/* * Copyright (C) Igor Sysoev */ #include #include /* * The threads implementation uses the rfork(RFPROC|RFTHREAD|RFMEM) syscall * to create threads. All threads use the stacks of the same size mmap()ed * below the main stack. Thus the current thread id is determinated via * the stack pointer value. * * The mutex implementation uses the ngx_atomic_cmp_set() operation * to acquire a mutex and the SysV semaphore to wait on a mutex and to wake up * the waiting threads. The light mutex does not use semaphore, so after * spinning in the lock the thread calls sched_yield(). However the light * mutecies are intended to be used with the "trylock" operation only. * The SysV semop() is a cheap syscall, particularly if it has little sembuf's * and does not use SEM_UNDO. * * The condition variable implementation uses the signal #64. * The signal handler is SIG_IGN so the kill() is a cheap syscall. * The thread waits a signal in kevent(). The use of the EVFILT_SIGNAL * is safe since FreeBSD 4.10-STABLE. * * This threads implementation currently works on i386 (486+) and amd64 * platforms only. */ char *ngx_freebsd_kern_usrstack; size_t ngx_thread_stack_size; static size_t rz_size; static size_t usable_stack_size; static char *last_stack; static ngx_uint_t nthreads; static ngx_uint_t max_threads; static ngx_uint_t nkeys; static ngx_tid_t *tids; /* the threads tids array */ void **ngx_tls; /* the threads tls's array */ /* the thread-safe libc errno */ static int errno0; /* the main thread's errno */ static int *errnos; /* the threads errno's array */ int * __error() { int tid; tid = ngx_gettid(); return tid ? &errnos[tid - 1] : &errno0; } /* * __isthreaded enables the spinlocks in some libc functions, i.e. in malloc() * and some other places. Nevertheless we protect our malloc()/free() calls * by own mutex that is more efficient than the spinlock. * * _spinlock() is a weak referenced stub in src/lib/libc/gen/_spinlock_stub.c * that does nothing. */ extern int __isthreaded; void _spinlock(ngx_atomic_t *lock) { ngx_int_t tries; tries = 0; for ( ;; ) { if (*lock) { if (ngx_ncpu > 1 && tries++ < 1000) { continue; } sched_yield(); tries = 0; } else { if (ngx_atomic_cmp_set(lock, 0, 1)) { return; } } } } /* * Before FreeBSD 5.1 _spinunlock() is a simple #define in * src/lib/libc/include/spinlock.h that zeroes lock. * * Since FreeBSD 5.1 _spinunlock() is a weak referenced stub in * src/lib/libc/gen/_spinlock_stub.c that does nothing. */ #ifndef _spinunlock void _spinunlock(ngx_atomic_t *lock) { *lock = 0; } #endif ngx_err_t ngx_create_thread(ngx_tid_t *tid, ngx_thread_value_t (*func)(void *arg), void *arg, ngx_log_t *log) { ngx_pid_t id; ngx_err_t err; char *stack, *stack_top; if (nthreads >= max_threads) { ngx_log_error(NGX_LOG_CRIT, log, 0, "no more than %ui threads can be created", max_threads); return NGX_ERROR; } last_stack -= ngx_thread_stack_size; stack = mmap(last_stack, usable_stack_size, PROT_READ|PROT_WRITE, MAP_STACK, -1, 0); if (stack == MAP_FAILED) { ngx_log_error(NGX_LOG_ALERT, log, ngx_errno, "mmap(%p:%uz, MAP_STACK) thread stack failed", last_stack, usable_stack_size); return NGX_ERROR; } if (stack != last_stack) { ngx_log_error(NGX_LOG_ALERT, log, 0, "stack %p address was changed to %p", last_stack, stack); return NGX_ERROR; } stack_top = stack + usable_stack_size; ngx_log_debug2(NGX_LOG_DEBUG_CORE, log, 0, "thread stack: %p-%p", stack, stack_top); ngx_set_errno(0); id = rfork_thread(RFPROC|RFTHREAD|RFMEM, stack_top, (ngx_rfork_thread_func_pt) func, arg); err = ngx_errno; if (id == -1) { ngx_log_error(NGX_LOG_ALERT, log, err, "rfork() failed"); } else { *tid = id; nthreads = (ngx_freebsd_kern_usrstack - stack_top) / ngx_thread_stack_size; tids[nthreads] = id; ngx_log_debug1(NGX_LOG_DEBUG_CORE, log, 0, "rfork()ed thread: %P", id); } return err; } ngx_int_t ngx_init_threads(int n, size_t size, ngx_cycle_t *cycle) { char *red_zone, *zone; size_t len; ngx_int_t i; struct sigaction sa; max_threads = n + 1; for (i = 0; i < n; i++) { ngx_memzero(&sa, sizeof(struct sigaction)); sa.sa_handler = SIG_IGN; sigemptyset(&sa.sa_mask); if (sigaction(NGX_CV_SIGNAL, &sa, NULL) == -1) { ngx_log_error(NGX_LOG_ALERT, cycle->log, ngx_errno, "sigaction(%d, SIG_IGN) failed", NGX_CV_SIGNAL); return NGX_ERROR; } } len = sizeof(ngx_freebsd_kern_usrstack); if (sysctlbyname("kern.usrstack", &ngx_freebsd_kern_usrstack, &len, NULL, 0) == -1) { ngx_log_error(NGX_LOG_ALERT, cycle->log, ngx_errno, "sysctlbyname(kern.usrstack) failed"); return NGX_ERROR; } /* the main thread stack red zone */ rz_size = ngx_pagesize; red_zone = ngx_freebsd_kern_usrstack - (size + rz_size); ngx_log_debug2(NGX_LOG_DEBUG_CORE, cycle->log, 0, "usrstack: %p red zone: %p", ngx_freebsd_kern_usrstack, red_zone); zone = mmap(red_zone, rz_size, PROT_NONE, MAP_ANON, -1, 0); if (zone == MAP_FAILED) { ngx_log_error(NGX_LOG_ALERT, cycle->log, ngx_errno, "mmap(%p:%uz, PROT_NONE, MAP_ANON) red zone failed", red_zone, rz_size); return NGX_ERROR; } if (zone != red_zone) { ngx_log_error(NGX_LOG_ALERT, cycle->log, 0, "red zone %p address was changed to %p", red_zone, zone); return NGX_ERROR; } /* create the thread errno' array */ errnos = ngx_calloc(n * sizeof(int), cycle->log); if (errnos == NULL) { return NGX_ERROR; } /* create the thread tids array */ tids = ngx_calloc((n + 1) * sizeof(ngx_tid_t), cycle->log); if (tids == NULL) { return NGX_ERROR; } tids[0] = ngx_pid; /* create the thread tls' array */ ngx_tls = ngx_calloc(NGX_THREAD_KEYS_MAX * (n + 1) * sizeof(void *), cycle->log); if (ngx_tls == NULL) { return NGX_ERROR; } nthreads = 1; last_stack = zone + rz_size; usable_stack_size = size; ngx_thread_stack_size = size + rz_size; /* allow the spinlock in libc malloc() */ __isthreaded = 1; ngx_threaded = 1; return NGX_OK; } ngx_tid_t ngx_thread_self() { ngx_int_t tid; tid = ngx_gettid(); if (tids == NULL) { return ngx_pid; } return tids[tid]; } ngx_err_t ngx_thread_key_create(ngx_tls_key_t *key) { if (nkeys >= NGX_THREAD_KEYS_MAX) { return NGX_ENOMEM; } *key = nkeys++; return 0; } ngx_err_t ngx_thread_set_tls(ngx_tls_key_t key, void *value) { if (key >= NGX_THREAD_KEYS_MAX) { return NGX_EINVAL; } ngx_tls[key * NGX_THREAD_KEYS_MAX + ngx_gettid()] = value; return 0; } ngx_mutex_t * ngx_mutex_init(ngx_log_t *log, ngx_uint_t flags) { ngx_mutex_t *m; union semun op; m = ngx_alloc(sizeof(ngx_mutex_t), log); if (m == NULL) { return NULL; } m->lock = 0; m->log = log; if (flags & NGX_MUTEX_LIGHT) { m->semid = -1; return m; } m->semid = semget(IPC_PRIVATE, 1, SEM_R|SEM_A); if (m->semid == -1) { ngx_log_error(NGX_LOG_ALERT, log, ngx_errno, "semget() failed"); return NULL; } op.val = 0; if (semctl(m->semid, 0, SETVAL, op) == -1) { ngx_log_error(NGX_LOG_ALERT, log, ngx_errno, "semctl(SETVAL) failed"); if (semctl(m->semid, 0, IPC_RMID) == -1) { ngx_log_error(NGX_LOG_ALERT, log, ngx_errno, "semctl(IPC_RMID) failed"); } return NULL; } return m; } void ngx_mutex_destroy(ngx_mutex_t *m) { if (semctl(m->semid, 0, IPC_RMID) == -1) { ngx_log_error(NGX_LOG_ALERT, m->log, ngx_errno, "semctl(IPC_RMID) failed"); } ngx_free((void *) m); } ngx_int_t ngx_mutex_dolock(ngx_mutex_t *m, ngx_int_t try) { uint32_t lock, old; ngx_uint_t tries; struct sembuf op; if (!ngx_threaded) { return NGX_OK; } #if (NGX_DEBUG) if (try) { ngx_log_debug2(NGX_LOG_DEBUG_MUTEX, m->log, 0, "try lock mutex %p lock:%XD", m, m->lock); } else { ngx_log_debug2(NGX_LOG_DEBUG_MUTEX, m->log, 0, "lock mutex %p lock:%XD", m, m->lock); } #endif old = m->lock; tries = 0; for ( ;; ) { if (old & NGX_MUTEX_LOCK_BUSY) { if (try) { return NGX_AGAIN; } if (ngx_ncpu > 1 && tries++ < 1000) { /* the spinlock is used only on the SMP system */ old = m->lock; continue; } if (m->semid == -1) { sched_yield(); tries = 0; old = m->lock; continue; } ngx_log_debug2(NGX_LOG_DEBUG_MUTEX, m->log, 0, "mutex %p lock:%XD", m, m->lock); /* * The mutex is locked so we increase a number * of the threads that are waiting on the mutex */ lock = old + 1; if ((lock & ~NGX_MUTEX_LOCK_BUSY) > nthreads) { ngx_log_error(NGX_LOG_ALERT, m->log, ngx_errno, "%D threads wait for mutex %p, " "while only %ui threads are available", lock & ~NGX_MUTEX_LOCK_BUSY, m, nthreads); ngx_abort(); } if (ngx_atomic_cmp_set(&m->lock, old, lock)) { ngx_log_debug2(NGX_LOG_DEBUG_MUTEX, m->log, 0, "wait mutex %p lock:%XD", m, m->lock); /* * The number of the waiting threads has been increased * and we would wait on the SysV semaphore. * A semaphore should wake up us more efficiently than * a simple sched_yield() or usleep(). */ op.sem_num = 0; op.sem_op = -1; op.sem_flg = 0; if (semop(m->semid, &op, 1) == -1) { ngx_log_error(NGX_LOG_ALERT, m->log, ngx_errno, "semop() failed while waiting on mutex %p", m); ngx_abort(); } ngx_log_debug2(NGX_LOG_DEBUG_MUTEX, m->log, 0, "mutex waked up %p lock:%XD", m, m->lock); tries = 0; old = m->lock; continue; } old = m->lock; } else { lock = old | NGX_MUTEX_LOCK_BUSY; if (ngx_atomic_cmp_set(&m->lock, old, lock)) { /* we locked the mutex */ break; } old = m->lock; } if (tries++ > 1000) { ngx_log_debug1(NGX_LOG_DEBUG_MUTEX, m->log, 0, "mutex %p is contested", m); /* the mutex is probably contested so we are giving up now */ sched_yield(); tries = 0; old = m->lock; } } ngx_log_debug2(NGX_LOG_DEBUG_MUTEX, m->log, 0, "mutex %p is locked, lock:%XD", m, m->lock); return NGX_OK; } void ngx_mutex_unlock(ngx_mutex_t *m) { uint32_t lock, old; struct sembuf op; if (!ngx_threaded) { return; } old = m->lock; if (!(old & NGX_MUTEX_LOCK_BUSY)) { ngx_log_error(NGX_LOG_ALERT, m->log, 0, "trying to unlock the free mutex %p", m); ngx_abort(); } /* free the mutex */ #if 0 ngx_log_debug2(NGX_LOG_DEBUG_MUTEX, m->log, 0, "unlock mutex %p lock:%XD", m, old); #endif for ( ;; ) { lock = old & ~NGX_MUTEX_LOCK_BUSY; if (ngx_atomic_cmp_set(&m->lock, old, lock)) { break; } old = m->lock; } if (m->semid == -1) { ngx_log_debug1(NGX_LOG_DEBUG_MUTEX, m->log, 0, "mutex %p is unlocked", m); return; } /* check whether we need to wake up a waiting thread */ old = m->lock; for ( ;; ) { if (old & NGX_MUTEX_LOCK_BUSY) { /* the mutex is just locked by another thread */ break; } if (old == 0) { break; } /* there are the waiting threads */ lock = old - 1; if (ngx_atomic_cmp_set(&m->lock, old, lock)) { /* wake up the thread that waits on semaphore */ ngx_log_debug1(NGX_LOG_DEBUG_MUTEX, m->log, 0, "wake up mutex %p", m); op.sem_num = 0; op.sem_op = 1; op.sem_flg = 0; if (semop(m->semid, &op, 1) == -1) { ngx_log_error(NGX_LOG_ALERT, m->log, ngx_errno, "semop() failed while waking up on mutex %p", m); ngx_abort(); } break; } old = m->lock; } ngx_log_debug1(NGX_LOG_DEBUG_MUTEX, m->log, 0, "mutex %p is unlocked", m); return; } ngx_cond_t * ngx_cond_init(ngx_log_t *log) { ngx_cond_t *cv; cv = ngx_alloc(sizeof(ngx_cond_t), log); if (cv == NULL) { return NULL; } cv->signo = NGX_CV_SIGNAL; cv->tid = -1; cv->log = log; cv->kq = -1; return cv; } void ngx_cond_destroy(ngx_cond_t *cv) { if (close(cv->kq) == -1) { ngx_log_error(NGX_LOG_ALERT, cv->log, ngx_errno, "kqueue close() failed"); } ngx_free(cv); } ngx_int_t ngx_cond_wait(ngx_cond_t *cv, ngx_mutex_t *m) { int n; ngx_err_t err; struct kevent kev; struct timespec ts; if (cv->kq == -1) { /* * We have to add the EVFILT_SIGNAL filter in the rfork()ed thread. * Otherwise the thread would not get a signal event. * * However, we have not to open the kqueue in the thread, * it is simply handy do it together. */ cv->kq = kqueue(); if (cv->kq == -1) { ngx_log_error(NGX_LOG_ALERT, cv->log, ngx_errno, "kqueue() failed"); return NGX_ERROR; } ngx_log_debug2(NGX_LOG_DEBUG_CORE, cv->log, 0, "cv kq:%d signo:%d", cv->kq, cv->signo); kev.ident = cv->signo; kev.filter = EVFILT_SIGNAL; kev.flags = EV_ADD; kev.fflags = 0; kev.data = 0; kev.udata = NULL; ts.tv_sec = 0; ts.tv_nsec = 0; if (kevent(cv->kq, &kev, 1, NULL, 0, &ts) == -1) { ngx_log_error(NGX_LOG_ALERT, cv->log, ngx_errno, "kevent() failed"); return NGX_ERROR; } cv->tid = ngx_thread_self(); } ngx_mutex_unlock(m); ngx_log_debug3(NGX_LOG_DEBUG_CORE, cv->log, 0, "cv %p wait, kq:%d, signo:%d", cv, cv->kq, cv->signo); for ( ;; ) { n = kevent(cv->kq, NULL, 0, &kev, 1, NULL); ngx_log_debug2(NGX_LOG_DEBUG_CORE, cv->log, 0, "cv %p kevent: %d", cv, n); if (n == -1) { err = ngx_errno; ngx_log_error((err == NGX_EINTR) ? NGX_LOG_INFO : NGX_LOG_ALERT, cv->log, ngx_errno, "kevent() failed while waiting condition variable %p", cv); if (err == NGX_EINTR) { break; } return NGX_ERROR; } if (n == 0) { ngx_log_error(NGX_LOG_ALERT, cv->log, 0, "kevent() returned no events " "while waiting condition variable %p", cv); continue; } if (kev.filter != EVFILT_SIGNAL) { ngx_log_error(NGX_LOG_ALERT, cv->log, 0, "kevent() returned unexpected events: %d " "while waiting condition variable %p", kev.filter, cv); continue; } if (kev.ident != (uintptr_t) cv->signo) { ngx_log_error(NGX_LOG_ALERT, cv->log, 0, "kevent() returned unexpected signal: %d ", "while waiting condition variable %p", kev.ident, cv); continue; } break; } ngx_log_debug1(NGX_LOG_DEBUG_CORE, cv->log, 0, "cv %p is waked up", cv); ngx_mutex_lock(m); return NGX_OK; } ngx_int_t ngx_cond_signal(ngx_cond_t *cv) { ngx_err_t err; ngx_log_debug3(NGX_LOG_DEBUG_CORE, cv->log, 0, "cv %p to signal %P %d", cv, cv->tid, cv->signo); if (cv->tid == -1) { return NGX_OK; } if (kill(cv->tid, cv->signo) == -1) { err = ngx_errno; ngx_log_error(NGX_LOG_ALERT, cv->log, err, "kill() failed while signaling condition variable %p", cv); if (err == NGX_ESRCH) { cv->tid = -1; } return NGX_ERROR; } ngx_log_debug1(NGX_LOG_DEBUG_CORE, cv->log, 0, "cv %p is signaled", cv); return NGX_OK; }