/* * Copyright (C) Igor Sysoev */ #include #include #include #if (TEST_BUILD_RTSIG) #define F_SETSIG 10 #define SIGRTMIN 33 #define si_fd __spare__[0] #define KERN_RTSIGNR 30 #define KERN_RTSIGMAX 31 int sigtimedwait(const sigset_t *set, siginfo_t *info, const struct timespec *timeout) { return -1; } int ngx_linux_rtsig_max; #endif typedef struct { int signo; ngx_int_t overflow_events; ngx_int_t overflow_test; ngx_int_t overflow_threshold; } ngx_rtsig_conf_t; extern ngx_event_module_t ngx_poll_module_ctx; static ngx_int_t ngx_rtsig_init(ngx_cycle_t *cycle); static void ngx_rtsig_done(ngx_cycle_t *cycle); static ngx_int_t ngx_rtsig_add_connection(ngx_connection_t *c); static ngx_int_t ngx_rtsig_del_connection(ngx_connection_t *c, u_int flags); static ngx_int_t ngx_rtsig_process_events(ngx_cycle_t *cycle); static ngx_int_t ngx_rtsig_process_overflow(ngx_cycle_t *cycle); static void *ngx_rtsig_create_conf(ngx_cycle_t *cycle); static char *ngx_rtsig_init_conf(ngx_cycle_t *cycle, void *conf); static char *ngx_check_ngx_overflow_threshold_bounds(ngx_conf_t *cf, void *post, void *data); static sigset_t set; static ngx_uint_t overflow, overflow_current; static struct pollfd *overflow_list; static ngx_str_t rtsig_name = ngx_string("rtsig"); static ngx_conf_num_bounds_t ngx_overflow_threshold_bounds = { ngx_check_ngx_overflow_threshold_bounds, 2, 10 }; static ngx_command_t ngx_rtsig_commands[] = { {ngx_string("rtsig_signo"), NGX_EVENT_CONF|NGX_CONF_TAKE1, ngx_conf_set_num_slot, 0, offsetof(ngx_rtsig_conf_t, signo), NULL}, {ngx_string("rtsig_overflow_events"), NGX_EVENT_CONF|NGX_CONF_TAKE1, ngx_conf_set_num_slot, 0, offsetof(ngx_rtsig_conf_t, overflow_events), NULL}, {ngx_string("rtsig_overflow_test"), NGX_EVENT_CONF|NGX_CONF_TAKE1, ngx_conf_set_num_slot, 0, offsetof(ngx_rtsig_conf_t, overflow_test), NULL}, {ngx_string("rtsig_overflow_threshold"), NGX_EVENT_CONF|NGX_CONF_TAKE1, ngx_conf_set_num_slot, 0, offsetof(ngx_rtsig_conf_t, overflow_threshold), &ngx_overflow_threshold_bounds}, ngx_null_command }; ngx_event_module_t ngx_rtsig_module_ctx = { &rtsig_name, ngx_rtsig_create_conf, /* create configuration */ ngx_rtsig_init_conf, /* init configuration */ { NULL, /* add an event */ NULL, /* delete an event */ NULL, /* enable an event */ NULL, /* disable an event */ ngx_rtsig_add_connection, /* add an connection */ ngx_rtsig_del_connection, /* delete an connection */ NULL, /* process the changes */ ngx_rtsig_process_events, /* process the events */ ngx_rtsig_init, /* init the events */ ngx_rtsig_done, /* done the events */ } }; ngx_module_t ngx_rtsig_module = { NGX_MODULE, &ngx_rtsig_module_ctx, /* module context */ ngx_rtsig_commands, /* module directives */ NGX_EVENT_MODULE, /* module type */ NULL, /* init module */ NULL /* init process */ }; static ngx_int_t ngx_rtsig_init(ngx_cycle_t *cycle) { ngx_rtsig_conf_t *rtscf; if (ngx_poll_module_ctx.actions.init(cycle) == NGX_ERROR) { return NGX_ERROR; } rtscf = ngx_event_get_conf(cycle->conf_ctx, ngx_rtsig_module); sigemptyset(&set); sigaddset(&set, rtscf->signo); sigaddset(&set, rtscf->signo + 1); sigaddset(&set, SIGIO); if (sigprocmask(SIG_BLOCK, &set, NULL) == -1) { ngx_log_error(NGX_LOG_EMERG, cycle->log, ngx_errno, "sigprocmask() failed"); return NGX_ERROR; } if (overflow_list) { ngx_free(overflow_list); } overflow_list = ngx_alloc(sizeof(struct pollfd) * rtscf->overflow_events, cycle->log); if (overflow_list == NULL) { return NGX_ERROR; } ngx_io = ngx_os_io; ngx_event_actions = ngx_rtsig_module_ctx.actions; ngx_event_flags = NGX_USE_RTSIG_EVENT|NGX_HAVE_GREEDY_EVENT; return NGX_OK; } static void ngx_rtsig_done(ngx_cycle_t *cycle) { ngx_poll_module_ctx.actions.done(cycle); } static ngx_int_t ngx_rtsig_add_connection(ngx_connection_t *c) { int signo; ngx_rtsig_conf_t *rtscf; if (c->read->accept && c->read->disabled) { ngx_log_debug1(NGX_LOG_DEBUG_EVENT, c->log, 0, "rtsig enable connection: fd:%d", c->fd); if (fcntl(c->fd, F_SETOWN, ngx_pid) == -1) { ngx_log_error(NGX_LOG_ALERT, c->log, ngx_errno, "fcntl(F_SETOWN) failed"); return NGX_ERROR; } c->read->active = 1; c->read->disabled = 0; } rtscf = ngx_event_get_conf(ngx_cycle->conf_ctx, ngx_rtsig_module); signo = rtscf->signo + c->read->instance; ngx_log_debug2(NGX_LOG_DEBUG_EVENT, c->log, 0, "rtsig add connection: fd:%d signo:%d", c->fd, signo); if (fcntl(c->fd, F_SETFL, O_RDWR|O_NONBLOCK|O_ASYNC) == -1) { ngx_log_error(NGX_LOG_ALERT, c->log, ngx_errno, "fcntl(O_RDWR|O_NONBLOCK|O_ASYNC) failed"); return NGX_ERROR; } if (fcntl(c->fd, F_SETSIG, signo) == -1) { ngx_log_error(NGX_LOG_ALERT, c->log, ngx_errno, "fcntl(F_SETSIG) failed"); return NGX_ERROR; } if (fcntl(c->fd, F_SETOWN, ngx_pid) == -1) { ngx_log_error(NGX_LOG_ALERT, c->log, ngx_errno, "fcntl(F_SETOWN) failed"); return NGX_ERROR; } #if (HAVE_ONESIGFD) if (fcntl(c->fd, F_SETAUXFL, O_ONESIGFD) == -1) { ngx_log_error(NGX_LOG_ALERT, c->log, ngx_errno, "fcntl(F_SETAUXFL) failed"); return NGX_ERROR; } #endif c->read->active = 1; c->write->active = 1; return NGX_OK; } static ngx_int_t ngx_rtsig_del_connection(ngx_connection_t *c, u_int flags) { ngx_log_debug1(NGX_LOG_DEBUG_EVENT, c->log, 0, "rtsig del connection: fd:%d", c->fd); if ((flags & NGX_DISABLE_EVENT) && c->read->accept) { ngx_log_debug1(NGX_LOG_DEBUG_EVENT, c->log, 0, "rtsig disable connection: fd:%d", c->fd); c->read->active = 0; c->read->disabled = 1; return NGX_OK; } if (flags & NGX_CLOSE_EVENT) { c->read->active = 0; c->write->active = 0; return NGX_OK; } if (fcntl(c->fd, F_SETFL, O_RDWR|O_NONBLOCK) == -1) { ngx_log_error(NGX_LOG_ALERT, c->log, ngx_errno, "fcntl(O_RDWR|O_NONBLOCK) failed"); return NGX_ERROR; } c->read->active = 0; c->write->active = 0; return NGX_OK; } ngx_int_t ngx_rtsig_process_events(ngx_cycle_t *cycle) { int signo; ngx_int_t instance, i; ngx_uint_t expire; size_t n; ngx_msec_t timer; ngx_err_t err; siginfo_t si; ngx_event_t *rev, *wev; struct timeval tv; struct timespec ts, *tp; struct sigaction sa; ngx_epoch_msec_t delta; ngx_connection_t *c; ngx_rtsig_conf_t *rtscf; if (overflow) { timer = 0; expire = 0; } else { for ( ;; ) { timer = ngx_event_find_timer(); #if (NGX_THREADS) if (timer == NGX_TIMER_ERROR) { return NGX_ERROR; } if (timer == NGX_TIMER_INFINITE || timer > 500) { timer = 500; break; } #endif if (timer != 0) { break; } ngx_log_debug0(NGX_LOG_DEBUG_EVENT, cycle->log, 0, "rtsig expired timer"); ngx_event_expire_timers((ngx_msec_t) (ngx_elapsed_msec - ngx_old_elapsed_msec)); if (ngx_posted_events && ngx_threaded) { ngx_wakeup_worker_thread(cycle); } } expire = 1; if (ngx_accept_mutex) { if (ngx_accept_disabled > 0) { ngx_accept_disabled--; } else { ngx_accept_mutex_held = 0; if (ngx_trylock_accept_mutex(cycle) == NGX_ERROR) { return NGX_ERROR; } if (ngx_accept_mutex_held == 0 && (timer == NGX_TIMER_INFINITE || timer > ngx_accept_mutex_delay)) { timer = ngx_accept_mutex_delay; expire = 0; } } } } if (timer == NGX_TIMER_INFINITE) { tp = NULL; expire = 0; } else { ts.tv_sec = timer / 1000; ts.tv_nsec = (timer % 1000) * 1000000; tp = &ts; } ngx_old_elapsed_msec = ngx_elapsed_msec; ngx_log_debug1(NGX_LOG_DEBUG_EVENT, cycle->log, 0, "rtsig timer: %d", timer); /* Linux's sigwaitinfo() is sigtimedwait() with the NULL timeout pointer */ signo = sigtimedwait(&set, &si, tp); if (signo == -1) { err = ngx_errno; ngx_log_debug1(NGX_LOG_DEBUG_EVENT, cycle->log, err, "rtsig signo:%d", signo); if (err == NGX_EAGAIN) { if (timer == NGX_TIMER_INFINITE) { ngx_accept_mutex_unlock(); ngx_log_error(NGX_LOG_ALERT, cycle->log, err, "sigtimedwait() returned EAGAIN without timeout"); return NGX_ERROR; } err = 0; } } else { err = 0; ngx_log_debug3(NGX_LOG_DEBUG_EVENT, cycle->log, 0, "rtsig signo:%d fd:%d band:%X", signo, si.si_fd, si.si_band); } ngx_gettimeofday(&tv); ngx_time_update(tv.tv_sec); delta = ngx_elapsed_msec; ngx_elapsed_msec = (ngx_epoch_msec_t) tv.tv_sec * 1000 + tv.tv_usec / 1000 - ngx_start_msec; if (err) { ngx_accept_mutex_unlock(); ngx_log_error((err == NGX_EINTR) ? NGX_LOG_INFO : NGX_LOG_ALERT, cycle->log, err, "sigtimedwait() failed"); return NGX_ERROR; } if (timer != NGX_TIMER_INFINITE) { delta = ngx_elapsed_msec - delta; ngx_log_debug2(NGX_LOG_DEBUG_EVENT, cycle->log, 0, "rtsig timer: %d, delta: %d", timer, (int) delta); } rtscf = ngx_event_get_conf(ngx_cycle->conf_ctx, ngx_rtsig_module); if (signo == rtscf->signo || signo == rtscf->signo + 1) { if (overflow && (ngx_uint_t) si.si_fd > overflow_current) { return NGX_OK; } /* TODO: old_cycles */ c = &ngx_cycle->connections[si.si_fd]; instance = signo - rtscf->signo; rev = c->read; if (c->read->instance != instance) { /* * the stale event from a file descriptor * that was just closed in this iteration */ ngx_accept_mutex_unlock(); ngx_log_debug1(NGX_LOG_DEBUG_EVENT, cycle->log, 0, "rtsig: stale event " PTR_FMT, c); return NGX_OK; } if (si.si_band & (POLLIN|POLLHUP|POLLERR)) { if (rev->active) { if (ngx_threaded && !rev->accept) { if (ngx_mutex_lock(ngx_posted_events_mutex) == NGX_ERROR) { ngx_accept_mutex_unlock(); return NGX_ERROR; } rev->posted_ready = 1; ngx_post_event(rev); ngx_mutex_unlock(ngx_posted_events_mutex); } else { rev->ready = 1; if (!ngx_threaded && !ngx_accept_mutex_held) { rev->event_handler(rev); } else if (rev->accept) { if (ngx_accept_disabled <= 0) { rev->event_handler(rev); } } else { ngx_post_event(rev); } } } } wev = c->write; if (si.si_band & (POLLOUT|POLLHUP|POLLERR)) { if (wev->active) { if (ngx_threaded) { if (ngx_mutex_lock(ngx_posted_events_mutex) == NGX_ERROR) { ngx_accept_mutex_unlock(); return NGX_ERROR; } wev->posted_ready = 1; ngx_post_event(wev); ngx_mutex_unlock(ngx_posted_events_mutex); } else { wev->ready = 1; if (!ngx_threaded && !ngx_accept_mutex_held) { wev->event_handler(wev); } else { ngx_post_event(wev); } } } } } else if (signo == SIGIO) { ngx_accept_mutex_unlock(); ngx_log_error(NGX_LOG_ALERT, cycle->log, 0, "rt signal queue overflowed"); /* flush the RT signal queue */ ngx_memzero(&sa, sizeof(struct sigaction)); sa.sa_handler = SIG_DFL; sigemptyset(&sa.sa_mask); if (sigaction(rtscf->signo, &sa, NULL) == -1) { ngx_log_error(NGX_LOG_ALERT, cycle->log, ngx_errno, "sigaction(%d, SIG_DFL) failed", rtscf->signo); } if (sigaction(rtscf->signo + 1, &sa, NULL) == -1) { ngx_log_error(NGX_LOG_ALERT, cycle->log, ngx_errno, "sigaction(%d, SIG_DFL) failed", rtscf->signo + 1); } overflow = 1; overflow_current = 0; ngx_event_actions.process_events = ngx_rtsig_process_overflow; return NGX_ERROR; } else if (signo != -1) { ngx_accept_mutex_unlock(); ngx_log_error(NGX_LOG_ALERT, cycle->log, 0, "sigtimedwait() returned unexpected signal: %d", signo); return NGX_ERROR; } ngx_accept_mutex_unlock(); if (expire && delta) { ngx_event_expire_timers((ngx_msec_t) delta); } if (ngx_posted_events) { if (ngx_threaded) { ngx_wakeup_worker_thread(cycle); } else { ngx_event_process_posted(cycle); } } if (signo == -1) { return NGX_AGAIN; } else { return NGX_OK; } } /* TODO: old cylces */ static ngx_int_t ngx_rtsig_process_overflow(ngx_cycle_t *cycle) { int name[2], rtsig_max, rtsig_nr, events, ready; size_t len; ngx_int_t tested, n, i; ngx_err_t err; ngx_event_t *rev, *wev; ngx_connection_t *c; ngx_rtsig_conf_t *rtscf; rtscf = ngx_event_get_conf(ngx_cycle->conf_ctx, ngx_rtsig_module); tested = 0; for ( ;; ) { n = 0; while (n < rtscf->overflow_events) { if (overflow_current == cycle->connection_n) { break; } c = &cycle->connections[overflow_current++]; if (c->fd == -1) { continue; } events = 0; if (c->read->active && c->read->event_handler) { events |= POLLIN; } if (c->write->active && c->write->event_handler) { events |= POLLOUT; } if (events == 0) { continue; } overflow_list[n].fd = c->fd; overflow_list[n].events = events; overflow_list[n].revents = 0; n++; } if (n == 0) { break; } for ( ;; ) { ready = poll(overflow_list, n, 0); if (ready == -1) { err = ngx_errno; ngx_log_error((err == NGX_EINTR) ? NGX_LOG_INFO : NGX_LOG_ALERT, cycle->log, 0, "poll() failed while the overflow recover"); if (err == NGX_EINTR) { continue; } } break; } if (ready <= 0) { continue; } if (ngx_mutex_lock(ngx_posted_events_mutex) == NGX_ERROR) { return NGX_ERROR; } for (i = 0; i < n; i++) { c = &cycle->connections[overflow_list[i].fd]; rev = c->read; if (rev->active && !rev->closed && rev->event_handler && (overflow_list[i].revents & (POLLIN|POLLERR|POLLHUP|POLLNVAL))) { tested++; if (ngx_threaded) { rev->posted_ready = 1; ngx_post_event(rev); } else { rev->ready = 1; rev->event_handler(rev); } } wev = c->write; if (wev->active && !wev->closed && wev->event_handler && (overflow_list[i].revents & (POLLOUT|POLLERR|POLLHUP|POLLNVAL))) { tested++; if (ngx_threaded) { wev->posted_ready = 1; ngx_post_event(wev); } else { wev->ready = 1; wev->event_handler(wev); } } } ngx_mutex_unlock(ngx_posted_events_mutex); if (tested >= rtscf->overflow_test) { if (ngx_linux_rtsig_max) { /* * Check the current rt queue length to prevent * the new overflow. * * Learn the /proc/sys/kernel/rtsig-max value because * it can be changed sisnce the last checking. */ name[0] = CTL_KERN; name[1] = KERN_RTSIGMAX; len = sizeof(rtsig_max); if (sysctl(name, sizeof(name), &rtsig_max, &len, NULL, 0) == -1) { ngx_log_error(NGX_LOG_ALERT, cycle->log, errno, "sysctl(KERN_RTSIGMAX) failed"); return NGX_ERROR; } name[0] = CTL_KERN; name[1] = KERN_RTSIGNR; len = sizeof(rtsig_nr); if (sysctl(name, sizeof(name), &rtsig_nr, &len, NULL, 0) == -1) { ngx_log_error(NGX_LOG_ALERT, cycle->log, errno, "sysctl(KERN_RTSIGNR) failed"); return NGX_ERROR; } /* * drain the rt signal queue if the /proc/sys/kernel/rtsig-nr * is bigger than * /proc/sys/kernel/rtsig-max / rtsig_overflow_threshold */ if (rtsig_max / rtscf->overflow_threshold < rtsig_nr) { ngx_log_debug2(NGX_LOG_DEBUG_EVENT, cycle->log, 0, "rtsig queue state: %d/%d", rtsig_nr, rtsig_max); while (ngx_rtsig_process_events(cycle) == NGX_OK) { /* void */ } } } else { /* * Linux has not KERN_RTSIGMAX since 2.6.6-mm2 * so drain the rt signal queue unconditionally */ while (ngx_rtsig_process_events(cycle) == NGX_OK) { /* void */ } } tested = 0; } } if (ngx_posted_events) { if (ngx_threaded) { ngx_wakeup_worker_thread(cycle); } else { ngx_event_process_posted(cycle); } } ngx_log_error(NGX_LOG_INFO, cycle->log, 0, "rt signal queue overflow recovered"); overflow = 0; ngx_event_actions.process_events = ngx_rtsig_process_events; return NGX_OK; } static void *ngx_rtsig_create_conf(ngx_cycle_t *cycle) { ngx_rtsig_conf_t *rtscf; ngx_test_null(rtscf, ngx_palloc(cycle->pool, sizeof(ngx_rtsig_conf_t)), NGX_CONF_ERROR); rtscf->signo = NGX_CONF_UNSET; rtscf->overflow_events = NGX_CONF_UNSET; rtscf->overflow_test = NGX_CONF_UNSET; rtscf->overflow_threshold = NGX_CONF_UNSET; return rtscf; } static char *ngx_rtsig_init_conf(ngx_cycle_t *cycle, void *conf) { ngx_rtsig_conf_t *rtscf = conf; /* LinuxThreads use the first 3 RT signals */ ngx_conf_init_value(rtscf->signo, SIGRTMIN + 10); ngx_conf_init_value(rtscf->overflow_events, 16); ngx_conf_init_value(rtscf->overflow_test, 32); ngx_conf_init_value(rtscf->overflow_threshold, 10); return NGX_CONF_OK; } static char *ngx_check_ngx_overflow_threshold_bounds(ngx_conf_t *cf, void *post, void *data) { if (ngx_linux_rtsig_max) { return ngx_conf_check_num_bounds(cf, post, data); } ngx_conf_log_error(NGX_LOG_WARN, cf, 0, "\"rtsig_overflow_threshold\" is not supported " "since Linux 2.6.6-mm2, ignored"); return NGX_CONF_OK; }