
Racing the File System
Workshop

Niall Douglas

Contents:
1. What is a filing system race?
2. Why do they matter?
3. Nine (mostly) portable race-free idioms and

design patterns
4. Introducing proposed Boost.AFIO, a

standardised file and file system
programming model

5. What can you do with this stuff?

What is a race?

What is a race?
Two types often confused:

1. Data Race
○ Usually failure to enforce correct ordering

and/or visibility of reads and writes
○ Diagnosis often automatable e.g. clang thread

sanitiser, valgrind helgrind etc
2. Race condition

○ Non-determinism produces incorrectness
○ Skilled programmer needed to diagnose

What is a race: Classic example

Thread 1
x = read position 0
x = x + 1
position 0 = write x

Thread 2
x = read position 0
x = x + 1
position 0 = write x

Position 0 is only incremented by 1 not 2!

What is a filing system
race?

1. Concurrent i/o

Thread 1
int x, y;
preadv(fd, x, 0);

preadv(fd, y, 4);

Thread 2
int b[2];

pwritev(fd, b, 0);

Thread 1 gets mismatched x and y

2. Concurrent path changes

Thread 1
path=“/niall/store”;
fd1=open(path+“/file1”);

fd2=open(path+“/file2”);

Thread 2

rename(“/niall”, “/niall.old”);
rename(“/other”, “/niall”);

Thread 1 gets mismatched file1 and file2

3. Deleting a directory tree

Standard depth-first algorithm:
1. Enumerate directory contents
2. For every directory, recurse to step 1, then

delete directory
3. For every file, delete file

This is correct for POSIX, but INCORRECT for
Microsoft Windows

Deleting a directory tree on Windows

1. Enumerate directory contents
2. For every non-empty directory, recurse to step 1
3. For every file, try to rename to random name in %

TEMP and then delete
4. For every empty directory, rename to random name in

%TEMP and then delete
5. Loop the above until directory tree deleted

Q: Why is this the correct algorithm on Windows?

Deleting a directory tree on Windows

1. Enumerate directory contents
2. For every non-empty directory, recurse to step 1
3. For every file, try to rename to random name in %

TEMP and then delete mark for later deletion
4. For every empty directory, rename to random name in

%TEMP and then delete mark for later deletion
5. Loop the above until directory tree deleted (may take

as long as any item opened without
FILE_SHARE_DELETE is open)

Why do filing system races matter?
● There are many, many more places where

file system races will bite you unexpectedly
○ Most programmers assume the file system to be

static and unchanging and that they are the only
actor working with files

● In fact, the file system is a pit of
concurrency races, security holes and
unexpected program failure
○ Such as …

4. Security: Time Of Check To Time
Of Use (TOCTTOU)

Thread 1
if access(path) is ok {

 fd = open(path);
 write(fd, …);
}

Thread 2

link(otherpath, path);

Secure file written bypassing security!

TOCTTOU even gets its own CWE ...

https://cwe.mitre.org/data/definitions/367.html

● CVE-2003-0813 RPC Denial of Service attack
● CVE-2004-0594 PHP arbitrary code

execution
● CVE-2008-2958 Arbitrary file modify
● CVE-2008-1570 Arbitrary file modify

https://cwe.mitre.org/data/definitions/367.html
https://cwe.mitre.org/data/definitions/367.html

Portable race-free idioms
and design patterns

Some basic design principles:
1. Avoid absolute paths like the plague, they

are ALWAYS racy
2. Use an open file descriptor/HANDLE as the

base for relative path operations using the
special relative path system APIs

3. Combine the relative path system APIs with
the design patterns presented next to
achieve various race free behaviours

Special relative path file system APIs

POSIX (Linux, FreeBSD, OS X, many more)
provides relative path replacements for
absolute path taking system APIs:
● execveat(), faccessat(), fchmodat(),

fchownat(), fstatat(), futimesat(),
linkat(), mkdirat(), mknodat(), openat(),
readlinkat(), renameat(), symlinkat(),
unlinkat(), utimensat()

Special race free file system APIs
Microsoft Windows is a bit more tricky:
● All the NT kernel APIs can work from a base HANDLE to

a directory to do relative path lookups like the POSIX
*at() functions, sadly not exposed in Win32. However:
○ You cannot rename a directory containing any open

file handle
○ You cannot rename files into any destination path

where any process has an open HANDLE able to
rename any part of that path
■ This prevents paths being changed during use

Race free design pattern 1:
Use Relative Paths instead of

Absolute Paths

Design pattern 1: Relative paths

● Instead of:
○ fd1 = open(“/niall/foo/file1”);
○ fd2 = open(“/niall/foo/file2”);

● Do:
○ dirh = open(“/niall/foo”);
○ fd1 = openat(dirh, “file1”);
○ fd2 = openat(dirh, “file2”);

It is no longer possible to race file1 and file2
open!

Race free design pattern 2:
Avoid paths altogether by using

direct-by-fd operations

Design pattern 2: Avoid paths
altogether
● Instead of:

○ link(“/niall/foo/file1”, “/file2”);
● Do:

○ linkat(file1_fd, “”, AT_FDCWD, “/file2”,
AT_EMPTY_PATH);

● Some platforms (Linux, Windows) allow you
to work directly from an open fd
○ This makes the operation completely race free

Design pattern 2: Avoid paths
altogether
● What about instead of:

○ unlink(“/niall/foo/file1”);
● Do:

○ unlinkat(file1_fd, “”, AT_EMPTY_PATH);
● Unfortunately this does not work on POSIX

○ Currently only Microsoft Windows allows delete-by-
handle, so how do we work around this lack of
support on POSIX?

Workaround design pattern 3:
Work around lack of direct-by-fd

host OS support by combining
relative path syscalls with inode

checking

Design pattern 3: Inode checking
How do you workaround incomplete
filesystem-operation-from-fd support?
● Windows, Linux, OS X and FreeBSD (directories only)

permit you to ask for the current path of an open fd
● POSIX guarantees that a file with the same st_dev

and st_ino values is the same file
● You can therefore reliably get the parent directory of

some open fd on Linux, OS X and FreeBSD (directories
only) using the Inode checking design pattern

Design pattern 3: Inode checking
Let’s say I have an open fd to any file located
anywhere unpredictable. Steps:
1. Get current path of fd
2. Split path and open parent directory
3. Do fstatat(dirfd, leafname)
4. Compare st_dev and st_ino. If not ours,

loop to step 1

Design pattern 3: Inode checking

● Once you reliably have an open fd to the
parent directory, sibling lookups are trivial
○ i.e. for some open fd X to a file “store1.dat”, race

free open fd to sibling file “store1.idx”
● You can also do race free deletion/rename

○ i.e. for some open fd X, race free delete/rename it
on platforms not supporting direct-by-fd race free
deletion/rename

Race free design pattern 4:
Use atomic renaming to prevent

concurrent reads of partially
completed writes

Design pattern 4: Atomic renaming
● A well known Unix design pattern for

avoiding reader-writer visibility races is
using atomic renaming:
a. Create temp file with random/O_TMPFILE name

and write data into it
b. When complete, atomically rename the temp file

to its canonical name, replacing the previous
c. Users of the previous canonical version still see the

previous inode which is deallocated on last fd close

Design pattern 4: Atomic renaming
● Atomic renaming is traditionally avoided by

portable code because Win32 did not
provide it
○ The NT kernel always provided atomic renaming
○ And from Vista onwards, now so does Win32

● The name of the Win32 atomic rename API
(NOT MoveFileEx!) is as unobvious as it gets:
○ SetFileInformationByHandle() with

FILE_RENAME_INFO with ReplaceIfExists true

Race free design pattern 5:
The four techniques of concurrency

control in the file system

Design pattern 5: Locking

There are four types of locking possible on the file system
(in order of increasing performance):
1. Exclusive lock files (easiest, most portable)
2. Byte range locks (easy on Windows and Linux, tricky on

non-Linux POSIX)
3. Atomic append + extent deallocation (extent based i.

e. recent filing systems only)
4. Ordering guarantees (file system geeks only, probably

only reliable on NTFS, XFS, ZFS, UFS)

Design pattern 5a:
Exclusive lock files

Design pattern 5a: Lock files
● Exclusive lock files are easy:

○ while(-1==open(“lockfile”, O_EXCL|O_CREAT));
○ while(-1==CreateFile(“lockfile”, CREATE_NEW,

FILE_ATTRIBUTE_TEMPORARY));
● Pros:

○ Works as expected on networked filing systems
○ Works as expected between operating systems on

the same networked drive
○ Conceptually simple, so easy to maintain

Design pattern 5a: Lock files
Cons:
● Exclusive only i.e. cannot permit multiple readers
● Not sudden power loss friendly
● On POSIX, breaking stale lock files from unexpected

process exit vs swap file thrashing is a problem
○ Windows has very useful delete-on-close facility

● No way of efficiently sleeping until a lock file is freed
○ Expensive on CPU and battery

● Performance is not great - 2.5k Windows O(log
WAITERS), 4k Linux O(1), 10k FreeBSD O(1)

Design pattern 5b:
Byte range locks

Design pattern 5b: Byte range locks

● Byte range locks let you place an exclusive or a shared
lock on some offset and length in an open file

● Pros:
○ Allows non-modifying operations to parallelise
○ Automatically unlocks on sudden process exit
○ No problems with unexpected power off
○ Thread can be slept waiting for lock (blocking)
○ Much faster than lock files - 3.5k Linux O(waiters),

7k Windows O(1), 20k FreeBSD O(waiters)

Design pattern 5b: Byte range locks
Cons:
● Straightforward (and async!) to use on Windows, but

painful to use on POSIX except Linux >= 3.15
○ On POSIX range locks are per inode, not per fd
○ On POSIX any single close() unlocks all locks for

that inode for all fds in the process ☹
● Cross-platform byte range locks are problematic on

shared networked drives
○ Advisory on POSIX, mandatory on Windows, plus on

POSIX offset and length is signed unfortunately

Design pattern 5c:
Atomic append

+ Extent deallocation

Design pattern 5c: atomic append +
extent deallocation
● On everything including CIFS except NFS,

writes to append-only files are atomic
○ i.e. concurrent writes are never

interleaved ***
● Extent-based filing systems allow arbitrary

deallocation of ranges of a file
○ i.e. they no longer consume physical

storage

Design pattern 5c: atomic append +
extent deallocation
● Combining these facilities allows safe

concurrent file updates through appending
whatever the change is and deallocating
any obsoleted data
○ File grows “forever” but actually doesn’t

● Concurrency potentially > 100k IOPS all
non-COW FSs but write complexity is O
(waiters^X) where X is likely >= 2

Design pattern 5c: atomic append +
extent deallocation
Pros:
● Very fast EXCEPT when concurrent appending +

reading many small changes on copy-on-write filing
systems

● Works well on all platforms, including multi-platform
use of a CIFS network share

● Only portable way of achieving late durability
● With a bit of mind warping, technique is surprisingly

algorithmically flexible e.g. a distributed mutual
exclusion algorithm (Suzuki & Kasami; Maekawa & Ricart; Agrawala)

Design pattern 5c: atomic append +
extent deallocation
Cons:
● Requires an extent-based filing system (anything

created in the past 15 years is usually extents-based)
otherwise file grows forever
○ One can use segmented files to work around this

● Performs best if appended records are “chunky”
○ Extent granularity is anywhere between 4Kb and

128Kb depending on filing system
● Algorithms employed befuddles most (even otherwise

excellent) engineers so maintenance can be a problem

Design pattern 5d:
POSIX concurrent change visibility

ordering guarantees
(beware the dragons which abound here!)

Design pattern 5d: Ordering
guarantees
For the true power programmer only …
● POSIX.2008 does provide some reader-

writer change visibility ordering guarantees
● IF you are never on a networked drive AND

(you are on BSD OR you are using XFS on
Linux OR you are on Windows) …
○ … then this MAY work for you

Design pattern 5d: Ordering
guarantees
POSIX.2008 says this:

“I/O is intended to be atomic to ordinary files ...
Atomic means that all the bytes from a single
operation that started out together end up together,
without interleaving from other I/O operations.”
(POSIX-2008)

This is identical to std::memory_order_relaxed for
some std::atomic<T> where T is a some single preadv()

or pwritev() operation!

http://pubs.opengroup.org/onlinepubs/9699919799/functions/read.html

Design pattern 5d: Ordering
guarantees
POSIX.2008 also says this:

“If a read() of file data can be proven (by any means)
to occur after a write() of the data, it must reflect
that write(), even if the calls are made by different
processes. A similar requirement applies to multiple
write operations to the same file position. This is
needed to guarantee the propagation of data from
write() calls to subsequent read() calls.” (POSIX-2008)

http://pubs.opengroup.org/onlinepubs/9699919799/functions/write.html

Design pattern 5d: Ordering
guarantees
What does this mean?
● Every read() or readv() or preadv() for some

offset and length implicitly excludes any
concurrent write() or writev() or pwritev()
overlapping the same offset and length
○ i.e. a write is NEVER seen partially completed by

any read
○ This does NOT apply to all-reads nor all-writes!

Design pattern 5d: Ordering
guarantees
● This happens-before ordering guarantee is

similar to std::memory_order_release
for pwritev() before std::
memory_order_acquire for preadv() [with
respect to write-before-read only]

i.e. it can be used for lock-free algorithm
programming same as std::atomic!

Design pattern 5d: Ordering
guarantees
Pros:

● About as fast as you can get > 1M IOPS
○ No locking at all beyond what the kernel does

internally
● Conceptually familiar to anyone versed in

lock-free atomics programming
● Works very well on any major operating

system
○ … except Linux

Design pattern 5d: Ordering
guarantees
Cons:
● Linux locks per 4Kb page only

○ You are sunk if your read or write straddles a 4Kb
boundary - a work around is 2^N record sizes

○ XFS on Linux adds extra locking so that does work
● This is not a well tested use case

○ No major database relies on this technique
○ Other POSIX (FreeBSD, Solaris) guarantees them
○ NT kernel + NTFS implements these semantics, but

Microsoft make no guarantees this will remain

Introducing proposed
Boost.AFIO

Proposed Boost.AFIO - what is it?
● Provides a single universal file system

programming model
○ Fully featured on Windows and Linux
○ Reduced featured on FreeBSD and OS X

● Where a platform is deficient in host OS
support, where possible a feature is
emulated, even if quite inefficiently
○ Raw performance is secondary to correctness and

cross-platform consistency of behaviours

Proposed Boost.AFIO - provides
● Race free filesystem API extending the Filesystem TS
● Abstracted reference counted open fd/handle model
● Potential arbitrary file system backends

○ file:/// (your local hard drive)
○ file:///foo.zip (a ZIP archive)
○ http://something/index.html (HTTP)

● 98% asynchronous file system API
● 100% asynchronous scatter gather file i/o API
● Synchronous API equivalents in throwing and

error_code variants

Proposed Boost.AFIO - APIs
● Open/create/delete

file/directory/symlink
relative to open fd/handle

● Sync to physical storage
(3 algorithms)

● Deallocate physical storage
via open fd/handle

● Atomic scatter read and
gather write

● Examine mounted storage
volume of open fd/handle

● Get current path of open
fd/handle

● Get target of open
fd/handle to symlink

● Map extents into memory
● Link/unlink open

fd/handle relative to
other open fd/handle

● Atomic rename of open
fd/handle relative to
other open fd/handle

Proposed Boost.AFIO - current status

● Ported to Boost in 2013 by student Paul Kirth as part of
Google Summer of Code
○ Entered Boost peer review queue in October 2013

● Was peer reviewed by Boost community August 2015
○ Universal rejection by all reviewers bar one

● Eventually will be rewritten using lightweight monadic
futures + coroutines + post-ASIO i/o reactor
○ But existing <= C++0x-era engine is mature and end user API is not

expected to change by much
○ New engine will just be lighter weight & C++ 1z ready
○ New non-ASIO i/o reactor makes feasible complete locking support

What can you do with this
stuff?

Thank you
And let the questions begin!

