Welcome to mirror list, hosted at ThFree Co, Russian Federation.

serializer.cc « snapshot « src « v8 « deps - github.com/nodejs/node.git - Unnamed repository; edit this file 'description' to name the repository.
summaryrefslogtreecommitdiff
blob: d443ff67a1e36fc6ce81cc6b1a163cb365461454 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
// Copyright 2016 the V8 project authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.

#include "src/snapshot/serializer.h"

#include "src/codegen/assembler-inl.h"
#include "src/heap/heap-inl.h"  // For Space::identity().
#include "src/heap/memory-chunk-inl.h"
#include "src/heap/read-only-heap.h"
#include "src/interpreter/interpreter.h"
#include "src/objects/code.h"
#include "src/objects/js-array-buffer-inl.h"
#include "src/objects/js-array-inl.h"
#include "src/objects/map.h"
#include "src/objects/slots-inl.h"
#include "src/objects/smi.h"

namespace v8 {
namespace internal {

Serializer::Serializer(Isolate* isolate, Snapshot::SerializerFlags flags)
    : isolate_(isolate),
      external_reference_encoder_(isolate),
      root_index_map_(isolate),
      flags_(flags),
      allocator_(this) {
#ifdef OBJECT_PRINT
  if (FLAG_serialization_statistics) {
    for (int space = 0; space < kNumberOfSpaces; ++space) {
      // Value-initialized to 0.
      instance_type_count_[space] = std::make_unique<int[]>(kInstanceTypes);
      instance_type_size_[space] = std::make_unique<size_t[]>(kInstanceTypes);
    }
  }
#endif  // OBJECT_PRINT
}

#ifdef OBJECT_PRINT
void Serializer::CountInstanceType(Map map, int size, SnapshotSpace space) {
  const int space_number = static_cast<int>(space);
  int instance_type = map.instance_type();
  instance_type_count_[space_number][instance_type]++;
  instance_type_size_[space_number][instance_type] += size;
}
#endif  // OBJECT_PRINT

void Serializer::OutputStatistics(const char* name) {
  if (!FLAG_serialization_statistics) return;

  PrintF("%s:\n", name);
  allocator()->OutputStatistics();

#ifdef OBJECT_PRINT
  PrintF("  Instance types (count and bytes):\n");
#define PRINT_INSTANCE_TYPE(Name)                                             \
  for (int space = 0; space < kNumberOfSpaces; ++space) {                     \
    if (instance_type_count_[space][Name]) {                                  \
      PrintF("%10d %10zu  %-10s %s\n", instance_type_count_[space][Name],     \
             instance_type_size_[space][Name],                                \
             Heap::GetSpaceName(static_cast<AllocationSpace>(space)), #Name); \
    }                                                                         \
  }
  INSTANCE_TYPE_LIST(PRINT_INSTANCE_TYPE)
#undef PRINT_INSTANCE_TYPE

  PrintF("\n");
#endif  // OBJECT_PRINT
}

void Serializer::SerializeDeferredObjects() {
  while (!deferred_objects_.empty()) {
    HeapObject obj = deferred_objects_.back();
    deferred_objects_.pop_back();
    ObjectSerializer obj_serializer(this, obj, &sink_);
    obj_serializer.SerializeDeferred();
  }
  sink_.Put(kSynchronize, "Finished with deferred objects");
}

bool Serializer::MustBeDeferred(HeapObject object) { return false; }

void Serializer::VisitRootPointers(Root root, const char* description,
                                   FullObjectSlot start, FullObjectSlot end) {
  for (FullObjectSlot current = start; current < end; ++current) {
    SerializeRootObject(current);
  }
}

void Serializer::SerializeRootObject(FullObjectSlot slot) {
  Object o = *slot;
  if (o.IsSmi()) {
    PutSmiRoot(slot);
  } else {
    SerializeObject(HeapObject::cast(o));
  }
}

#ifdef DEBUG
void Serializer::PrintStack() { PrintStack(std::cout); }

void Serializer::PrintStack(std::ostream& out) {
  for (const auto o : stack_) {
    o.Print(out);
    out << "\n";
  }
}
#endif  // DEBUG

bool Serializer::SerializeRoot(HeapObject obj) {
  RootIndex root_index;
  // Derived serializers are responsible for determining if the root has
  // actually been serialized before calling this.
  if (root_index_map()->Lookup(obj, &root_index)) {
    PutRoot(root_index, obj);
    return true;
  }
  return false;
}

bool Serializer::SerializeHotObject(HeapObject obj) {
  // Encode a reference to a hot object by its index in the working set.
  int index = hot_objects_.Find(obj);
  if (index == HotObjectsList::kNotFound) return false;
  DCHECK(index >= 0 && index < kNumberOfHotObjects);
  if (FLAG_trace_serializer) {
    PrintF(" Encoding hot object %d:", index);
    obj.ShortPrint();
    PrintF("\n");
  }
  sink_.Put(kHotObject + index, "HotObject");
  return true;
}

bool Serializer::SerializeBackReference(HeapObject obj) {
  SerializerReference reference =
      reference_map_.LookupReference(reinterpret_cast<void*>(obj.ptr()));
  if (!reference.is_valid()) return false;
  // Encode the location of an already deserialized object in order to write
  // its location into a later object.  We can encode the location as an
  // offset fromthe start of the deserialized objects or as an offset
  // backwards from thecurrent allocation pointer.
  if (reference.is_attached_reference()) {
    if (FLAG_trace_serializer) {
      PrintF(" Encoding attached reference %d\n",
             reference.attached_reference_index());
    }
    PutAttachedReference(reference);
  } else {
    DCHECK(reference.is_back_reference());
    if (FLAG_trace_serializer) {
      PrintF(" Encoding back reference to: ");
      obj.ShortPrint();
      PrintF("\n");
    }

    PutAlignmentPrefix(obj);
    SnapshotSpace space = reference.space();
    sink_.Put(kBackref + static_cast<int>(space), "BackRef");
    PutBackReference(obj, reference);
  }
  return true;
}

bool Serializer::ObjectIsBytecodeHandler(HeapObject obj) const {
  if (!obj.IsCode()) return false;
  return (Code::cast(obj).kind() == Code::BYTECODE_HANDLER);
}

void Serializer::PutRoot(RootIndex root, HeapObject object) {
  int root_index = static_cast<int>(root);
  if (FLAG_trace_serializer) {
    PrintF(" Encoding root %d:", root_index);
    object.ShortPrint();
    PrintF("\n");
  }

  // Assert that the first 32 root array items are a conscious choice. They are
  // chosen so that the most common ones can be encoded more efficiently.
  STATIC_ASSERT(static_cast<int>(RootIndex::kArgumentsMarker) ==
                kNumberOfRootArrayConstants - 1);

  // TODO(ulan): Check that it works with young large objects.
  if (root_index < kNumberOfRootArrayConstants &&
      !Heap::InYoungGeneration(object)) {
    sink_.Put(kRootArrayConstants + root_index, "RootConstant");
  } else {
    sink_.Put(kRootArray, "RootSerialization");
    sink_.PutInt(root_index, "root_index");
    hot_objects_.Add(object);
  }
}

void Serializer::PutSmiRoot(FullObjectSlot slot) {
  // Serializing a smi root in compressed pointer builds will serialize the
  // full object slot (of kSystemPointerSize) to avoid complications during
  // deserialization (endianness or smi sequences).
  STATIC_ASSERT(decltype(slot)::kSlotDataSize == sizeof(Address));
  STATIC_ASSERT(decltype(slot)::kSlotDataSize == kSystemPointerSize);
  static constexpr int bytes_to_output = decltype(slot)::kSlotDataSize;
  static constexpr int size_in_tagged = bytes_to_output >> kTaggedSizeLog2;
  sink_.PutSection(kFixedRawDataStart + size_in_tagged, "Smi");

  Address raw_value = Smi::cast(*slot).ptr();
  const byte* raw_value_as_bytes = reinterpret_cast<const byte*>(&raw_value);
  for (size_t i = 0; i < bytes_to_output; i++) {
    sink_.Put(raw_value_as_bytes[i], "Byte");
  }
}

void Serializer::PutBackReference(HeapObject object,
                                  SerializerReference reference) {
  DCHECK(allocator()->BackReferenceIsAlreadyAllocated(reference));
  switch (reference.space()) {
    case SnapshotSpace::kMap:
      sink_.PutInt(reference.map_index(), "BackRefMapIndex");
      break;

    case SnapshotSpace::kLargeObject:
      sink_.PutInt(reference.large_object_index(), "BackRefLargeObjectIndex");
      break;

    default:
      sink_.PutInt(reference.chunk_index(), "BackRefChunkIndex");
      sink_.PutInt(reference.chunk_offset(), "BackRefChunkOffset");
      break;
  }

  hot_objects_.Add(object);
}

void Serializer::PutAttachedReference(SerializerReference reference) {
  DCHECK(reference.is_attached_reference());
  sink_.Put(kAttachedReference, "AttachedRef");
  sink_.PutInt(reference.attached_reference_index(), "AttachedRefIndex");
}

int Serializer::PutAlignmentPrefix(HeapObject object) {
  AllocationAlignment alignment = HeapObject::RequiredAlignment(object.map());
  if (alignment != kWordAligned) {
    DCHECK(1 <= alignment && alignment <= 3);
    byte prefix = (kAlignmentPrefix - 1) + alignment;
    sink_.Put(prefix, "Alignment");
    return Heap::GetMaximumFillToAlign(alignment);
  }
  return 0;
}

void Serializer::PutNextChunk(SnapshotSpace space) {
  sink_.Put(kNextChunk, "NextChunk");
  sink_.Put(static_cast<int>(space), "NextChunkSpace");
}

void Serializer::PutRepeat(int repeat_count) {
  if (repeat_count <= kLastEncodableFixedRepeatCount) {
    sink_.Put(EncodeFixedRepeat(repeat_count), "FixedRepeat");
  } else {
    sink_.Put(kVariableRepeat, "VariableRepeat");
    sink_.PutInt(EncodeVariableRepeatCount(repeat_count), "repeat count");
  }
}

void Serializer::Pad(int padding_offset) {
  // The non-branching GetInt will read up to 3 bytes too far, so we need
  // to pad the snapshot to make sure we don't read over the end.
  for (unsigned i = 0; i < sizeof(int32_t) - 1; i++) {
    sink_.Put(kNop, "Padding");
  }
  // Pad up to pointer size for checksum.
  while (!IsAligned(sink_.Position() + padding_offset, kPointerAlignment)) {
    sink_.Put(kNop, "Padding");
  }
}

void Serializer::InitializeCodeAddressMap() {
  isolate_->InitializeLoggingAndCounters();
  code_address_map_ = std::make_unique<CodeAddressMap>(isolate_);
}

Code Serializer::CopyCode(Code code) {
  code_buffer_.clear();  // Clear buffer without deleting backing store.
  int size = code.CodeSize();
  code_buffer_.insert(code_buffer_.end(),
                      reinterpret_cast<byte*>(code.address()),
                      reinterpret_cast<byte*>(code.address() + size));
  // When pointer compression is enabled the checked cast will try to
  // decompress map field of off-heap Code object.
  return Code::unchecked_cast(HeapObject::FromAddress(
      reinterpret_cast<Address>(&code_buffer_.front())));
}

void Serializer::ObjectSerializer::SerializePrologue(SnapshotSpace space,
                                                     int size, Map map) {
  if (serializer_->code_address_map_) {
    const char* code_name =
        serializer_->code_address_map_->Lookup(object_.address());
    LOG(serializer_->isolate_,
        CodeNameEvent(object_.address(), sink_->Position(), code_name));
  }

  const int space_number = static_cast<int>(space);
  SerializerReference back_reference;
  if (space == SnapshotSpace::kLargeObject) {
    sink_->Put(kNewObject + space_number, "NewLargeObject");
    sink_->PutInt(size >> kObjectAlignmentBits, "ObjectSizeInWords");
    CHECK(!object_.IsCode());
    back_reference = serializer_->allocator()->AllocateLargeObject(size);
  } else if (space == SnapshotSpace::kMap) {
    DCHECK_EQ(Map::kSize, size);
    back_reference = serializer_->allocator()->AllocateMap();
    sink_->Put(kNewObject + space_number, "NewMap");
    // This is redundant, but we include it anyways.
    sink_->PutInt(size >> kObjectAlignmentBits, "ObjectSizeInWords");
  } else {
    int fill = serializer_->PutAlignmentPrefix(object_);
    back_reference = serializer_->allocator()->Allocate(space, size + fill);
    sink_->Put(kNewObject + space_number, "NewObject");
    sink_->PutInt(size >> kObjectAlignmentBits, "ObjectSizeInWords");
  }

#ifdef OBJECT_PRINT
  if (FLAG_serialization_statistics) {
    serializer_->CountInstanceType(map, size, space);
  }
#endif  // OBJECT_PRINT

  // Mark this object as already serialized.
  serializer_->reference_map()->Add(reinterpret_cast<void*>(object_.ptr()),
                                    back_reference);

  // Serialize the map (first word of the object).
  serializer_->SerializeObject(map);
}

uint32_t Serializer::ObjectSerializer::SerializeBackingStore(
    void* backing_store, int32_t byte_length) {
  SerializerReference reference =
      serializer_->reference_map()->LookupReference(backing_store);

  // Serialize the off-heap backing store.
  if (!reference.is_valid()) {
    sink_->Put(kOffHeapBackingStore, "Off-heap backing store");
    sink_->PutInt(byte_length, "length");
    sink_->PutRaw(static_cast<byte*>(backing_store), byte_length,
                  "BackingStore");
    reference = serializer_->allocator()->AllocateOffHeapBackingStore();
    // Mark this backing store as already serialized.
    serializer_->reference_map()->Add(backing_store, reference);
  }

  return reference.off_heap_backing_store_index();
}

void Serializer::ObjectSerializer::SerializeJSTypedArray() {
  JSTypedArray typed_array = JSTypedArray::cast(object_);
  if (typed_array.is_on_heap()) {
    typed_array.RemoveExternalPointerCompensationForSerialization(
        serializer_->isolate());
  } else {
    if (!typed_array.WasDetached()) {
      // Explicitly serialize the backing store now.
      JSArrayBuffer buffer = JSArrayBuffer::cast(typed_array.buffer());
      CHECK_LE(buffer.byte_length(), Smi::kMaxValue);
      CHECK_LE(typed_array.byte_offset(), Smi::kMaxValue);
      int32_t byte_length = static_cast<int32_t>(buffer.byte_length());
      int32_t byte_offset = static_cast<int32_t>(typed_array.byte_offset());

      // We need to calculate the backing store from the data pointer
      // because the ArrayBuffer may already have been serialized.
      void* backing_store = reinterpret_cast<void*>(
          reinterpret_cast<Address>(typed_array.DataPtr()) - byte_offset);

      uint32_t ref = SerializeBackingStore(backing_store, byte_length);
      typed_array.SetExternalBackingStoreRefForSerialization(ref);
    } else {
      typed_array.SetExternalBackingStoreRefForSerialization(0);
    }
  }
  SerializeObject();
}

void Serializer::ObjectSerializer::SerializeJSArrayBuffer() {
  JSArrayBuffer buffer = JSArrayBuffer::cast(object_);
  void* backing_store = buffer.backing_store();
  // We cannot store byte_length larger than Smi range in the snapshot.
  CHECK_LE(buffer.byte_length(), Smi::kMaxValue);
  int32_t byte_length = static_cast<int32_t>(buffer.byte_length());
  ArrayBufferExtension* extension = buffer.extension();

  // The embedder-allocated backing store only exists for the off-heap case.
  if (backing_store != nullptr) {
    uint32_t ref = SerializeBackingStore(backing_store, byte_length);
    buffer.SetBackingStoreRefForSerialization(ref);

    // Ensure deterministic output by setting extension to null during
    // serialization.
    buffer.set_extension(nullptr);
  }

  SerializeObject();

  buffer.set_backing_store(serializer_->isolate(), backing_store);
  buffer.set_extension(extension);
}

void Serializer::ObjectSerializer::SerializeExternalString() {
  // For external strings with known resources, we replace the resource field
  // with the encoded external reference, which we restore upon deserialize.
  // For the rest we serialize them to look like ordinary sequential strings.
  ExternalString string = ExternalString::cast(object_);
  Address resource = string.resource_as_address();
  ExternalReferenceEncoder::Value reference;
  if (serializer_->external_reference_encoder_.TryEncode(resource).To(
          &reference)) {
    DCHECK(reference.is_from_api());
    string.set_uint32_as_resource(serializer_->isolate(), reference.index());
    SerializeObject();
    string.set_address_as_resource(serializer_->isolate(), resource);
  } else {
    SerializeExternalStringAsSequentialString();
  }
}

void Serializer::ObjectSerializer::SerializeExternalStringAsSequentialString() {
  // Instead of serializing this as an external string, we serialize
  // an imaginary sequential string with the same content.
  ReadOnlyRoots roots(serializer_->isolate());
  DCHECK(object_.IsExternalString());
  ExternalString string = ExternalString::cast(object_);
  int length = string.length();
  Map map;
  int content_size;
  int allocation_size;
  const byte* resource;
  // Find the map and size for the imaginary sequential string.
  bool internalized = object_.IsInternalizedString();
  if (object_.IsExternalOneByteString()) {
    map = internalized ? roots.one_byte_internalized_string_map()
                       : roots.one_byte_string_map();
    allocation_size = SeqOneByteString::SizeFor(length);
    content_size = length * kCharSize;
    resource = reinterpret_cast<const byte*>(
        ExternalOneByteString::cast(string).resource()->data());
  } else {
    map = internalized ? roots.internalized_string_map() : roots.string_map();
    allocation_size = SeqTwoByteString::SizeFor(length);
    content_size = length * kShortSize;
    resource = reinterpret_cast<const byte*>(
        ExternalTwoByteString::cast(string).resource()->data());
  }

  SnapshotSpace space = (allocation_size > kMaxRegularHeapObjectSize)
                            ? SnapshotSpace::kLargeObject
                            : SnapshotSpace::kOld;
  SerializePrologue(space, allocation_size, map);

  // Output the rest of the imaginary string.
  int bytes_to_output = allocation_size - HeapObject::kHeaderSize;
  DCHECK(IsAligned(bytes_to_output, kTaggedSize));

  // Output raw data header. Do not bother with common raw length cases here.
  sink_->Put(kVariableRawData, "RawDataForString");
  sink_->PutInt(bytes_to_output, "length");

  // Serialize string header (except for map).
  uint8_t* string_start = reinterpret_cast<uint8_t*>(string.address());
  for (int i = HeapObject::kHeaderSize; i < SeqString::kHeaderSize; i++) {
    sink_->PutSection(string_start[i], "StringHeader");
  }

  // Serialize string content.
  sink_->PutRaw(resource, content_size, "StringContent");

  // Since the allocation size is rounded up to object alignment, there
  // maybe left-over bytes that need to be padded.
  int padding_size = allocation_size - SeqString::kHeaderSize - content_size;
  DCHECK(0 <= padding_size && padding_size < kObjectAlignment);
  for (int i = 0; i < padding_size; i++) sink_->PutSection(0, "StringPadding");
}

// Clear and later restore the next link in the weak cell or allocation site.
// TODO(all): replace this with proper iteration of weak slots in serializer.
class UnlinkWeakNextScope {
 public:
  explicit UnlinkWeakNextScope(Heap* heap, HeapObject object) {
    if (object.IsAllocationSite() &&
        AllocationSite::cast(object).HasWeakNext()) {
      object_ = object;
      next_ = AllocationSite::cast(object).weak_next();
      AllocationSite::cast(object).set_weak_next(
          ReadOnlyRoots(heap).undefined_value());
    }
  }

  ~UnlinkWeakNextScope() {
    if (!object_.is_null()) {
      AllocationSite::cast(object_).set_weak_next(next_,
                                                  UPDATE_WEAK_WRITE_BARRIER);
    }
  }

 private:
  HeapObject object_;
  Object next_;
  DISALLOW_HEAP_ALLOCATION(no_gc_)
};

void Serializer::ObjectSerializer::Serialize() {
  if (FLAG_trace_serializer) {
    PrintF(" Encoding heap object: ");
    object_.ShortPrint();
    PrintF("\n");
  }

  if (object_.IsExternalString()) {
    SerializeExternalString();
    return;
  } else if (!ReadOnlyHeap::Contains(object_)) {
    // Only clear padding for strings outside the read-only heap. Read-only heap
    // should have been cleared elsewhere.
    if (object_.IsSeqOneByteString()) {
      // Clear padding bytes at the end. Done here to avoid having to do this
      // at allocation sites in generated code.
      SeqOneByteString::cast(object_).clear_padding();
    } else if (object_.IsSeqTwoByteString()) {
      SeqTwoByteString::cast(object_).clear_padding();
    }
  }
  if (object_.IsJSTypedArray()) {
    SerializeJSTypedArray();
    return;
  }
  if (object_.IsJSArrayBuffer()) {
    SerializeJSArrayBuffer();
    return;
  }

  // We don't expect fillers.
  DCHECK(!object_.IsFreeSpaceOrFiller());

  if (object_.IsScript()) {
    // Clear cached line ends.
    Object undefined = ReadOnlyRoots(serializer_->isolate()).undefined_value();
    Script::cast(object_).set_line_ends(undefined);
  }

  SerializeObject();
}

namespace {
SnapshotSpace GetSnapshotSpace(HeapObject object) {
  if (V8_ENABLE_THIRD_PARTY_HEAP_BOOL) {
    if (third_party_heap::Heap::InCodeSpace(object.address())) {
      return SnapshotSpace::kCode;
    } else if (ReadOnlyHeap::Contains(object)) {
      return SnapshotSpace::kReadOnlyHeap;
    } else if (object.Size() > kMaxRegularHeapObjectSize) {
      return SnapshotSpace::kLargeObject;
    } else if (object.IsMap()) {
      return SnapshotSpace::kMap;
    } else {
      return SnapshotSpace::kNew;  // avoid new/young distinction in TPH
    }
  } else if (ReadOnlyHeap::Contains(object)) {
    return SnapshotSpace::kReadOnlyHeap;
  } else {
    AllocationSpace heap_space =
        MemoryChunk::FromHeapObject(object)->owner_identity();
    // Large code objects are not supported and cannot be expressed by
    // SnapshotSpace.
    DCHECK_NE(heap_space, CODE_LO_SPACE);
    switch (heap_space) {
      // Young generation objects are tenured, as objects that have survived
      // until snapshot building probably deserve to be considered 'old'.
      case NEW_SPACE:
        return SnapshotSpace::kOld;
      case NEW_LO_SPACE:
        return SnapshotSpace::kLargeObject;

      default:
        return static_cast<SnapshotSpace>(heap_space);
    }
  }
}
}  // namespace

void Serializer::ObjectSerializer::SerializeObject() {
  int size = object_.Size();
  Map map = object_.map();
  SnapshotSpace space = GetSnapshotSpace(object_);
  SerializePrologue(space, size, map);

  // Serialize the rest of the object.
  CHECK_EQ(0, bytes_processed_so_far_);
  bytes_processed_so_far_ = kTaggedSize;

  RecursionScope recursion(serializer_);
  // Objects that are immediately post processed during deserialization
  // cannot be deferred, since post processing requires the object content.
  if ((recursion.ExceedsMaximum() && CanBeDeferred(object_)) ||
      serializer_->MustBeDeferred(object_)) {
    serializer_->QueueDeferredObject(object_);
    sink_->Put(kDeferred, "Deferring object content");
    return;
  }

  SerializeContent(map, size);
}

void Serializer::ObjectSerializer::SerializeDeferred() {
  if (FLAG_trace_serializer) {
    PrintF(" Encoding deferred heap object: ");
    object_.ShortPrint();
    PrintF("\n");
  }

  int size = object_.Size();
  Map map = object_.map();
  SerializerReference back_reference =
      serializer_->reference_map()->LookupReference(
          reinterpret_cast<void*>(object_.ptr()));
  DCHECK(back_reference.is_back_reference());

  // Serialize the rest of the object.
  CHECK_EQ(0, bytes_processed_so_far_);
  bytes_processed_so_far_ = kTaggedSize;

  serializer_->PutAlignmentPrefix(object_);
  sink_->Put(kNewObject + static_cast<int>(back_reference.space()),
             "deferred object");
  serializer_->PutBackReference(object_, back_reference);
  sink_->PutInt(size >> kTaggedSizeLog2, "deferred object size");

  SerializeContent(map, size);
}

void Serializer::ObjectSerializer::SerializeContent(Map map, int size) {
  UnlinkWeakNextScope unlink_weak_next(serializer_->isolate()->heap(), object_);
  if (object_.IsCode()) {
    // For code objects, output raw bytes first.
    OutputCode(size);
    // Then iterate references via reloc info.
    object_.IterateBody(map, size, this);
  } else {
    // For other objects, iterate references first.
    object_.IterateBody(map, size, this);
    // Then output data payload, if any.
    OutputRawData(object_.address() + size);
  }
}

void Serializer::ObjectSerializer::VisitPointers(HeapObject host,
                                                 ObjectSlot start,
                                                 ObjectSlot end) {
  VisitPointers(host, MaybeObjectSlot(start), MaybeObjectSlot(end));
}

void Serializer::ObjectSerializer::VisitPointers(HeapObject host,
                                                 MaybeObjectSlot start,
                                                 MaybeObjectSlot end) {
  DisallowHeapAllocation no_gc;

  MaybeObjectSlot current = start;
  while (current < end) {
    while (current < end && (*current)->IsSmi()) {
      ++current;
    }
    if (current < end) {
      OutputRawData(current.address());
    }
    // TODO(ishell): Revisit this change once we stick to 32-bit compressed
    // tagged values.
    while (current < end && (*current)->IsCleared()) {
      sink_->Put(kClearedWeakReference, "ClearedWeakReference");
      bytes_processed_so_far_ += kTaggedSize;
      ++current;
    }
    HeapObject current_contents;
    HeapObjectReferenceType reference_type;
    while (current < end &&
           (*current)->GetHeapObject(&current_contents, &reference_type)) {
      RootIndex root_index;
      // Compute repeat count and write repeat prefix if applicable.
      // Repeats are not subject to the write barrier so we can only use
      // immortal immovable root members. They are never in new space.
      MaybeObjectSlot repeat_end = current + 1;
      if (repeat_end < end &&
          serializer_->root_index_map()->Lookup(current_contents,
                                                &root_index) &&
          RootsTable::IsImmortalImmovable(root_index) &&
          *current == *repeat_end) {
        DCHECK_EQ(reference_type, HeapObjectReferenceType::STRONG);
        DCHECK(!Heap::InYoungGeneration(current_contents));
        while (repeat_end < end && *repeat_end == *current) {
          repeat_end++;
        }
        int repeat_count = static_cast<int>(repeat_end - current);
        current = repeat_end;
        bytes_processed_so_far_ += repeat_count * kTaggedSize;
        serializer_->PutRepeat(repeat_count);
      } else {
        bytes_processed_so_far_ += kTaggedSize;
        ++current;
      }
      // Now write the object itself.
      if (reference_type == HeapObjectReferenceType::WEAK) {
        sink_->Put(kWeakPrefix, "WeakReference");
      }
      serializer_->SerializeObject(current_contents);
    }
  }
}

void Serializer::ObjectSerializer::VisitEmbeddedPointer(Code host,
                                                        RelocInfo* rinfo) {
  Object object = rinfo->target_object();
  serializer_->SerializeObject(HeapObject::cast(object));
  bytes_processed_so_far_ += rinfo->target_address_size();
}

void Serializer::ObjectSerializer::OutputExternalReference(Address target,
                                                           int target_size,
                                                           bool sandboxify) {
  DCHECK_LE(target_size, sizeof(target));  // Must fit in Address.
  ExternalReferenceEncoder::Value encoded_reference;
  bool encoded_successfully;

  if (serializer_->allow_unknown_external_references_for_testing()) {
    encoded_successfully =
        serializer_->TryEncodeExternalReference(target).To(&encoded_reference);
  } else {
    encoded_reference = serializer_->EncodeExternalReference(target);
    encoded_successfully = true;
  }

  if (!encoded_successfully) {
    // In this case the serialized snapshot will not be used in a different
    // Isolate and thus the target address will not change between
    // serialization and deserialization. We can serialize seen external
    // references verbatim.
    CHECK(serializer_->allow_unknown_external_references_for_testing());
    CHECK(IsAligned(target_size, kObjectAlignment));
    CHECK_LE(target_size, kNumberOfFixedRawData * kTaggedSize);
    int size_in_tagged = target_size >> kTaggedSizeLog2;
    sink_->PutSection(kFixedRawDataStart + size_in_tagged, "FixedRawData");
    sink_->PutRaw(reinterpret_cast<byte*>(&target), target_size, "Bytes");
  } else if (encoded_reference.is_from_api()) {
    if (V8_HEAP_SANDBOX_BOOL && sandboxify) {
      sink_->Put(kSandboxedApiReference, "SandboxedApiRef");
    } else {
      sink_->Put(kApiReference, "ApiRef");
    }
    sink_->PutInt(encoded_reference.index(), "reference index");
  } else {
    if (V8_HEAP_SANDBOX_BOOL && sandboxify) {
      sink_->Put(kSandboxedExternalReference, "SandboxedExternalRef");
    } else {
      sink_->Put(kExternalReference, "ExternalRef");
    }
    sink_->PutInt(encoded_reference.index(), "reference index");
  }
  bytes_processed_so_far_ += target_size;
}

void Serializer::ObjectSerializer::VisitExternalReference(Foreign host,
                                                          Address* p) {
  // "Sandboxify" external reference.
  OutputExternalReference(host.foreign_address(), kExternalPointerSize, true);
}

void Serializer::ObjectSerializer::VisitExternalReference(Code host,
                                                          RelocInfo* rinfo) {
  Address target = rinfo->target_external_reference();
  DCHECK_NE(target, kNullAddress);  // Code does not reference null.
  DCHECK_IMPLIES(serializer_->EncodeExternalReference(target).is_from_api(),
                 !rinfo->IsCodedSpecially());
  // Don't "sandboxify" external references embedded in the code.
  OutputExternalReference(target, rinfo->target_address_size(), false);
}

void Serializer::ObjectSerializer::VisitInternalReference(Code host,
                                                          RelocInfo* rinfo) {
  Address entry = Code::cast(object_).entry();
  DCHECK_GE(rinfo->target_internal_reference(), entry);
  uintptr_t target_offset = rinfo->target_internal_reference() - entry;
  DCHECK_LE(target_offset, Code::cast(object_).raw_instruction_size());
  sink_->Put(kInternalReference, "InternalRef");
  sink_->PutInt(target_offset, "internal ref value");
}

void Serializer::ObjectSerializer::VisitRuntimeEntry(Code host,
                                                     RelocInfo* rinfo) {
  // We no longer serialize code that contains runtime entries.
  UNREACHABLE();
}

void Serializer::ObjectSerializer::VisitOffHeapTarget(Code host,
                                                      RelocInfo* rinfo) {
  STATIC_ASSERT(EmbeddedData::kTableSize == Builtins::builtin_count);

  Address addr = rinfo->target_off_heap_target();
  CHECK_NE(kNullAddress, addr);

  Code target = InstructionStream::TryLookupCode(serializer_->isolate(), addr);
  CHECK(Builtins::IsIsolateIndependentBuiltin(target));

  sink_->Put(kOffHeapTarget, "OffHeapTarget");
  sink_->PutInt(target.builtin_index(), "builtin index");
  bytes_processed_so_far_ += rinfo->target_address_size();
}

void Serializer::ObjectSerializer::VisitCodeTarget(Code host,
                                                   RelocInfo* rinfo) {
#ifdef V8_TARGET_ARCH_ARM
  DCHECK(!RelocInfo::IsRelativeCodeTarget(rinfo->rmode()));
#endif
  Code object = Code::GetCodeFromTargetAddress(rinfo->target_address());
  serializer_->SerializeObject(object);
  bytes_processed_so_far_ += rinfo->target_address_size();
}

namespace {

// Similar to OutputRawData, but substitutes the given field with the given
// value instead of reading it from the object.
void OutputRawWithCustomField(SnapshotByteSink* sink, Address object_start,
                              int written_so_far, int bytes_to_write,
                              int field_offset, int field_size,
                              const byte* field_value) {
  int offset = field_offset - written_so_far;
  if (0 <= offset && offset < bytes_to_write) {
    DCHECK_GE(bytes_to_write, offset + field_size);
    sink->PutRaw(reinterpret_cast<byte*>(object_start + written_so_far), offset,
                 "Bytes");
    sink->PutRaw(field_value, field_size, "Bytes");
    written_so_far += offset + field_size;
    bytes_to_write -= offset + field_size;
    sink->PutRaw(reinterpret_cast<byte*>(object_start + written_so_far),
                 bytes_to_write, "Bytes");
  } else {
    sink->PutRaw(reinterpret_cast<byte*>(object_start + written_so_far),
                 bytes_to_write, "Bytes");
  }
}
}  // anonymous namespace

void Serializer::ObjectSerializer::OutputRawData(Address up_to) {
  Address object_start = object_.address();
  int base = bytes_processed_so_far_;
  int up_to_offset = static_cast<int>(up_to - object_start);
  int to_skip = up_to_offset - bytes_processed_so_far_;
  int bytes_to_output = to_skip;
  bytes_processed_so_far_ += to_skip;
  DCHECK_GE(to_skip, 0);
  if (bytes_to_output != 0) {
    DCHECK(to_skip == bytes_to_output);
    if (IsAligned(bytes_to_output, kObjectAlignment) &&
        bytes_to_output <= kNumberOfFixedRawData * kTaggedSize) {
      int size_in_tagged = bytes_to_output >> kTaggedSizeLog2;
      sink_->PutSection(kFixedRawDataStart + size_in_tagged, "FixedRawData");
    } else {
      sink_->Put(kVariableRawData, "VariableRawData");
      sink_->PutInt(bytes_to_output, "length");
    }
#ifdef MEMORY_SANITIZER
    // Check that we do not serialize uninitialized memory.
    __msan_check_mem_is_initialized(
        reinterpret_cast<void*>(object_start + base), bytes_to_output);
#endif  // MEMORY_SANITIZER
    if (object_.IsBytecodeArray()) {
      // The bytecode age field can be changed by GC concurrently.
      byte field_value = BytecodeArray::kNoAgeBytecodeAge;
      OutputRawWithCustomField(sink_, object_start, base, bytes_to_output,
                               BytecodeArray::kBytecodeAgeOffset,
                               sizeof(field_value), &field_value);
    } else if (object_.IsDescriptorArray()) {
      // The number of marked descriptors field can be changed by GC
      // concurrently.
      byte field_value[2];
      field_value[0] = 0;
      field_value[1] = 0;
      OutputRawWithCustomField(
          sink_, object_start, base, bytes_to_output,
          DescriptorArray::kRawNumberOfMarkedDescriptorsOffset,
          sizeof(field_value), field_value);
    } else {
      sink_->PutRaw(reinterpret_cast<byte*>(object_start + base),
                    bytes_to_output, "Bytes");
    }
  }
}

void Serializer::ObjectSerializer::OutputCode(int size) {
  DCHECK_EQ(kTaggedSize, bytes_processed_so_far_);
  Code on_heap_code = Code::cast(object_);
  // To make snapshots reproducible, we make a copy of the code object
  // and wipe all pointers in the copy, which we then serialize.
  Code off_heap_code = serializer_->CopyCode(on_heap_code);
  int mode_mask = RelocInfo::ModeMask(RelocInfo::CODE_TARGET) |
                  RelocInfo::ModeMask(RelocInfo::FULL_EMBEDDED_OBJECT) |
                  RelocInfo::ModeMask(RelocInfo::COMPRESSED_EMBEDDED_OBJECT) |
                  RelocInfo::ModeMask(RelocInfo::EXTERNAL_REFERENCE) |
                  RelocInfo::ModeMask(RelocInfo::INTERNAL_REFERENCE) |
                  RelocInfo::ModeMask(RelocInfo::INTERNAL_REFERENCE_ENCODED) |
                  RelocInfo::ModeMask(RelocInfo::OFF_HEAP_TARGET) |
                  RelocInfo::ModeMask(RelocInfo::RUNTIME_ENTRY);
  // With enabled pointer compression normal accessors no longer work for
  // off-heap objects, so we have to get the relocation info data via the
  // on-heap code object.
  ByteArray relocation_info = on_heap_code.unchecked_relocation_info();
  for (RelocIterator it(off_heap_code, relocation_info, mode_mask); !it.done();
       it.next()) {
    RelocInfo* rinfo = it.rinfo();
    rinfo->WipeOut();
  }
  // We need to wipe out the header fields *after* wiping out the
  // relocations, because some of these fields are needed for the latter.
  off_heap_code.WipeOutHeader();

  Address start = off_heap_code.address() + Code::kDataStart;
  int bytes_to_output = size - Code::kDataStart;
  DCHECK(IsAligned(bytes_to_output, kTaggedSize));

  sink_->Put(kVariableRawCode, "VariableRawCode");
  sink_->PutInt(bytes_to_output, "length");

#ifdef MEMORY_SANITIZER
  // Check that we do not serialize uninitialized memory.
  __msan_check_mem_is_initialized(reinterpret_cast<void*>(start),
                                  bytes_to_output);
#endif  // MEMORY_SANITIZER
  sink_->PutRaw(reinterpret_cast<byte*>(start), bytes_to_output, "Code");
}

}  // namespace internal
}  // namespace v8