Welcome to mirror list, hosted at ThFree Co, Russian Federation.

c_jhash.h « common « src - github.com/nextcloud/desktop.git - Unnamed repository; edit this file 'description' to name the repository.
summaryrefslogtreecommitdiff
blob: cd1549d7e6d0e44292b3d632ba04a38810f308eb (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
/*
 * c_jhash.c Jenkins Hash
 *
 * Copyright (c) 1997 Bob Jenkins <bob_jenkins@burtleburtle.net>
 *
 * lookup8.c, by Bob Jenkins, January 4 1997, Public Domain.
 * hash(), hash2(), hash3, and _c_mix() are externally useful functions.
 * Routines to test the hash are included if SELF_TEST is defined.
 * You can use this free for any purpose.  It has no warranty.
 *
 * See http://burtleburtle.net/bob/hash/evahash.html
 */

/**
 * @file common/c_jhash.h
 *
 * @brief Interface of the cynapses jhash implementation
 *
 * @defgroup cynJHashInternals cynapses libc jhash function
 * @ingroup cynLibraryAPI
 *
 * @{
 */
#ifndef _C_JHASH_H
#define _C_JHASH_H

#include <stdint.h>

#define c_hashsize(n) ((uint8_t) 1 << (n))
#define c_hashmask(n) (xhashsize(n) - 1)

/**
 * _c_mix -- Mix 3 32-bit values reversibly.
 *
 * For every delta with one or two bit set, and the deltas of all three
 * high bits or all three low bits, whether the original value of a,b,c
 * is almost all zero or is uniformly distributed,
 * If _c_mix() is run forward or backward, at least 32 bits in a,b,c
 * have at least 1/4 probability of changing.
 * If _c_mix() is run forward, every bit of c will change between 1/3 and
 * 2/3 of the time.  (Well, 22/100 and 78/100 for some 2-bit deltas.)
 * _c_mix() was built out of 36 single-cycle latency instructions in a 
 * structure that could supported 2x parallelism, like so:
 *     a -= b;
 *     a -= c; x = (c>>13);
 *     b -= c; a ^= x;
 *     b -= a; x = (a<<8);
 *     c -= a; b ^= x;
 *     c -= b; x = (b>>13);
 *     ...
 *
 * Unfortunately, superscalar Pentiums and Sparcs can't take advantage
 * of that parallelism.  They've also turned some of those single-cycle
 * latency instructions into multi-cycle latency instructions.  Still,
 * this is the fastest good hash I could find.  There were about 2^^68
 * to choose from.  I only looked at a billion or so.
 */
#define _c_mix(a,b,c) \
{ \
  a -= b; a -= c; a ^= (c>>13); \
  b -= c; b -= a; b ^= (a<<8); \
  c -= a; c -= b; c ^= (b>>13); \
  a -= b; a -= c; a ^= (c>>12);  \
  b -= c; b -= a; b ^= (a<<16); \
  c -= a; c -= b; c ^= (b>>5); \
  a -= b; a -= c; a ^= (c>>3);  \
  b -= c; b -= a; b ^= (a<<10); \
  c -= a; c -= b; c ^= (b>>15); \
}

/**
 * _c_mix64 -- Mix 3 64-bit values reversibly.
 *
 * _c_mix64() takes 48 machine instructions, but only 24 cycles on a superscalar
 * machine (like Intel's new MMX architecture).  It requires 4 64-bit
 * registers for 4::2 parallelism.
 * All 1-bit deltas, all 2-bit deltas, all deltas composed of top bits of
 * (a,b,c), and all deltas of bottom bits were tested.  All deltas were
 * tested both on random keys and on keys that were nearly all zero.
 * These deltas all cause every bit of c to change between 1/3 and 2/3
 * of the time (well, only 113/400 to 287/400 of the time for some
 * 2-bit delta).  These deltas all cause at least 80 bits to change
 * among (a,b,c) when the _c_mix is run either forward or backward (yes it
 * is reversible).
 * This implies that a hash using _c_mix64 has no funnels.  There may be
 * characteristics with 3-bit deltas or bigger, I didn't test for
 * those.
 */
#define _c_mix64(a,b,c) \
{ \
  a -= b; a -= c; a ^= (c>>43); \
  b -= c; b -= a; b ^= (a<<9); \
  c -= a; c -= b; c ^= (b>>8); \
  a -= b; a -= c; a ^= (c>>38); \
  b -= c; b -= a; b ^= (a<<23); \
  c -= a; c -= b; c ^= (b>>5); \
  a -= b; a -= c; a ^= (c>>35); \
  b -= c; b -= a; b ^= (a<<49); \
  c -= a; c -= b; c ^= (b>>11); \
  a -= b; a -= c; a ^= (c>>12); \
  b -= c; b -= a; b ^= (a<<18); \
  c -= a; c -= b; c ^= (b>>22); \
}

/**
 * @brief hash a variable-length key into a 32-bit value
 *
 * The best hash table sizes are powers of 2.  There is no need to do
 * mod a prime (mod is sooo slow!).  If you need less than 32 bits,
 * use a bitmask.  For example, if you need only 10 bits, do
 *   h = (h & hashmask(10));
 * In which case, the hash table should have hashsize(10) elements.
 *
 * Use for hash table lookup, or anything where one collision in 2^32 is
 * acceptable.  Do NOT use for cryptographic purposes.
 *
 * @param k        The key (the unaligned variable-length array of bytes).
 *
 * @param length   The length of the key, counting by bytes.
 *
 * @param initval  Initial value, can be any 4-byte value.
 *
 * @return    Returns a 32-bit value.  Every bit of the key affects every bit
 *            of the return value.  Every 1-bit and 2-bit delta achieves
 *            avalanche. About 36+6len instructions.
 */
static inline uint32_t c_jhash(const uint8_t *k, uint32_t length, uint32_t initval) {
   uint32_t a,b,c,len;

   /* Set up the internal state */
   len = length;
   a = b = 0x9e3779b9; /* the golden ratio; an arbitrary value */
   c = initval; /* the previous hash value */

   while (len >= 12) {
      a += (k[0] +((uint32_t)k[1]<<8) +((uint32_t)k[2]<<16) +((uint32_t)k[3]<<24));
      b += (k[4] +((uint32_t)k[5]<<8) +((uint32_t)k[6]<<16) +((uint32_t)k[7]<<24));
      c += (k[8] +((uint32_t)k[9]<<8) +((uint32_t)k[10]<<16)+((uint32_t)k[11]<<24));
      _c_mix(a,b,c);
      k += 12; len -= 12;
   }

   /* handle the last 11 bytes */
   c += length;
   /* all the case statements fall through */
   switch(len) {
     case 11: c+=((uint32_t)k[10]<<24);
     case 10: c+=((uint32_t)k[9]<<16);
     case 9 : c+=((uint32_t)k[8]<<8);
     /* the first byte of c is reserved for the length */
     case 8 : b+=((uint32_t)k[7]<<24);
     case 7 : b+=((uint32_t)k[6]<<16);
     case 6 : b+=((uint32_t)k[5]<<8);
     case 5 : b+=k[4];
     case 4 : a+=((uint32_t)k[3]<<24);
     case 3 : a+=((uint32_t)k[2]<<16);
     case 2 : a+=((uint32_t)k[1]<<8);
     case 1 : a+=k[0];
     /* case 0: nothing left to add */
   }
   _c_mix(a,b,c);

   return c;
}

/**
 * @brief hash a variable-length key into a 64-bit value
 *
 * The best hash table sizes are powers of 2.  There is no need to do
 * mod a prime (mod is sooo slow!).  If you need less than 64 bits,
 * use a bitmask.  For example, if you need only 10 bits, do
 *   h = (h & hashmask(10));
 * In which case, the hash table should have hashsize(10) elements.
 *
 * Use for hash table lookup, or anything where one collision in 2^^64
 * is acceptable.  Do NOT use for cryptographic purposes.
 *
 * @param k       The key (the unaligned variable-length array of bytes).
 * @param length  The length of the key, counting by bytes.
 * @param intval  Initial value, can be any 8-byte value.
 *
 * @return    A 64-bit value. Every bit of the key affects every bit of
 *            the return value.  No funnels.  Every 1-bit and 2-bit delta
 *            achieves avalanche. About 41+5len instructions.
 */
static inline uint64_t c_jhash64(const uint8_t *k, uint64_t length, uint64_t intval) {
  uint64_t a,b,c,len;

  /* Set up the internal state */
  len = length;
  a = b = intval; /* the previous hash value */
  c = 0x9e3779b97f4a7c13LL; /* the golden ratio; an arbitrary value */

  /* handle most of the key */
  while (len >= 24)
  {
    a += (k[0]        +((uint64_t)k[ 1]<< 8)+((uint64_t)k[ 2]<<16)+((uint64_t)k[ 3]<<24)
     +((uint64_t)k[4 ]<<32)+((uint64_t)k[ 5]<<40)+((uint64_t)k[ 6]<<48)+((uint64_t)k[ 7]<<56));
    b += (k[8]        +((uint64_t)k[ 9]<< 8)+((uint64_t)k[10]<<16)+((uint64_t)k[11]<<24)
     +((uint64_t)k[12]<<32)+((uint64_t)k[13]<<40)+((uint64_t)k[14]<<48)+((uint64_t)k[15]<<56));
    c += (k[16]       +((uint64_t)k[17]<< 8)+((uint64_t)k[18]<<16)+((uint64_t)k[19]<<24)
     +((uint64_t)k[20]<<32)+((uint64_t)k[21]<<40)+((uint64_t)k[22]<<48)+((uint64_t)k[23]<<56));
    _c_mix64(a,b,c);
    k += 24; len -= 24;
  }

  /* handle the last 23 bytes */
  c += length;
  switch(len) {
#pragma GCC diagnostic ignored "-Wimplicit-fallthrough"
    case 23: c+=((uint64_t)k[22]<<56);
    case 22: c+=((uint64_t)k[21]<<48);
    case 21: c+=((uint64_t)k[20]<<40);
    case 20: c+=((uint64_t)k[19]<<32);
    case 19: c+=((uint64_t)k[18]<<24);
    case 18: c+=((uint64_t)k[17]<<16);
    case 17: c+=((uint64_t)k[16]<<8);
    /* the first byte of c is reserved for the length */
    case 16: b+=((uint64_t)k[15]<<56);
    case 15: b+=((uint64_t)k[14]<<48);
    case 14: b+=((uint64_t)k[13]<<40);
    case 13: b+=((uint64_t)k[12]<<32);
    case 12: b+=((uint64_t)k[11]<<24);
    case 11: b+=((uint64_t)k[10]<<16);
    case 10: b+=((uint64_t)k[ 9]<<8);
    case  9: b+=((uint64_t)k[ 8]);
    case  8: a+=((uint64_t)k[ 7]<<56);
    case  7: a+=((uint64_t)k[ 6]<<48);
    case  6: a+=((uint64_t)k[ 5]<<40);
    case  5: a+=((uint64_t)k[ 4]<<32);
    case  4: a+=((uint64_t)k[ 3]<<24);
    case  3: a+=((uint64_t)k[ 2]<<16);
    case  2: a+=((uint64_t)k[ 1]<<8);
    case  1: a+=((uint64_t)k[ 0]);
    /* case 0: nothing left to add */
  }
  _c_mix64(a,b,c);

  return c;
}

/**
 * }@
 */
#endif /* _C_JHASH_H */