
Distributed Mutual 
Exclusion using Proposed 

Boost.AFIO
(asynchronous filesystem and file io)

Niall Douglas



Contents:
1. Quick overview of proposed Boost.AFIO and 

its current status: v1 and v2
2. Overview of API design of Abstract Base 

Class afio::algorithm::
shared_fs_mutex

3. Recap from CppCon tutorial: The four base 
techniques of concurrency control on the 
file system



Contents:
4. High-level overview of our atomic append 

lock algorithm
5. Detail of the atomic append lock algorithm 

implementation
6. Benchmarks comparing our atomic append 

lock algorithm implementation to lock files 
and byte range locks



History and status of 
proposed Boost.AFIO



Proposed Boost.AFIO v1
(2012-2015)



Proposed Boost.AFIO v1
● Provides a single universal file system 

programming model across all OSs
○ Fully featured on Windows and Linux
○ Reduced featured on FreeBSD and OS X

● Where a platform is deficient in host OS 
support, where possible a feature is 
emulated, even if quite inefficiently
○ Raw performance is secondary to correctness and 

cross-platform consistency of behaviours



Proposed Boost.AFIO - current status

● Entered Boost peer review queue in October 2013
● Was peer reviewed by Boost community August 2015

○ Universal rejection by all reviewers bar one

● Biggest problem areas noted by peer reviewers were:
○ Too heavyweight e.g. mandatory use of reference counting for 

lifetime management, use of exceptions for error transport, 
mandatory use of thread pool

○ Lack of breakout of internal routines into a public API people can 
mash up on their own

○ Didn’t solve any problem people think they have/Documentation was 
confusing

○ Performance was lower than using the host OS APIs directly



Proposed Boost.AFIO v2
(2015-)



Proposed Boost.AFIO v2

● “Bare metal” design
○ Exposes all the quirks of the host OS to user unfiltered
○ No threads, no resource nor memory management, no exceptions 

(we return lightweight monadic Outcomes instead)
○ Performance never measurably worse than using host OS APIs 

directly - overhead often just hundreds of assembler opcodes

● Tight mapping between C++ type system and filing 
system object primitives
○ Made possible by dropping WinXP support

● Publicly exposes core file system algorithms library 
into afio::algorithm::*



Proposed Boost.AFIO v2 - status
● Very early alpha code - use v1 for now!
● No test suite yet - at all!
● Currently only works on Microsoft Windows

○ Getting POSIX to do reliable delete-on-last-close 
semantics was much harder than expected (sorry!)

● v2 dependencies are >= VS2015 C++ 14, Core C++ 
GSL (Martin’s gsl-lite), Filesystem TS
○ Designed around coming C++ 1z features (borrowing 

spans, auto free functions, contiguity guarantees, 
custom attributes, STL v2)



Top level AFIO v2 
shared_fs_mutex 

API overview



There are these implementations of 
shared_fs_mutex in AFIO v2:
1. shared_fs_mutex::lock_files
2. shared_fs_mutex::byte_ranges

All implement the abstract base class 
shared_fs_mutex::shared_fs_mutex

afio::algorithm::shared_fs_mutex

3. shared_fs_mutex::atomic_append
○ (the one we are about to workshop now)



shared_fs_mutex abstract base class
Its API design is due to:
● Modern filing systems tend to parallelise quite 

well
○ For uncontended locks on the same object, 

typically aggregate performance improves up to 
CPU count, after which plateaus before beginning a 
linear slow decline

○ For contended locks, constant time on the OS 
process context switch time





shared_fs_mutex abstract base class
● It therefore usually improves overall 

performance to push granularity of locking 
onto the file system

● So, instead of giant single locks which 
contend more frequently, use many fine 
grained locks which contend rarely





shared_fs_mutex abstract base class
● virtual shared_fs_mutex::lock() therefore 

takes a span<> of multiple entities to lock
○ An entity is simply a 63 bit number
○ Top bit set means exclusive, unset means shared

■ (note top bit is useless for byte range locks on 
POSIX, and we internally use the top bit on 
Windows to emulate advisory locks)

● To entity conversion functions are provided:
○ Crypto random, from string, from span<T> etc



afio::algorithm::shared_fs_mutex
● How entities are mapped onto the file 

system depends on the implementation, so:
○ shared_fs_mutex::lock_file maps entities into 16 

character hexadecimal files opened with O_EXCL
○ shared_fs_mutex::byte_ranges maps entities into 

single byte offsets into the shared lock file
● Contention is handled by backing off all preceding 

locks and randomising the list before trying again, 
starting with the entity which was contended last try



● A problem with lock files/byte range locks 
is the inverse log scaling to entity count

● It gets much worse with high waiters and 
high entities on a contended lock
○ Hyperbolic drop off in performance after a certain 

system dependent point - a “write hole”
● What we need is an algorithm with an 

excellent worst case: hello atomic_append!

So why do we need 
shared_fs_mutex::atomic_append?



atomic_append
● Before we can design a correct atomic 

append algorithm, we need to understand 
Concurrency Control primitives on the file 
system in order to glue together an 
efficient and correct implementation

(for an expansion to the following theory overview, see 
CppCon 2015 tutorial “Racing the filesystem” 

https://www.youtube.com/watch?v=uhRWMGBjlO8)

https://www.youtube.com/watch?v=uhRWMGBjlO8
https://www.youtube.com/watch?v=uhRWMGBjlO8


Further reading:

AFIO v2 API reference: 
https://ned14.github.io/boost.afio

Abstract base class 
algorithm::shared_fs_mutex API reference: 
https://goo.gl/NG9ttv

https://ned14.github.io/boost.afio/index.html
https://ned14.github.io/boost.afio/index.html
https://goo.gl/NG9ttv
https://goo.gl/NG9ttv


Concurrency control on 
the file system

A very rapid theory primer



● Needed anywhere where more than one 
process may modify storage [potentially] 
concurrent to other processes

● POSIX specifies strong read/write 
reordering visibility guarantees (atomic, 
acquire/release) but implementations vary 
extensively in conformance

File system concurrency control:



There are four types of concurrency control possible on 
the file system (in order of increasing performance):
1. Exclusive lock files (easiest, most portable)
2. Byte range locks (easy on Windows and recent Linux, 

dragons live on non-Linux POSIX, tricky on SMB, NFS)
3. Atomic append + extent deallocation (extent based

i.e. recent filing systems only)
4. POSIX change visibility ordering guarantees (file system 

geeks only, dragons abound here especially on 
Windows)

File system concurrency primitives:





1. Exclusive lock files



Exclusive lock files
Pros:
● Works as expected between operating systems on the same networked 

drive

Cons:
● Exclusive only i.e. cannot permit multiple readers
● Not sudden power loss friendly
● On POSIX, race free breaking stale lock files from unexpected process 

exit is a problem
○ Windows has very useful delete-on-last-close facility

● No way of efficiently sleeping until a lock file is freed
○ Expensive on CPU and battery, bad for mobile devices



2. Byte Range Locks



Byte range locks
Pros:
● Allows non-modifying operations to parallelise
● Automatically unlocks on sudden process exit
● No problems with unexpected power off
● Thread can be slept waiting for lock (blocking)

Cons:
● Limited viable use cases (inode based!) on POSIX except Linux >= 3.15

○ On POSIX any single close() unlocks all locks for that inode for all fds 
in the process ☹  

● Problematic on shared networked drives
○ Advisory on POSIX, mandatory on Windows, plus on POSIX offset and 

length is signed unfortunately



3. Atomic append + Extent 
deallocation

(we’ll be making use of this for our algorithm)



Atomic append + extent deallocation
● On everything including SMB except NFS, 

writes to append-only files are atomic
○ i.e. concurrent writes are never 

interleaved in append offset chosen
● Extent-based filing systems allow arbitrary 

deallocation of ranges of a [sparse] file
○ i.e. they no longer consume physical 

storage



● Combining these facilities allows safe 
concurrent file updates through appending 
whatever the change is and deallocating 
any obsoleted data
○ File grows “forever” but actually doesn’t
○ If deallocation done frequently, kernel page cache 

will usually skip writing any actual data to disk, so 
in practice this is a pure memory IPC technique 
highly dependent on memory bandwidth

Atomic append + extent deallocation



Pros:
● Very fast EXCEPT on ZFS

○ (I need to submit a bug report actually ...)
● Works without quirks on all configurations except NFS
● Only portable way of achieving late durability
● With a bit of mind warping, technique is surprisingly 

algorithmically flexible e.g. a distributed mutual 
exclusion algorithm (Suzuki & Kasami; Maekawa & Ricart; Agrawala)

Atomic append + extent deallocation



Cons:
● Requires an extents-based filing system (anything 

created in the past 30 years is usually extents-based) 
otherwise file grows in physical storage forever
○ One can use segmented files (slow, i/o intensive!) 

to work around this on old filing systems
● Performs best if appended records are “chunky”

○ Extent granularity is anywhere between 4Kb and 
128Kb depending on filing system

Atomic append + extent deallocation



4. POSIX concurrent change visibility 
ordering guarantees

(brutally incomplete summary of just enough detail for 
this workshop)



Atomicity of writes w.r.t. reads

Empirical test with kernel page cache enabled
i.e. 
O_DIRECT=off/FILE_FLAG_NO_BUFFERING=off

Microsoft Windows 10 NTFS 1 byte

Linux 4.2.10 ext4 1 byte

FreeBSD 10.2 ZFS >= 1Mb



Atomicity of writes w.r.t. reads

Kernel page cache disabled i.e. 
O_DIRECT=on/FILE_FLAG_NO_BUFFERING=on

Microsoft Windows 10 NTFS >= cache line (64 bytes)
<= PCIe burst (4096)

Linux 4.2.10 ext4 >= 1Mb

FreeBSD 10.2 ZFS >= 1Mb



The atomic append lock 
algorithm - Overview

Questions before we begin this section?



Atomic append lock algorithm 
overview
● To be honest I started with a modified 

Suzuki-Kasami algorithm
○ Hence this talk’s description during Call for Papers

● But as I kept optimising the implementation 
I arrived at something quite different

● Only last weekend did I Google to see if 
someone had invented my algorithm 
already - the answer is “sorta” …



Eisenburg & McGuire algorithm
Algorithm from their 1972 paper:
https://en.wikipedia.org/wiki/Eisenberg_%26_McGuire_algorithm

Key characteristics for N processes:
● Array[N] of IDLE, WAITING, ACTIVE states
● On begin to lock:

○ Set my state to WAITING
○ Busy spin from me to the lock holder until all 

intervening states are IDLE
○ Set my state to ACTIVE
○ First ACTIVE state gets the lock

https://en.wikipedia.org/wiki/Eisenberg_%26_McGuire_algorithm
https://en.wikipedia.org/wiki/Eisenberg_%26_McGuire_algorithm


Lamport’s Bakery algorithm

Algorithm from his 1974 paper:
https://en.wikipedia.org/wiki/Lamport%27s_bakery_algorithm

Key characteristics for N processes:
● Each new entrant receives a unique number from a 

“Lamport clock”
● We loop scanning the shared list of other waiters until 

our number is the lowest
● Can be easily made FIFO and therefore bounded wait 

and starvation free

https://en.wikipedia.org/wiki/Lamport%27s_bakery_algorithm
https://en.wikipedia.org/wiki/Lamport%27s_bakery_algorithm


Peterson’s N-process algorithm

Algorithm from his 1981 paper:
https://en.wikipedia.org/wiki/Peterson%27s_algorithm
Key characteristics for N processes:
● List of (N-1) “waiting rooms” shared by all users
● Processes advance from Room[0] to Room[N-1], being 

reduced by one with each advance
● Room[N-1] is the critical section
● Starvation free
● But no bounded waiting!

https://en.wikipedia.org/wiki/Peterson%27s_algorithm
https://en.wikipedia.org/wiki/Peterson%27s_algorithm


The atomic_append algorithm

Ours is a mix of all the above:
● The atomically appended file is the shared FIFO queue 

of waiters
● The act of atomic append is the “Lamport clock” via 

an always incrementing file length where lower offsets 
are relatively closer to gaining the lock

● Therefore there is a total sequentially consistent 
ordering from the end of the file towards the 
beginning



The atomic_append algorithm

To lock:
1. Atomic append our lock request for up to M entities
2. Scan from our lock request backwards looking for other 

requests locking same thing as us. If found, spin 
reading them until they become all bits zero

3. When we reach the front of the list, we have the lock!

To unlock:
1. Fill our lock request with all bits zero



The atomic_append algorithm

Characteristics:
● Strict FIFO fairness
● Guaranteed progress
● Ideal execution complexity

I believe this is actually an ideal mutual 
exclusion algorithm!



The atomic append lock 
algorithm - Detail

Questions before we begin this section?



Data structures: The header



Questions?



atomic_append::init()

1. Open the shared lock file with read/write 
access and delete-on-last-close semantics

2. Try to lock for exclusive access the final 
byte in the header
a. If successful, truncate file and write new header. 

Atomic downgrade exclusive lock to shared
b. If unsuccessful, lock for shared access the final 

byte in the header



atomic_append::init()

3. Invent a random 64 bit unique id so our lock 
requests can be disambiguated from other 
actors locking the same thing
○ We use the crypto strong randomness source

4. Precache the current header
○ On filing systems which present torn writes to 

readers, need to iterate reading header until 128 
bit hash matches contents



Questions?



atomic_append::lock()
1. Flip the handle to the shared lock file into 

atomic-append-only mode
2. Record the current length of the file
3. (If NFS compatibility is needed, byte range lock 

file from current length to max during append)
4. Atomic append our lock_request
5. Flip the handle back to read/write mode
6. Read all bytes from previously recorded length 

of file to end of file in 4Kb chunks



atomic_append::lock()
7. Find the offset of the lock_request we previously 

atomic appended
8. Take an exclusive advisory byte range lock on 

our lock_request
9. Scan backwards from that offset examining each 

preceding lock_request until header.
first_known_good reached, reloading header 
after if we ever contend
a. (If hash doesn’t match contents, reload)



atomic_append::lock()
b. If it is all bits zero (released), skip
c. If the entities it will lock are none of ours, skip
d. If the entities it will lock match some of ours but 

both are for shared access, skip
e. If the entities it will lock match some of ours but 

either is for exclusive access, then take a shared 
byte range lock on this lock_request
■ This blocks until the lock_request changes
■ Loop checking this lock_request

10. We have the lock, so return



Questions?



atomic_append::unlock()
1. Write an all bits zero lock_request to my 

lock_request offset
○ (some filing systems eliminate physical storage for 

contiguous chunks of all bits zero)
2. Release the exclusive byte range lock on my 

lock_request
3. If my offset was on a 4Kb boundary (i.e. 

every 4096/128 = 32 records) ...



atomic_append::unlock()
4. Load 6Kb of data from header.

first_known_good onwards
5. Iterate until finding first non-zero record
6. If header.first_known_good - header.

first_after_hole_punch >= 1Mb
○ Punch hole in physical storage

7. Write new header with updated 
first_known_good etc



Questions?



Benchmarks!
The following benchmarks are for:

2 core 4 thread 4.125Gb/sec main memory bandwidth
GenuineIntel Intel(R) Core(TM) i5 CPU M 540 @ 2.53

GHz (2008 era laptop)
Microsoft Windows 10.0.10240.16683



Known deficiencies in this 
atomic_append implementation:
1. Unnecessary read() between scan forward 

and backward for lock_request
2. Hash check failures reload too much data
3. If OS has unified page cache and SMB/NFS 

compatibility not important, using memory 
maps would be a big gain
○ Fallback to non-mapped i/o if a SMB/NFS user tries 

to claim lock is straightforward to add











Thank you
And let the questions begin!

Github: https://github.com/ned14/boost.afio

Ref docs: https://ned14.github.io/boost.afio/

https://github.com/ned14/boost.afio
https://ned14.github.io/boost.afio/

