Welcome to mirror list, hosted at ThFree Co, Russian Federation.

large-spaces.cc « heap « src « v8 « deps - github.com/nodejs/node.git - Unnamed repository; edit this file 'description' to name the repository.
summaryrefslogtreecommitdiff
blob: 403639194976002bb4397d97f897a8832e5d4f45 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
// Copyright 2020 the V8 project authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.

#include "src/heap/large-spaces.h"

#include "src/execution/isolate.h"
#include "src/heap/combined-heap.h"
#include "src/heap/incremental-marking.h"
#include "src/heap/list.h"
#include "src/heap/marking.h"
#include "src/heap/memory-chunk-inl.h"
#include "src/heap/remembered-set-inl.h"
#include "src/heap/slot-set.h"
#include "src/heap/spaces-inl.h"
#include "src/logging/log.h"
#include "src/objects/objects-inl.h"
#include "src/sanitizer/msan.h"
#include "src/utils/ostreams.h"

namespace v8 {
namespace internal {

// This check is here to ensure that the lower 32 bits of any real heap object
// can't overlap with the lower 32 bits of cleared weak reference value and
// therefore it's enough to compare only the lower 32 bits of a MaybeObject in
// order to figure out if it's a cleared weak reference or not.
STATIC_ASSERT(kClearedWeakHeapObjectLower32 < LargePage::kHeaderSize);

LargePage* LargePage::Initialize(Heap* heap, MemoryChunk* chunk,
                                 Executability executable) {
  if (executable && chunk->size() > LargePage::kMaxCodePageSize) {
    STATIC_ASSERT(LargePage::kMaxCodePageSize <= TypedSlotSet::kMaxOffset);
    FATAL("Code page is too large.");
  }

  MSAN_ALLOCATED_UNINITIALIZED_MEMORY(chunk->area_start(), chunk->area_size());

  LargePage* page = static_cast<LargePage*>(chunk);
  page->SetFlag(MemoryChunk::LARGE_PAGE);
  page->list_node().Initialize();
  return page;
}

size_t LargeObjectSpace::Available() {
  // We return zero here since we cannot take advantage of already allocated
  // large object memory.
  return 0;
}

Address LargePage::GetAddressToShrink(Address object_address,
                                      size_t object_size) {
  if (executable() == EXECUTABLE) {
    return 0;
  }
  size_t used_size = ::RoundUp((object_address - address()) + object_size,
                               MemoryAllocator::GetCommitPageSize());
  if (used_size < CommittedPhysicalMemory()) {
    return address() + used_size;
  }
  return 0;
}

void LargePage::ClearOutOfLiveRangeSlots(Address free_start) {
  DCHECK_NULL(this->sweeping_slot_set());
  RememberedSet<OLD_TO_NEW>::RemoveRange(this, free_start, area_end(),
                                         SlotSet::FREE_EMPTY_BUCKETS);
  RememberedSet<OLD_TO_OLD>::RemoveRange(this, free_start, area_end(),
                                         SlotSet::FREE_EMPTY_BUCKETS);
  RememberedSet<OLD_TO_NEW>::RemoveRangeTyped(this, free_start, area_end());
  RememberedSet<OLD_TO_OLD>::RemoveRangeTyped(this, free_start, area_end());
}

// -----------------------------------------------------------------------------
// LargeObjectSpaceObjectIterator

LargeObjectSpaceObjectIterator::LargeObjectSpaceObjectIterator(
    LargeObjectSpace* space) {
  current_ = space->first_page();
}

HeapObject LargeObjectSpaceObjectIterator::Next() {
  if (current_ == nullptr) return HeapObject();

  HeapObject object = current_->GetObject();
  current_ = current_->next_page();
  return object;
}

// -----------------------------------------------------------------------------
// OldLargeObjectSpace

LargeObjectSpace::LargeObjectSpace(Heap* heap, AllocationSpace id)
    : Space(heap, id, new NoFreeList()),
      size_(0),
      page_count_(0),
      objects_size_(0) {}

void LargeObjectSpace::TearDown() {
  while (!memory_chunk_list_.Empty()) {
    LargePage* page = first_page();
    LOG(heap()->isolate(),
        DeleteEvent("LargeObjectChunk",
                    reinterpret_cast<void*>(page->address())));
    memory_chunk_list_.Remove(page);
    heap()->memory_allocator()->Free<MemoryAllocator::kFull>(page);
  }
}

AllocationResult OldLargeObjectSpace::AllocateRaw(int object_size) {
  return AllocateRaw(object_size, NOT_EXECUTABLE);
}

AllocationResult OldLargeObjectSpace::AllocateRaw(int object_size,
                                                  Executability executable) {
  // Check if we want to force a GC before growing the old space further.
  // If so, fail the allocation.
  if (!heap()->CanExpandOldGeneration(object_size) ||
      !heap()->ShouldExpandOldGenerationOnSlowAllocation()) {
    return AllocationResult::Retry(identity());
  }

  LargePage* page = AllocateLargePage(object_size, executable);
  if (page == nullptr) return AllocationResult::Retry(identity());
  page->SetOldGenerationPageFlags(heap()->incremental_marking()->IsMarking());
  HeapObject object = page->GetObject();
  heap()->StartIncrementalMarkingIfAllocationLimitIsReached(
      heap()->GCFlagsForIncrementalMarking(),
      kGCCallbackScheduleIdleGarbageCollection);
  if (heap()->incremental_marking()->black_allocation()) {
    heap()->incremental_marking()->marking_state()->WhiteToBlack(object);
  }
  DCHECK_IMPLIES(
      heap()->incremental_marking()->black_allocation(),
      heap()->incremental_marking()->marking_state()->IsBlack(object));
  page->InitializationMemoryFence();
  heap()->NotifyOldGenerationExpansion();
  AllocationStep(object_size, object.address(), object_size);
  return object;
}

LargePage* LargeObjectSpace::AllocateLargePage(int object_size,
                                               Executability executable) {
  LargePage* page = heap()->memory_allocator()->AllocateLargePage(
      object_size, this, executable);
  if (page == nullptr) return nullptr;
  DCHECK_GE(page->area_size(), static_cast<size_t>(object_size));

  AddPage(page, object_size);

  HeapObject object = page->GetObject();

  heap()->CreateFillerObjectAt(object.address(), object_size,
                               ClearRecordedSlots::kNo);
  return page;
}

size_t LargeObjectSpace::CommittedPhysicalMemory() {
  // On a platform that provides lazy committing of memory, we over-account
  // the actually committed memory. There is no easy way right now to support
  // precise accounting of committed memory in large object space.
  return CommittedMemory();
}

LargePage* CodeLargeObjectSpace::FindPage(Address a) {
  const Address key = MemoryChunk::FromAddress(a)->address();
  auto it = chunk_map_.find(key);
  if (it != chunk_map_.end()) {
    LargePage* page = it->second;
    CHECK(page->Contains(a));
    return page;
  }
  return nullptr;
}

void OldLargeObjectSpace::ClearMarkingStateOfLiveObjects() {
  IncrementalMarking::NonAtomicMarkingState* marking_state =
      heap()->incremental_marking()->non_atomic_marking_state();
  LargeObjectSpaceObjectIterator it(this);
  for (HeapObject obj = it.Next(); !obj.is_null(); obj = it.Next()) {
    if (marking_state->IsBlackOrGrey(obj)) {
      Marking::MarkWhite(marking_state->MarkBitFrom(obj));
      MemoryChunk* chunk = MemoryChunk::FromHeapObject(obj);
      RememberedSet<OLD_TO_NEW>::FreeEmptyBuckets(chunk);
      chunk->ResetProgressBar();
      marking_state->SetLiveBytes(chunk, 0);
    }
    DCHECK(marking_state->IsWhite(obj));
  }
}

void CodeLargeObjectSpace::InsertChunkMapEntries(LargePage* page) {
  for (Address current = reinterpret_cast<Address>(page);
       current < reinterpret_cast<Address>(page) + page->size();
       current += MemoryChunk::kPageSize) {
    chunk_map_[current] = page;
  }
}

void CodeLargeObjectSpace::RemoveChunkMapEntries(LargePage* page) {
  for (Address current = page->address();
       current < reinterpret_cast<Address>(page) + page->size();
       current += MemoryChunk::kPageSize) {
    chunk_map_.erase(current);
  }
}

void OldLargeObjectSpace::PromoteNewLargeObject(LargePage* page) {
  DCHECK_EQ(page->owner_identity(), NEW_LO_SPACE);
  DCHECK(page->IsLargePage());
  DCHECK(page->IsFlagSet(MemoryChunk::FROM_PAGE));
  DCHECK(!page->IsFlagSet(MemoryChunk::TO_PAGE));
  size_t object_size = static_cast<size_t>(page->GetObject().Size());
  static_cast<LargeObjectSpace*>(page->owner())->RemovePage(page, object_size);
  page->ClearFlag(MemoryChunk::FROM_PAGE);
  AddPage(page, object_size);
}

void LargeObjectSpace::AddPage(LargePage* page, size_t object_size) {
  size_ += static_cast<int>(page->size());
  AccountCommitted(page->size());
  objects_size_ += object_size;
  page_count_++;
  memory_chunk_list_.PushBack(page);
  page->set_owner(this);
  page->SetOldGenerationPageFlags(heap()->incremental_marking()->IsMarking());
}

void LargeObjectSpace::RemovePage(LargePage* page, size_t object_size) {
  size_ -= static_cast<int>(page->size());
  AccountUncommitted(page->size());
  objects_size_ -= object_size;
  page_count_--;
  memory_chunk_list_.Remove(page);
  page->set_owner(nullptr);
}

void LargeObjectSpace::FreeUnmarkedObjects() {
  LargePage* current = first_page();
  IncrementalMarking::NonAtomicMarkingState* marking_state =
      heap()->incremental_marking()->non_atomic_marking_state();
  // Right-trimming does not update the objects_size_ counter. We are lazily
  // updating it after every GC.
  size_t surviving_object_size = 0;
  while (current) {
    LargePage* next_current = current->next_page();
    HeapObject object = current->GetObject();
    DCHECK(!marking_state->IsGrey(object));
    size_t size = static_cast<size_t>(object.Size());
    if (marking_state->IsBlack(object)) {
      Address free_start;
      surviving_object_size += size;
      if ((free_start = current->GetAddressToShrink(object.address(), size)) !=
          0) {
        DCHECK(!current->IsFlagSet(Page::IS_EXECUTABLE));
        current->ClearOutOfLiveRangeSlots(free_start);
        const size_t bytes_to_free =
            current->size() - (free_start - current->address());
        heap()->memory_allocator()->PartialFreeMemory(
            current, free_start, bytes_to_free,
            current->area_start() + object.Size());
        size_ -= bytes_to_free;
        AccountUncommitted(bytes_to_free);
      }
    } else {
      RemovePage(current, size);
      heap()->memory_allocator()->Free<MemoryAllocator::kPreFreeAndQueue>(
          current);
    }
    current = next_current;
  }
  objects_size_ = surviving_object_size;
}

bool LargeObjectSpace::Contains(HeapObject object) {
  MemoryChunk* chunk = MemoryChunk::FromHeapObject(object);

  bool owned = (chunk->owner() == this);

  SLOW_DCHECK(!owned || ContainsSlow(object.address()));

  return owned;
}

bool LargeObjectSpace::ContainsSlow(Address addr) {
  for (LargePage* page : *this) {
    if (page->Contains(addr)) return true;
  }
  return false;
}

std::unique_ptr<ObjectIterator> LargeObjectSpace::GetObjectIterator(
    Heap* heap) {
  return std::unique_ptr<ObjectIterator>(
      new LargeObjectSpaceObjectIterator(this));
}

#ifdef VERIFY_HEAP
// We do not assume that the large object iterator works, because it depends
// on the invariants we are checking during verification.
void LargeObjectSpace::Verify(Isolate* isolate) {
  size_t external_backing_store_bytes[kNumTypes];

  for (int i = 0; i < kNumTypes; i++) {
    external_backing_store_bytes[static_cast<ExternalBackingStoreType>(i)] = 0;
  }

  for (LargePage* chunk = first_page(); chunk != nullptr;
       chunk = chunk->next_page()) {
    // Each chunk contains an object that starts at the large object page's
    // object area start.
    HeapObject object = chunk->GetObject();
    Page* page = Page::FromHeapObject(object);
    CHECK(object.address() == page->area_start());

    // The first word should be a map, and we expect all map pointers to be
    // in map space or read-only space.
    Map map = object.map();
    CHECK(map.IsMap());
    CHECK(ReadOnlyHeap::Contains(map) || heap()->map_space()->Contains(map));

    // We have only the following types in the large object space:
    if (!(object.IsAbstractCode() || object.IsSeqString() ||
          object.IsExternalString() || object.IsThinString() ||
          object.IsFixedArray() || object.IsFixedDoubleArray() ||
          object.IsWeakFixedArray() || object.IsWeakArrayList() ||
          object.IsPropertyArray() || object.IsByteArray() ||
          object.IsFeedbackVector() || object.IsBigInt() ||
          object.IsFreeSpace() || object.IsFeedbackMetadata() ||
          object.IsContext() || object.IsUncompiledDataWithoutPreparseData() ||
          object.IsPreparseData()) &&
        !FLAG_young_generation_large_objects) {
      FATAL("Found invalid Object (instance_type=%i) in large object space.",
            object.map().instance_type());
    }

    // The object itself should look OK.
    object.ObjectVerify(isolate);

    if (!FLAG_verify_heap_skip_remembered_set) {
      heap()->VerifyRememberedSetFor(object);
    }

    // Byte arrays and strings don't have interior pointers.
    if (object.IsAbstractCode()) {
      VerifyPointersVisitor code_visitor(heap());
      object.IterateBody(map, object.Size(), &code_visitor);
    } else if (object.IsFixedArray()) {
      FixedArray array = FixedArray::cast(object);
      for (int j = 0; j < array.length(); j++) {
        Object element = array.get(j);
        if (element.IsHeapObject()) {
          HeapObject element_object = HeapObject::cast(element);
          CHECK(IsValidHeapObject(heap(), element_object));
          CHECK(element_object.map().IsMap());
        }
      }
    } else if (object.IsPropertyArray()) {
      PropertyArray array = PropertyArray::cast(object);
      for (int j = 0; j < array.length(); j++) {
        Object property = array.get(j);
        if (property.IsHeapObject()) {
          HeapObject property_object = HeapObject::cast(property);
          CHECK(heap()->Contains(property_object));
          CHECK(property_object.map().IsMap());
        }
      }
    }
    for (int i = 0; i < kNumTypes; i++) {
      ExternalBackingStoreType t = static_cast<ExternalBackingStoreType>(i);
      external_backing_store_bytes[t] += chunk->ExternalBackingStoreBytes(t);
    }
  }
  for (int i = 0; i < kNumTypes; i++) {
    ExternalBackingStoreType t = static_cast<ExternalBackingStoreType>(i);
    CHECK_EQ(external_backing_store_bytes[t], ExternalBackingStoreBytes(t));
  }
}
#endif

#ifdef DEBUG
void LargeObjectSpace::Print() {
  StdoutStream os;
  LargeObjectSpaceObjectIterator it(this);
  for (HeapObject obj = it.Next(); !obj.is_null(); obj = it.Next()) {
    obj.Print(os);
  }
}
#endif  // DEBUG

OldLargeObjectSpace::OldLargeObjectSpace(Heap* heap)
    : LargeObjectSpace(heap, LO_SPACE) {}

OldLargeObjectSpace::OldLargeObjectSpace(Heap* heap, AllocationSpace id)
    : LargeObjectSpace(heap, id) {}

void OldLargeObjectSpace::MergeOffThreadSpace(
    OffThreadLargeObjectSpace* other) {
  DCHECK(identity() == other->identity());

  while (!other->memory_chunk_list().Empty()) {
    LargePage* page = other->first_page();
    HeapObject object = page->GetObject();
    int size = object.Size();
    other->RemovePage(page, size);
    AddPage(page, size);

    // TODO(leszeks): Here we should AllocationStep, see the TODO in
    // PagedSpace::MergeOffThreadSpace.

    if (heap()->incremental_marking()->black_allocation()) {
      heap()->incremental_marking()->marking_state()->WhiteToBlack(object);
    }
    DCHECK_IMPLIES(
        heap()->incremental_marking()->black_allocation(),
        heap()->incremental_marking()->marking_state()->IsBlack(object));
  }
}

NewLargeObjectSpace::NewLargeObjectSpace(Heap* heap, size_t capacity)
    : LargeObjectSpace(heap, NEW_LO_SPACE),
      pending_object_(0),
      capacity_(capacity) {}

AllocationResult NewLargeObjectSpace::AllocateRaw(int object_size) {
  // Do not allocate more objects if promoting the existing object would exceed
  // the old generation capacity.
  if (!heap()->CanExpandOldGeneration(SizeOfObjects())) {
    return AllocationResult::Retry(identity());
  }

  // Allocation for the first object must succeed independent from the capacity.
  if (SizeOfObjects() > 0 && static_cast<size_t>(object_size) > Available()) {
    return AllocationResult::Retry(identity());
  }

  LargePage* page = AllocateLargePage(object_size, NOT_EXECUTABLE);
  if (page == nullptr) return AllocationResult::Retry(identity());

  // The size of the first object may exceed the capacity.
  capacity_ = Max(capacity_, SizeOfObjects());

  HeapObject result = page->GetObject();
  page->SetYoungGenerationPageFlags(heap()->incremental_marking()->IsMarking());
  page->SetFlag(MemoryChunk::TO_PAGE);
  pending_object_.store(result.address(), std::memory_order_relaxed);
#ifdef ENABLE_MINOR_MC
  if (FLAG_minor_mc) {
    page->AllocateYoungGenerationBitmap();
    heap()
        ->minor_mark_compact_collector()
        ->non_atomic_marking_state()
        ->ClearLiveness(page);
  }
#endif  // ENABLE_MINOR_MC
  page->InitializationMemoryFence();
  DCHECK(page->IsLargePage());
  DCHECK_EQ(page->owner_identity(), NEW_LO_SPACE);
  AllocationStep(object_size, result.address(), object_size);
  return result;
}

size_t NewLargeObjectSpace::Available() { return capacity_ - SizeOfObjects(); }

void NewLargeObjectSpace::Flip() {
  for (LargePage* chunk = first_page(); chunk != nullptr;
       chunk = chunk->next_page()) {
    chunk->SetFlag(MemoryChunk::FROM_PAGE);
    chunk->ClearFlag(MemoryChunk::TO_PAGE);
  }
}

void NewLargeObjectSpace::FreeDeadObjects(
    const std::function<bool(HeapObject)>& is_dead) {
  bool is_marking = heap()->incremental_marking()->IsMarking();
  size_t surviving_object_size = 0;
  bool freed_pages = false;
  for (auto it = begin(); it != end();) {
    LargePage* page = *it;
    it++;
    HeapObject object = page->GetObject();
    size_t size = static_cast<size_t>(object.Size());
    if (is_dead(object)) {
      freed_pages = true;
      RemovePage(page, size);
      heap()->memory_allocator()->Free<MemoryAllocator::kPreFreeAndQueue>(page);
      if (FLAG_concurrent_marking && is_marking) {
        heap()->concurrent_marking()->ClearMemoryChunkData(page);
      }
    } else {
      surviving_object_size += size;
    }
  }
  // Right-trimming does not update the objects_size_ counter. We are lazily
  // updating it after every GC.
  objects_size_ = surviving_object_size;
  if (freed_pages) {
    heap()->memory_allocator()->unmapper()->FreeQueuedChunks();
  }
}

void NewLargeObjectSpace::SetCapacity(size_t capacity) {
  capacity_ = Max(capacity, SizeOfObjects());
}

CodeLargeObjectSpace::CodeLargeObjectSpace(Heap* heap)
    : OldLargeObjectSpace(heap, CODE_LO_SPACE),
      chunk_map_(kInitialChunkMapCapacity) {}

AllocationResult CodeLargeObjectSpace::AllocateRaw(int object_size) {
  return OldLargeObjectSpace::AllocateRaw(object_size, EXECUTABLE);
}

void CodeLargeObjectSpace::AddPage(LargePage* page, size_t object_size) {
  OldLargeObjectSpace::AddPage(page, object_size);
  InsertChunkMapEntries(page);
  heap()->isolate()->AddCodeMemoryChunk(page);
}

void CodeLargeObjectSpace::RemovePage(LargePage* page, size_t object_size) {
  RemoveChunkMapEntries(page);
  heap()->isolate()->RemoveCodeMemoryChunk(page);
  OldLargeObjectSpace::RemovePage(page, object_size);
}

OffThreadLargeObjectSpace::OffThreadLargeObjectSpace(Heap* heap)
    : LargeObjectSpace(heap, LO_SPACE) {
#ifdef V8_ENABLE_THIRD_PARTY_HEAP
  // OffThreadLargeObjectSpace doesn't work with third-party heap.
  UNREACHABLE();
#endif
}

AllocationResult OffThreadLargeObjectSpace::AllocateRaw(int object_size) {
  LargePage* page = AllocateLargePage(object_size, NOT_EXECUTABLE);
  if (page == nullptr) return AllocationResult::Retry(identity());

  return page->GetObject();
}

void OffThreadLargeObjectSpace::FreeUnmarkedObjects() {
  // We should never try to free objects in this space.
  UNREACHABLE();
}

}  // namespace internal
}  // namespace v8