during the first
channel listing (See 4.5).

description string Opt. Channel description, UTF-8 encoded. Only
if the description is less than 128 bytes

links add uint32 Rep. A collection of channel id values that
should be added to links.

links remove uint32 Rep. A collection of channel id values that
should be removed from links.

temporary bool Opt. True if the channel is temporary. Default:
false

position uint32 Opt. Position weight to tweak the channel posi-
tion in the channel list. Default: 0

description hash bytes Opt. SHA1 hash of the description if the descrip-
tion is 128 bytes or more. See 6.15

16

6.6 CodecVersion

Sent by the server to notify the users of the version of the CELT codec they should use.
This may change during the connection when new users join.

Field Type Rule Description

alpha int32 Req. The version of the CELT Alpha codec

beta int32 Req. The version of the CELT Beta codec

prefer alpha bool Req. True if the user should prefer Alpha over
Beta, Default: true

6.7 ContextAction

Sent by the client when it wants to initiate a Context action. Refer to Mumble docu-
mentation (TODO Context action source) for more information.

Field Type Rule Description

session uint32 Opt. The target User for the action, identified by
session

channel id uint32 Opt. The target Channel for the action, identi-
fied by channel id

action string Req. The action that should be executed

6.8 ContextActionAdd

Sent by the server to inform the client of available context actions.

Field Type Rule Description

action string Req. The action name

text string Req. The display name of the action

context uint32 Opt. Context bit flags defining where the action
should be displayed, see 6.8.1

6.8.1 Enumeration: ContextActionAdd Context

Name Value Description

Server 0x01 Action is applicable to the server

Channel 0x02 Action can target a Channel

User 0x04 Action can target a User

6.9 CryptSetup

Used to initialize and resync the UDP encryption. See section ?? for more information.
Either side may request a resync by sending the message without any values filled.
The resync is performed by sending the message with only the client or server nonce
filled.

17

Field Type Rule Description

key bytes Opt. Encryption key

client nonce bytes Opt. Client nonce

server nonce bytes Opt. Server nonce

6.10 PermissionDenied

Field Type Rule Description

permission uint32 Opt. The denied permission when type is
Permission

channel id uint32 Opt. channel id for the channel where the
permission was denied when type is
Permission

session uint32 Opt. The user who was denied permissions, iden-
tified by session

reason string Opt. Textual reason for the denial

type DenyType Opt. Type of the denial

name string Opt. The name that is invalid when type is
UserName

6.10.1 Enumeration: PermissionDenied DenyType

Name Value Description

Text 0 Operation denied for other reason, see
reason field

Permission 1 Permissions were denied

SuperUser 2 Cannot modify SuperUser

ChannelName 3 Invalid channel name

TextTooLong 4 Text message too long

H9K 5 The flux capacitor was spelled wrong.

TemporaryChannel 6 Operation not permitted in temporary
channel

MissingCertificate 7 Operation requires certificate

UserName 8 Invalid username

ChannelFull 9 Channel is full

6.11 PermissionQuery

Sent by the client when it wants permissions for a certain channel. Sent by the server
when it replies to the query or wants the user to resync all channel permissions.

18

Field Type Rule Description

channel id uint32 Opt. channel id of the channel for which the
permissions are queried

permissions uint32 Opt. Channel permissions. TODO: Encoded
how?

flush bool Opt. True if the client should drop its current
permission information for all channels,
Default: false

6.12 Ping

Sent by the client to notify the server that the client is still alive. Server must reply to
the packet with the same timestamp and its own good/late/lost/resync numbers. None
of the fields is strictly required.

Field Type Rule Description

timestamp uint64 Opt. Client timestamp. Server should not at-
tempt to decode.

good uint32 Opt. The amount of good packets received

late uint32 Opt. The amount of late packets received

lost uint32 Opt. The amount of packets never received

resync uint32 Opt. The amount of nonce resyncs

udp packets uint32 Opt. The total amount of UDP packets received

tcp packets uint32 Opt. The total amount of TCP packets received

udp ping avg float Opt. UDP ping average

udp ping var float Opt. UDP ping variance

tcp ping avg float Opt. TCP ping average

tcp ping var float Opt. TCP ping variance

6.13 QueryUsers

Client may use this message to refresh its registered user information. The client should
fill the IDs or Names of the users it wants to refresh. The server fills the missing parts
and sends the message back.

Field Type Rule Description

ids uint32 Rep. User IDs

names string Rep. User names in the same order as ids

6.14 Reject

Sent by the server when it rejects the user connection.

19

Field Type Rule Description

type RejectType Opt. Rejection type

reason string Opt. Human readable rejection reason

6.14.1 Enumeration: Reject RejectType

Name Value Description

None 0 TODO ??

WrongVersion 1 The client attempted to connect with
an incompatible version

InvalidUsername 2 The user name supplied by the client
was invalid

WrongUserPW 3 The client attempted to authenticate
as a user with a password but it was
wrong

WrongServerPW 4 The client attempted to connect to a
passworded server but the password
was wrong

UsernameInUse 5 Supplied username is already in use

ServerFull 6 Server is currently full and cannot ac-
cept more users

NoCertificate 7 The user did not provide a certificate
but one is required

6.15 RequestBlob

Used by the client to request binary data from the server. By default large comments or
textures are not sent within standard messages but instead the hash is. If the client does
not recognize the hash it may request the resource when it needs it. The client does so
by sending a RequestBlob message with the correct fields filled with the hashes it wants
to receive. The server replies to this by sending a new UserState/ChannelState message
with the resources filled even if they would normally be transmitted as hashes.

Field Type Rule Description

session texture uint32 Rep. Hashes of the requested UserState textures

session comment uint32 Rep. Hashes of the requested UserState com-
ments

channel description uint32 Rep. Hashes of the requested ChannelState de-
scriptions

6.16 ServerConfig

Sent by the server when it informs the clients on server configuration details.

20

Field Type Rule Description

max bandwidth uint32 Opt. The maximum bandwith the clients should
use

welcome text string Opt. Server welcome text

allow html bool Opt. True if the server allows HTML

message length uint32 Opt. Maximum text message length

image message length uint32 Opt. Maximum image message length

6.17 ServerSync

ServerSync message is sent by the server when it has authenticated the user and fin-
ished synchronizing the server state. See section 4.7 for more information on the initial
connection exchange.

Field Type Rule Description

session uint32 Opt. The session of the current user

max bandwidth uint32 Opt. Maximum bandwith that the user should
use

welcome text string Opt. Server welcome text

permissions uint64 Opt. Current user permissions TODO: Con-
firm??

6.18 SuggestConfig

Sent by the server to inform the clients of suggested client configuration specified by the
server administrator.

Field Type Rule Description

version uint32 Opt. Suggested client version

positional bool Opt. True if the administrator suggests posi-
tional audio to be used on this server

push to talk bool Opt. True if the administrator suggests push to
talk to be used on this server

6.19 TextMessage

Used to send and broadcast text messages.

21

Field Type Rule Description

actor uint32 Opt. The message sender, identified by its
session

session uint32 Rep. Target users for the message, identified by
their session

channel id uint32 Rep. The channels to which the message is sent,
identified by their channel ids

tree id uint32 Rep. The root channels when sending message re-
cursively to several channels, identified by
their channel ids

message string Req. The UTF-8 encoded message. May be
HTML if the server allows.

6.20 UDPTunnel

Not used. Not even for tunneling UDP through TCP. See section 5.5 for more informa-
tion.

Field Type Rule Description

packet bytes Req. Not used

6.21 UserList

Lists the registered users

Field Type Rule Description

users User Rep. A list of registered users

6.21.1 UserList User

Field Type Rule Description

user id uint32 Req. Registered user ID

name string Opt. Registered user name

6.22 UserRemove

Used to communicate user leaving or being kicked. May be sent by the client when it
attempts to kick a user. Sent by the server when it informs the clients that a user is not
present anymore.

22

Field Type Rule Description

session uint32 Req. The user who is being kicked, identified by
their session, not present when no one is
being kicked

actor uint32 Opt. The user who initiated the removal. Either
the user who performs the kick or the user
who is currently leaving

reason string Opt. Reason for the kick, stored as the ban rea-
son if the user is banned

ban bool Opt. True if the kick should result in a ban

6.23 UserState

Sent by the server when it communicates new and changed users to client. First seen
during login procedure (See 4.6). May be sent by the client when it wishes to alter its
state.

Field Type Rule Description

session uint32 Opt. Unique user session ID of the user whose
state this is, may change on reconnect

actor uint32 Opt. The session of the user who is updating
this user

name string Opt. User name, UTF-8 encoded

user id uint32 Opt. Registered user ID if the user is registered

channel id uint32 Opt. Channel on which the user is

mute bool Opt. True if the user is muted by admin

deaf bool Opt. True if the user is deafened by admin

suppress bool Opt. True if the user has been suppressed from
talking by a reason other than being muted

self mute bool Opt. True if the user has muted self

self deaf bool Opt. True if the user has deafened self

texture bytes Opt. User image if it is less than 128 bytes

plugin context bytes Opt. TODO ??

plugin identity string Opt. TODO ??

comment string Opt. User comment if it is less than 128 bytes

hash string Opt. The hash of the user certificate

comment hash bytes Opt. SHA1 hash of the user comment if it 128
bytes or more. See 6.15

texture hash bytes Opt. SHA1 hash of the user picture if it 128 bytes
or more. See 6.15

priority speaker bool Opt. True if the user is a priority speaker

recording bool Opt. True if the user is currently recording

23

6.24 UserStats

Used to communicate user stats between the server and clients.

Field Type Rule Description

session uint32 Opt. User whose stats these are

stats only bool Opt. True if the message contains only mutable
stats (packets, ping), Default: false

certificates bytes Rep. Full user certificate chain of the user certifi-
cate in DER format

from client Stats Opt. Packet statistics for packets received from
the client

from server Stats Opt. Packet statistics for packets sent by the
server

udp packets uint32 Opt. Amount of UDP packets sent

tcp packets uint32 Opt. Amount of TCP packets sent

udp ping avg float Opt. UDP ping average

udp ping var float Opt. UDP ping variance

tcp ping avg float Opt. TCP ping average

tcp ping var float Opt. TCP ping variance

version Version Opt. Client version, see 6.25

celt versions int32 Rep. A list of CELT bitstream version constants
supported by the client of this user.

address bytes Opt. Client IP address

bandwidth uint32 Opt. Bandwith used by this client

onlinesecs uint32 Opt. Connection duration

idlesecs uint32 Opt. Duration since last activity

strong certificate bool Opt. True if the user has a strong certificate, De-
fault: false

6.24.1 UserStats Stats

Field Type Rule Description

good uint32 Opt. The amount of good packets received

late uint32 Opt. The amount of late packets received

lost uint32 Opt. The amount of packets never received

resync uint32 Opt. The amount of nonce resyncs

24

6.25 Version

Field Type Rule Description

version uint32 Opt. 2-byte Major, 1-byte Minor and 1-byte
Patch version number

release string Opt. Client release name

os string Opt. Client OS name

os version string Opt. Client OS version

6.26 VoiceTarget

Sent by the client when it wants to register or clear whisper targets. See 5.3.1 for more
information. Note: The first available target ID is 1 as 0 is reserved for normal
talking. Maximum target ID is 30

Field Type Rule Description

id uint32 Opt. Voice target ID

targets Target Rep. The receivers that this voice target includes

6.26.1 VoiceTarget Target

Field Type Rule Description

session uint32 Rep. Users that are included as targets

channel id uint32 Opt. Channels that are included as targets

group string Opt. TODO ??

links bool Opt. True if the voice should follow links from
the specified channel, Default: false

children bool Opt. True if the voice should also be sent to
children of the specifiec channel, Default:
false

This document is WIP

SORRY BUT THIS DOCUMENT IS WORK IN PROGRESS. AT THE MOMENT IT
LACKS A LOT OF IMPORTANT INFORMATION BUT WE HOPE TO BE ABLE
TO FINISH THIS DOCUMENT SOMEDAY :-)

We’re getting there though! Currently the largest omission is the UDP channel encryp-
tion. Most other bits are there.

25

A Appendix

A.1 Mumble.proto

1 package MumbleProto;

2

3 option optimize_for = SPEED;

4

5 message Version {

6 optional uint32 version = 1;

7 optional string release = 2;

8 optional string os = 3;

9 optional string os_version = 4;

10 }

11

12 message UDPTunnel {

13 required bytes packet = 1;

14 }

15

16 message Authenticate {

17 optional string username = 1;

18 optional string password = 2;

19 repeated string tokens = 3;

20 repeated int32 celt_versions = 4;

21 optional bool opus = 5 [default = false];

22 }

23

24 message Ping {

25 optional uint64 timestamp = 1;

26 optional uint32 good = 2;

27 optional uint32 late = 3;

28 optional uint32 lost = 4;

29 optional uint32 resync = 5;

30 optional uint32 udp_packets = 6;

31 optional uint32 tcp_packets = 7;

32 optional float udp_ping_avg = 8;

33 optional float udp_ping_var = 9;

34 optional float tcp_ping_avg = 10;

35 optional float tcp_ping_var = 11;

36 }

37

38 message Reject {

39 enum RejectType {

40 None = 0;

41 WrongVersion = 1;

42 InvalidUsername = 2;

43 WrongUserPW = 3;

44 WrongServerPW = 4;

45 UsernameInUse = 5;

46 ServerFull = 6;

47 NoCertificate = 7;

26

48 AuthenticatorFail = 8;

49 }

50 optional RejectType type = 1;

51 optional string reason = 2;

52 }

53

54 message ServerConfig {

55 optional uint32 max_bandwidth = 1;

56 optional string welcome_text = 2;

57 optional bool allow_html = 3;

58 optional uint32 message_length = 4;

59 optional uint32 image_message_length = 5;

60 }

61

62 message ServerSync {

63 optional uint32 session = 1;

64 optional uint32 max_bandwidth = 2;

65 optional string welcome_text = 3;

66 optional uint64 permissions = 4;

67 }

68

69 message ChannelRemove {

70 required uint32 channel_id = 1;

71 }

72

73 message ChannelState {

74 optional uint32 channel_id = 1;

75 optional uint32 parent = 2;

76 optional string name = 3;

77 repeated uint32 links = 4;

78 optional string description = 5;

79 repeated uint32 links_add = 6;

80 repeated uint32 links_remove = 7;

81 optional bool temporary = 8 [default = false];

82 optional int32 position = 9 [default = 0];

83 optional bytes description_hash = 10;

84 }

85

86 message UserRemove {

87 required uint32 session = 1;

88 optional uint32 actor = 2;

89 optional string reason = 3;

90 optional bool ban = 4;

91 }

92

93 message UserState {

94 optional uint32 session = 1;

95 optional uint32 actor = 2;

96 optional string name = 3;

97 optional uint32 user_id = 4;

98 optional uint32 channel_id = 5;

27

99 optional bool mute = 6;

100 optional bool deaf = 7;

101 optional bool suppress = 8;

102 optional bool self_mute = 9;

103 optional bool self_deaf = 10;

104 optional bytes texture = 11;

105 optional bytes plugin_context = 12;

106 optional string plugin_identity = 13;

107 optional string comment = 14;

108 optional string hash = 15;

109 optional bytes comment_hash = 16;

110 optional bytes texture_hash = 17;

111 optional bool priority_speaker = 18;

112 optional bool recording = 19;

113 }

114

115 message BanList {

116 message BanEntry {

117 required bytes address = 1;

118 required uint32 mask = 2;

119 optional string name = 3;

120 optional string hash = 4;

121 optional string reason = 5;

122 optional string start = 6;

123 optional uint32 duration = 7;

124 }

125 repeated BanEntry bans = 1;

126 optional bool query = 2 [default = false];

127 }

128

129 message TextMessage {

130 optional uint32 actor = 1;

131 repeated uint32 session = 2;

132 repeated uint32 channel_id = 3;

133 repeated uint32 tree_id = 4;

134 required string message = 5;

135 }

136

137 message PermissionDenied {

138 enum DenyType {

139 Text = 0;

140 Permission = 1;

141 SuperUser = 2;

142 ChannelName = 3;

143 TextTooLong = 4;

144 H9K = 5;

145 TemporaryChannel = 6;

146 MissingCertificate = 7;

147 UserName = 8;

148 ChannelFull = 9;

149 NestingLimit = 10;

28

150 }

151 optional uint32 permission = 1;

152 optional uint32 channel_id = 2;

153 optional uint32 session = 3;

154 optional string reason = 4;

155 optional DenyType type = 5;

156 optional string name = 6;

157 }

158

159 message ACL {

160 message ChanGroup {

161 required string name = 1;

162 optional bool inherited = 2 [default = true];

163 optional bool inherit = 3 [default = true];

164 optional bool inheritable = 4 [default = true];

165 repeated uint32 add = 5;

166 repeated uint32 remove = 6;

167 repeated uint32 inherited_members = 7;

168 }

169 message ChanACL {

170 optional bool apply_here = 1 [default = true];

171 optional bool apply_subs = 2 [default = true];

172 optional bool inherited = 3 [default = true];

173 optional uint32 user_id = 4;

174 optional string group = 5;

175 optional uint32 grant = 6;

176 optional uint32 deny = 7;

177 }

178 required uint32 channel_id = 1;

179 optional bool inherit_acls = 2 [default = true];

180 repeated ChanGroup groups = 3;

181 repeated ChanACL acls = 4;

182 optional bool query = 5 [default = false];

183 }

184

185 message QueryUsers {

186 repeated uint32 ids = 1;

187 repeated string names = 2;

188 }

189

190 message CryptSetup {

191 optional bytes key = 1;

192 optional bytes client_nonce = 2;

193 optional bytes server_nonce = 3;

194 }

195

196 message ContextActionModify {

197 enum Context {

198 Server = 0x01;

199 Channel = 0x02;

200 User = 0x04;

29

201 }

202 enum Operation {

203 Add = 0;

204 Remove = 1;

205 }

206 required string action = 1;

207 optional string text = 2;

208 optional uint32 context = 3;

209 optional Operation operation = 4;

210 }

211

212 message ContextAction {

213 optional uint32 session = 1;

214 optional uint32 channel_id = 2;

215 required string action = 3;

216 }

217

218 message UserList {

219 message User {

220 required uint32 user_id = 1;

221 optional string name = 2;

222 }

223 repeated User users = 1;

224 }

225

226 message VoiceTarget {

227 message Target {

228 repeated uint32 session = 1;

229 optional uint32 channel_id = 2;

230 optional string group = 3;

231 optional bool links = 4 [default = false];

232 optional bool children = 5 [default = false];

233 }

234 optional uint32 id = 1;

235 repeated Target targets = 2;

236 }

237

238 message PermissionQuery {

239 optional uint32 channel_id = 1;

240 optional uint32 permissions = 2;

241 optional bool flush = 3 [default = false];

242 }

243

244 message CodecVersion {

245 required int32 alpha = 1;

246 required int32 beta = 2;

247 required bool prefer_alpha = 3 [default = true];

248 optional bool opus = 4 [default = false];

249 }

250

251 message UserStats {

30

252 message Stats {

253 optional uint32 good = 1;

254 optional uint32 late = 2;

255 optional uint32 lost = 3;

256 optional uint32 resync = 4;

257 }

258

259 optional uint32 session = 1;

260 optional bool stats_only = 2 [default = false];

261 repeated bytes certificates = 3;

262 optional Stats from_client = 4;

263 optional Stats from_server = 5;

264

265 optional uint32 udp_packets = 6;

266 optional uint32 tcp_packets = 7;

267 optional float udp_ping_avg = 8;

268 optional float udp_ping_var = 9;

269 optional float tcp_ping_avg = 10;

270 optional float tcp_ping_var = 11;

271

272 optional Version version = 12;

273 repeated int32 celt_versions = 13;

274 optional bytes address = 14;

275 optional uint32 bandwidth = 15;

276 optional uint32 onlinesecs = 16;

277 optional uint32 idlesecs = 17;

278 optional bool strong_certificate = 18 [default = false];

279 optional bool opus = 19 [default = false];

280 }

281

282 message SuggestConfig {

283 optional uint32 version = 1;

284 optional bool positional = 2;

285 optional bool push_to_talk = 3;

286 }

287

288 message RequestBlob {

289 repeated uint32 session_texture = 1;

290 repeated uint32 session_comment = 2;

291 repeated uint32 channel_description = 3;

292 }

31

	Introduction
	Overview
	Protocol stack (TCP)
	Establishing a connection
	Connect
	Version exchange
	Authenticate
	Crypt setup
	Channel states
	User states
	Server sync
	Ping

	Voice data
	Enabling the UDP channel
	Data
	Codecs
	Whispering

	varint, 64-bit integer encoding
	TCP tunnel
	Encryption
	Implementation notes

	Messages
	ACL
	ACL_ChanACL
	ACL_ChanGroup

	Authenticate
	BanList
	BanList_BanEntry

	ChannelRemove
	ChannelState
	CodecVersion
	ContextAction
	ContextActionAdd
	Enumeration: ContextActionAdd_Context

	CryptSetup
	PermissionDenied
	Enumeration: PermissionDenied_DenyType

	PermissionQuery
	Ping
	QueryUsers
	Reject
	Enumeration: Reject_RejectType

	RequestBlob
	ServerConfig
	ServerSync
	SuggestConfig
	TextMessage
	UDPTunnel
	UserList
	UserList_User

	UserRemove
	UserState
	UserStats
	UserStats_Stats

	Version
	VoiceTarget
	VoiceTarget_Target

	Appendix
	Mumble.proto

