Welcome to mirror list, hosted at ThFree Co, Russian Federation.

snapshot-common.cc « snapshot « src « v8 « deps - github.com/nodejs/node.git - Unnamed repository; edit this file 'description' to name the repository.
summaryrefslogtreecommitdiff
blob: 31f378792b32f040dee7df05d6386fea8d16dc4f (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
// Copyright 2006-2008 the V8 project authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.

// The common functionality when building with or without snapshots.

#include "src/snapshot/snapshot.h"

#include "src/assembler-inl.h"
#include "src/base/platform/platform.h"
#include "src/callable.h"
#include "src/interface-descriptors.h"
#include "src/objects-inl.h"
#include "src/snapshot/builtin-deserializer.h"
#include "src/snapshot/builtin-serializer.h"
#include "src/snapshot/partial-deserializer.h"
#include "src/snapshot/snapshot-source-sink.h"
#include "src/snapshot/startup-deserializer.h"
#include "src/utils.h"
#include "src/version.h"

namespace v8 {
namespace internal {

#ifdef DEBUG
bool Snapshot::SnapshotIsValid(const v8::StartupData* snapshot_blob) {
  return Snapshot::ExtractNumContexts(snapshot_blob) > 0;
}
#endif  // DEBUG

bool Snapshot::HasContextSnapshot(Isolate* isolate, size_t index) {
  // Do not use snapshots if the isolate is used to create snapshots.
  const v8::StartupData* blob = isolate->snapshot_blob();
  if (blob == nullptr) return false;
  if (blob->data == nullptr) return false;
  size_t num_contexts = static_cast<size_t>(ExtractNumContexts(blob));
  return index < num_contexts;
}

bool Snapshot::Initialize(Isolate* isolate) {
  if (!isolate->snapshot_available()) return false;
  base::ElapsedTimer timer;
  if (FLAG_profile_deserialization) timer.Start();

  const v8::StartupData* blob = isolate->snapshot_blob();
  CheckVersion(blob);
  Vector<const byte> startup_data = ExtractStartupData(blob);
  SnapshotData startup_snapshot_data(startup_data);
  Vector<const byte> builtin_data = ExtractBuiltinData(blob);
  BuiltinSnapshotData builtin_snapshot_data(builtin_data);
  StartupDeserializer deserializer(&startup_snapshot_data,
                                   &builtin_snapshot_data);
  deserializer.SetRehashability(ExtractRehashability(blob));
  bool success = isolate->Init(&deserializer);
  if (FLAG_profile_deserialization) {
    double ms = timer.Elapsed().InMillisecondsF();
    int bytes = startup_data.length();
    PrintF("[Deserializing isolate (%d bytes) took %0.3f ms]\n", bytes, ms);
  }
  return success;
}

MaybeHandle<Context> Snapshot::NewContextFromSnapshot(
    Isolate* isolate, Handle<JSGlobalProxy> global_proxy, size_t context_index,
    v8::DeserializeEmbedderFieldsCallback embedder_fields_deserializer) {
  if (!isolate->snapshot_available()) return Handle<Context>();
  base::ElapsedTimer timer;
  if (FLAG_profile_deserialization) timer.Start();

  const v8::StartupData* blob = isolate->snapshot_blob();
  bool can_rehash = ExtractRehashability(blob);
  Vector<const byte> context_data =
      ExtractContextData(blob, static_cast<uint32_t>(context_index));
  SnapshotData snapshot_data(context_data);

  MaybeHandle<Context> maybe_result = PartialDeserializer::DeserializeContext(
      isolate, &snapshot_data, can_rehash, global_proxy,
      embedder_fields_deserializer);

  Handle<Context> result;
  if (!maybe_result.ToHandle(&result)) return MaybeHandle<Context>();

  if (FLAG_profile_deserialization) {
    double ms = timer.Elapsed().InMillisecondsF();
    int bytes = context_data.length();
    PrintF("[Deserializing context #%zu (%d bytes) took %0.3f ms]\n",
           context_index, bytes, ms);
  }
  return result;
}

// static
Code* Snapshot::DeserializeBuiltin(Isolate* isolate, int builtin_id) {
  if (FLAG_trace_lazy_deserialization) {
    PrintF("Lazy-deserializing builtin %s\n", Builtins::name(builtin_id));
  }

  base::ElapsedTimer timer;
  if (FLAG_profile_deserialization) timer.Start();

  const v8::StartupData* blob = isolate->snapshot_blob();
  Vector<const byte> builtin_data = Snapshot::ExtractBuiltinData(blob);
  BuiltinSnapshotData builtin_snapshot_data(builtin_data);

  CodeSpaceMemoryModificationScope code_allocation(isolate->heap());
  BuiltinDeserializer builtin_deserializer(isolate, &builtin_snapshot_data);
  Code* code = builtin_deserializer.DeserializeBuiltin(builtin_id);
  DCHECK_EQ(code, isolate->builtins()->builtin(builtin_id));

  if (FLAG_profile_deserialization) {
    double ms = timer.Elapsed().InMillisecondsF();
    int bytes = code->Size();
    PrintF("[Deserializing builtin %s (%d bytes) took %0.3f ms]\n",
           Builtins::name(builtin_id), bytes, ms);
  }

  if (isolate->logger()->is_listening_to_code_events() ||
      isolate->is_profiling()) {
    isolate->logger()->LogCodeObject(code);
  }

  return code;
}

// static
void Snapshot::EnsureAllBuiltinsAreDeserialized(Isolate* isolate) {
  if (!FLAG_lazy_deserialization) return;

  if (FLAG_trace_lazy_deserialization) {
    PrintF("Forcing eager builtin deserialization\n");
  }

  Builtins* builtins = isolate->builtins();
  for (int i = 0; i < Builtins::builtin_count; i++) {
    if (!Builtins::IsLazy(i)) continue;

    DCHECK_NE(Builtins::kDeserializeLazy, i);
    Code* code = builtins->builtin(i);
    if (code->builtin_index() == Builtins::kDeserializeLazy) {
      code = Snapshot::DeserializeBuiltin(isolate, i);
    }

    DCHECK_EQ(i, code->builtin_index());
    DCHECK_EQ(code, builtins->builtin(i));
  }
}

// static
Code* Snapshot::EnsureBuiltinIsDeserialized(Isolate* isolate,
                                            Handle<SharedFunctionInfo> shared) {
  DCHECK(FLAG_lazy_deserialization);

  int builtin_id = shared->builtin_id();

  // We should never lazily deserialize DeserializeLazy.
  DCHECK_NE(Builtins::kDeserializeLazy, builtin_id);

  // Look up code from builtins list.
  Code* code = isolate->builtins()->builtin(builtin_id);

  // Deserialize if builtin is not on the list.
  if (code->builtin_index() != builtin_id) {
    DCHECK_EQ(code->builtin_index(), Builtins::kDeserializeLazy);
    code = Snapshot::DeserializeBuiltin(isolate, builtin_id);
    DCHECK_EQ(builtin_id, code->builtin_index());
    DCHECK_EQ(code, isolate->builtins()->builtin(builtin_id));
  }
  return code;
}

// static
Code* Snapshot::DeserializeHandler(Isolate* isolate,
                                   interpreter::Bytecode bytecode,
                                   interpreter::OperandScale operand_scale) {
  if (FLAG_trace_lazy_deserialization) {
    PrintF("Lazy-deserializing handler %s\n",
           interpreter::Bytecodes::ToString(bytecode, operand_scale).c_str());
  }

  base::ElapsedTimer timer;
  if (FLAG_profile_deserialization) timer.Start();

  const v8::StartupData* blob = isolate->snapshot_blob();
  Vector<const byte> builtin_data = Snapshot::ExtractBuiltinData(blob);
  BuiltinSnapshotData builtin_snapshot_data(builtin_data);

  CodeSpaceMemoryModificationScope code_allocation(isolate->heap());
  BuiltinDeserializer builtin_deserializer(isolate, &builtin_snapshot_data);
  Code* code = builtin_deserializer.DeserializeHandler(bytecode, operand_scale);

  if (FLAG_profile_deserialization) {
    double ms = timer.Elapsed().InMillisecondsF();
    int bytes = code->Size();
    PrintF("[Deserializing handler %s (%d bytes) took %0.3f ms]\n",
           interpreter::Bytecodes::ToString(bytecode, operand_scale).c_str(),
           bytes, ms);
  }

  if (isolate->logger()->is_listening_to_code_events() ||
      isolate->is_profiling()) {
    isolate->logger()->LogBytecodeHandler(bytecode, operand_scale, code);
  }

  return code;
}

void ProfileDeserialization(
    const SnapshotData* startup_snapshot, const SnapshotData* builtin_snapshot,
    const std::vector<SnapshotData*>& context_snapshots) {
  if (FLAG_profile_deserialization) {
    int startup_total = 0;
    PrintF("Deserialization will reserve:\n");
    for (const auto& reservation : startup_snapshot->Reservations()) {
      startup_total += reservation.chunk_size();
    }
    for (const auto& reservation : builtin_snapshot->Reservations()) {
      startup_total += reservation.chunk_size();
    }
    PrintF("%10d bytes per isolate\n", startup_total);
    for (size_t i = 0; i < context_snapshots.size(); i++) {
      int context_total = 0;
      for (const auto& reservation : context_snapshots[i]->Reservations()) {
        context_total += reservation.chunk_size();
      }
      PrintF("%10d bytes per context #%zu\n", context_total, i);
    }
  }
}

v8::StartupData Snapshot::CreateSnapshotBlob(
    const SnapshotData* startup_snapshot,
    const BuiltinSnapshotData* builtin_snapshot,
    const std::vector<SnapshotData*>& context_snapshots, bool can_be_rehashed) {
  uint32_t num_contexts = static_cast<uint32_t>(context_snapshots.size());
  uint32_t startup_snapshot_offset = StartupSnapshotOffset(num_contexts);
  uint32_t total_length = startup_snapshot_offset;
  total_length += static_cast<uint32_t>(startup_snapshot->RawData().length());
  total_length += static_cast<uint32_t>(builtin_snapshot->RawData().length());
  for (const auto context_snapshot : context_snapshots) {
    total_length += static_cast<uint32_t>(context_snapshot->RawData().length());
  }

  ProfileDeserialization(startup_snapshot, builtin_snapshot, context_snapshots);

  char* data = new char[total_length];
  SetHeaderValue(data, kNumberOfContextsOffset, num_contexts);
  SetHeaderValue(data, kRehashabilityOffset, can_be_rehashed ? 1 : 0);

  // Write version string into snapshot data.
  memset(data + kVersionStringOffset, 0, kVersionStringLength);
  Version::GetString(
      Vector<char>(data + kVersionStringOffset, kVersionStringLength));

  // Startup snapshot (isolate-specific data).
  uint32_t payload_offset = startup_snapshot_offset;
  uint32_t payload_length =
      static_cast<uint32_t>(startup_snapshot->RawData().length());
  CopyBytes(data + payload_offset,
            reinterpret_cast<const char*>(startup_snapshot->RawData().start()),
            payload_length);
  if (FLAG_profile_deserialization) {
    PrintF("Snapshot blob consists of:\n%10d bytes in %d chunks for startup\n",
           payload_length,
           static_cast<uint32_t>(startup_snapshot->Reservations().size()));
  }
  payload_offset += payload_length;

  // Builtins.
  SetHeaderValue(data, kBuiltinOffsetOffset, payload_offset);
  payload_length = builtin_snapshot->RawData().length();
  CopyBytes(data + payload_offset,
            reinterpret_cast<const char*>(builtin_snapshot->RawData().start()),
            payload_length);
  if (FLAG_profile_deserialization) {
    PrintF("%10d bytes for builtins\n", payload_length);
  }
  payload_offset += payload_length;

  // Partial snapshots (context-specific data).
  for (uint32_t i = 0; i < num_contexts; i++) {
    SetHeaderValue(data, ContextSnapshotOffsetOffset(i), payload_offset);
    SnapshotData* context_snapshot = context_snapshots[i];
    payload_length = context_snapshot->RawData().length();
    CopyBytes(
        data + payload_offset,
        reinterpret_cast<const char*>(context_snapshot->RawData().start()),
        payload_length);
    if (FLAG_profile_deserialization) {
      PrintF("%10d bytes in %d chunks for context #%d\n", payload_length,
             static_cast<uint32_t>(context_snapshot->Reservations().size()), i);
    }
    payload_offset += payload_length;
  }

  v8::StartupData result = {data, static_cast<int>(total_length)};
  DCHECK_EQ(total_length, payload_offset);
  return result;
}

namespace {
bool BuiltinAliasesOffHeapTrampolineRegister(Isolate* isolate, Code* code) {
  DCHECK(Builtins::IsIsolateIndependent(code->builtin_index()));
  switch (Builtins::KindOf(code->builtin_index())) {
    case Builtins::CPP:
    case Builtins::TFC:
    case Builtins::TFH:
    case Builtins::TFJ:
    case Builtins::TFS:
      break;

    // Bytecode handlers will only ever be used by the interpreter and so there
    // will never be a need to use trampolines with them.
    case Builtins::BCH:
    case Builtins::API:
    case Builtins::ASM:
      // TODO(jgruber): Extend checks to remaining kinds.
      return false;
  }

  Callable callable = Builtins::CallableFor(
      isolate, static_cast<Builtins::Name>(code->builtin_index()));
  CallInterfaceDescriptor descriptor = callable.descriptor();

  if (descriptor.ContextRegister() == kOffHeapTrampolineRegister) {
    return true;
  }

  for (int i = 0; i < descriptor.GetRegisterParameterCount(); i++) {
    Register reg = descriptor.GetRegisterParameter(i);
    if (reg == kOffHeapTrampolineRegister) return true;
  }

  return false;
}

void FinalizeEmbeddedCodeTargets(Isolate* isolate, EmbeddedData* blob) {
  static const int kRelocMask =
      RelocInfo::ModeMask(RelocInfo::CODE_TARGET) |
      RelocInfo::ModeMask(RelocInfo::RELATIVE_CODE_TARGET);

  for (int i = 0; i < Builtins::builtin_count; i++) {
    if (!Builtins::IsIsolateIndependent(i)) continue;

    Code* code = isolate->builtins()->builtin(i);
    RelocIterator on_heap_it(code, kRelocMask);
    RelocIterator off_heap_it(blob, code, kRelocMask);

#if defined(V8_TARGET_ARCH_X64) || defined(V8_TARGET_ARCH_ARM64) || \
    defined(V8_TARGET_ARCH_ARM)
    // On X64, ARM, ARM64 we emit relative builtin-to-builtin jumps for isolate
    // independent builtins in the snapshot. This fixes up the relative jumps
    // to the right offsets in the snapshot.
    // See also: Code::IsIsolateIndependent.
    while (!on_heap_it.done()) {
      DCHECK(!off_heap_it.done());

      RelocInfo* rinfo = on_heap_it.rinfo();
      DCHECK_EQ(rinfo->rmode(), off_heap_it.rinfo()->rmode());
      Code* target = Code::GetCodeFromTargetAddress(rinfo->target_address());
      CHECK(Builtins::IsIsolateIndependentBuiltin(target));

      // Do not emit write-barrier for off-heap writes.
      off_heap_it.rinfo()->set_target_address(
          blob->InstructionStartOfBuiltin(target->builtin_index()),
          SKIP_WRITE_BARRIER);

      on_heap_it.next();
      off_heap_it.next();
    }
    DCHECK(off_heap_it.done());
#else
    // Architectures other than x64 and arm/arm64 do not use pc-relative calls
    // and thus must not contain embedded code targets. Instead, we use an
    // indirection through the root register.
    CHECK(on_heap_it.done());
    CHECK(off_heap_it.done());
#endif  // defined(V8_TARGET_ARCH_X64) || defined(V8_TARGET_ARCH_ARM64)
  }
}
}  // namespace

// static
EmbeddedData EmbeddedData::FromIsolate(Isolate* isolate) {
  Builtins* builtins = isolate->builtins();

  // Store instruction stream lengths and offsets.
  std::vector<struct Metadata> metadata(kTableSize);

  bool saw_unsafe_builtin = false;
  uint32_t raw_data_size = 0;
  for (int i = 0; i < Builtins::builtin_count; i++) {
    Code* code = builtins->builtin(i);

    if (Builtins::IsIsolateIndependent(i)) {
      DCHECK(!Builtins::IsLazy(i));

      // Sanity-check that the given builtin is isolate-independent and does not
      // use the trampoline register in its calling convention.
      if (!code->IsIsolateIndependent(isolate)) {
        saw_unsafe_builtin = true;
        fprintf(stderr, "%s is not isolate-independent.\n", Builtins::name(i));
      }
      if (Builtins::IsWasmRuntimeStub(i) &&
          RelocInfo::RequiresRelocation(code)) {
        // Wasm additionally requires that its runtime stubs must be
        // individually PIC (i.e. we must be able to copy each stub outside the
        // embedded area without relocations). In particular, that means
        // pc-relative calls to other builtins are disallowed.
        saw_unsafe_builtin = true;
        fprintf(stderr, "%s is a wasm runtime stub but needs relocation.\n",
                Builtins::name(i));
      }
      if (BuiltinAliasesOffHeapTrampolineRegister(isolate, code)) {
        saw_unsafe_builtin = true;
        fprintf(stderr, "%s aliases the off-heap trampoline register.\n",
                Builtins::name(i));
      }

      uint32_t length = static_cast<uint32_t>(code->raw_instruction_size());

      DCHECK_EQ(0, raw_data_size % kCodeAlignment);
      metadata[i].instructions_offset = raw_data_size;
      metadata[i].instructions_length = length;

      // Align the start of each instruction stream.
      raw_data_size += PadAndAlign(length);
    } else {
      metadata[i].instructions_offset = raw_data_size;
    }
  }
  CHECK_WITH_MSG(
      !saw_unsafe_builtin,
      "One or more builtins marked as isolate-independent either contains "
      "isolate-dependent code or aliases the off-heap trampoline register. "
      "If in doubt, ask jgruber@");

  const uint32_t blob_size = RawDataOffset() + raw_data_size;
  uint8_t* const blob = new uint8_t[blob_size];
  uint8_t* const raw_data_start = blob + RawDataOffset();

  // Initially zap the entire blob, effectively padding the alignment area
  // between two builtins with int3's (on x64/ia32).
  ZapCode(reinterpret_cast<Address>(blob), blob_size);

  // Write the metadata tables.
  DCHECK_EQ(MetadataSize(), sizeof(metadata[0]) * metadata.size());
  std::memcpy(blob + MetadataOffset(), metadata.data(), MetadataSize());

  // Write the raw data section.
  for (int i = 0; i < Builtins::builtin_count; i++) {
    if (!Builtins::IsIsolateIndependent(i)) continue;
    Code* code = builtins->builtin(i);
    uint32_t offset = metadata[i].instructions_offset;
    uint8_t* dst = raw_data_start + offset;
    DCHECK_LE(RawDataOffset() + offset + code->raw_instruction_size(),
              blob_size);
    std::memcpy(dst, reinterpret_cast<uint8_t*>(code->raw_instruction_start()),
                code->raw_instruction_size());
  }

  EmbeddedData d(blob, blob_size);

  // Fix up call targets that point to other embedded builtins.
  FinalizeEmbeddedCodeTargets(isolate, &d);

  // Hash the blob and store the result.
  STATIC_ASSERT(HashSize() == kSizetSize);
  const size_t hash = d.CreateHash();
  std::memcpy(blob + HashOffset(), &hash, HashSize());

  DCHECK_EQ(hash, d.CreateHash());
  DCHECK_EQ(hash, d.Hash());

  if (FLAG_serialization_statistics) d.PrintStatistics();

  return d;
}

EmbeddedData EmbeddedData::FromBlob() {
  const uint8_t* data = Isolate::CurrentEmbeddedBlob();
  uint32_t size = Isolate::CurrentEmbeddedBlobSize();
  DCHECK_NOT_NULL(data);
  DCHECK_LT(0, size);
  return {data, size};
}

Address EmbeddedData::InstructionStartOfBuiltin(int i) const {
  DCHECK(Builtins::IsBuiltinId(i));
  const struct Metadata* metadata = Metadata();
  const uint8_t* result = RawData() + metadata[i].instructions_offset;
  DCHECK_LE(result, data_ + size_);
  DCHECK_IMPLIES(result == data_ + size_, InstructionSizeOfBuiltin(i) == 0);
  return reinterpret_cast<Address>(result);
}

uint32_t EmbeddedData::InstructionSizeOfBuiltin(int i) const {
  DCHECK(Builtins::IsBuiltinId(i));
  const struct Metadata* metadata = Metadata();
  return metadata[i].instructions_length;
}

size_t EmbeddedData::CreateHash() const {
  STATIC_ASSERT(HashOffset() == 0);
  STATIC_ASSERT(HashSize() == kSizetSize);
  return base::hash_range(data_ + HashSize(), data_ + size_);
}

uint32_t Snapshot::ExtractNumContexts(const v8::StartupData* data) {
  CHECK_LT(kNumberOfContextsOffset, data->raw_size);
  uint32_t num_contexts = GetHeaderValue(data, kNumberOfContextsOffset);
  return num_contexts;
}

void EmbeddedData::PrintStatistics() const {
  DCHECK(FLAG_serialization_statistics);

  constexpr int kCount = Builtins::builtin_count;

  int embedded_count = 0;
  int instruction_size = 0;
  int sizes[kCount];
  for (int i = 0; i < kCount; i++) {
    if (!Builtins::IsIsolateIndependent(i)) continue;
    const int size = InstructionSizeOfBuiltin(i);
    instruction_size += size;
    sizes[embedded_count] = size;
    embedded_count++;
  }

  // Sort for percentiles.
  std::sort(&sizes[0], &sizes[embedded_count]);

  const int k50th = embedded_count * 0.5;
  const int k75th = embedded_count * 0.75;
  const int k90th = embedded_count * 0.90;
  const int k99th = embedded_count * 0.99;

  const int metadata_size = static_cast<int>(HashSize() + MetadataSize());

  PrintF("EmbeddedData:\n");
  PrintF("  Total size:                         %d\n",
         static_cast<int>(size()));
  PrintF("  Metadata size:                      %d\n", metadata_size);
  PrintF("  Instruction size:                   %d\n", instruction_size);
  PrintF("  Padding:                            %d\n",
         static_cast<int>(size() - metadata_size - instruction_size));
  PrintF("  Embedded builtin count:             %d\n", embedded_count);
  PrintF("  Instruction size (50th percentile): %d\n", sizes[k50th]);
  PrintF("  Instruction size (75th percentile): %d\n", sizes[k75th]);
  PrintF("  Instruction size (90th percentile): %d\n", sizes[k90th]);
  PrintF("  Instruction size (99th percentile): %d\n", sizes[k99th]);
  PrintF("\n");
}

uint32_t Snapshot::ExtractContextOffset(const v8::StartupData* data,
                                        uint32_t index) {
  // Extract the offset of the context at a given index from the StartupData,
  // and check that it is within bounds.
  uint32_t context_offset =
      GetHeaderValue(data, ContextSnapshotOffsetOffset(index));
  CHECK_LT(context_offset, static_cast<uint32_t>(data->raw_size));
  return context_offset;
}

bool Snapshot::ExtractRehashability(const v8::StartupData* data) {
  CHECK_LT(kRehashabilityOffset, static_cast<uint32_t>(data->raw_size));
  return GetHeaderValue(data, kRehashabilityOffset) != 0;
}

Vector<const byte> Snapshot::ExtractStartupData(const v8::StartupData* data) {
  uint32_t num_contexts = ExtractNumContexts(data);
  uint32_t startup_offset = StartupSnapshotOffset(num_contexts);
  CHECK_LT(startup_offset, data->raw_size);
  uint32_t builtin_offset = GetHeaderValue(data, kBuiltinOffsetOffset);
  CHECK_LT(builtin_offset, data->raw_size);
  CHECK_GT(builtin_offset, startup_offset);
  uint32_t startup_length = builtin_offset - startup_offset;
  const byte* startup_data =
      reinterpret_cast<const byte*>(data->data + startup_offset);
  return Vector<const byte>(startup_data, startup_length);
}

Vector<const byte> Snapshot::ExtractBuiltinData(const v8::StartupData* data) {
  DCHECK(SnapshotIsValid(data));

  uint32_t from_offset = GetHeaderValue(data, kBuiltinOffsetOffset);
  CHECK_LT(from_offset, data->raw_size);

  uint32_t to_offset = GetHeaderValue(data, ContextSnapshotOffsetOffset(0));
  CHECK_LT(to_offset, data->raw_size);

  CHECK_GT(to_offset, from_offset);
  uint32_t length = to_offset - from_offset;
  const byte* builtin_data =
      reinterpret_cast<const byte*>(data->data + from_offset);
  return Vector<const byte>(builtin_data, length);
}

Vector<const byte> Snapshot::ExtractContextData(const v8::StartupData* data,
                                                uint32_t index) {
  uint32_t num_contexts = ExtractNumContexts(data);
  CHECK_LT(index, num_contexts);

  uint32_t context_offset = ExtractContextOffset(data, index);
  uint32_t next_context_offset;
  if (index == num_contexts - 1) {
    next_context_offset = data->raw_size;
  } else {
    next_context_offset = ExtractContextOffset(data, index + 1);
    CHECK_LT(next_context_offset, data->raw_size);
  }

  const byte* context_data =
      reinterpret_cast<const byte*>(data->data + context_offset);
  uint32_t context_length = next_context_offset - context_offset;
  return Vector<const byte>(context_data, context_length);
}

void Snapshot::CheckVersion(const v8::StartupData* data) {
  char version[kVersionStringLength];
  memset(version, 0, kVersionStringLength);
  CHECK_LT(kVersionStringOffset + kVersionStringLength,
           static_cast<uint32_t>(data->raw_size));
  Version::GetString(Vector<char>(version, kVersionStringLength));
  if (strncmp(version, data->data + kVersionStringOffset,
              kVersionStringLength) != 0) {
    FATAL(
        "Version mismatch between V8 binary and snapshot.\n"
        "#   V8 binary version: %.*s\n"
        "#    Snapshot version: %.*s\n"
        "# The snapshot consists of %d bytes and contains %d context(s).",
        kVersionStringLength, version, kVersionStringLength,
        data->data + kVersionStringOffset, data->raw_size,
        ExtractNumContexts(data));
  }
}

template <class AllocatorT>
SnapshotData::SnapshotData(const Serializer<AllocatorT>* serializer) {
  DisallowHeapAllocation no_gc;
  std::vector<Reservation> reservations = serializer->EncodeReservations();
  const std::vector<byte>* payload = serializer->Payload();

  // Calculate sizes.
  uint32_t reservation_size =
      static_cast<uint32_t>(reservations.size()) * kUInt32Size;
  uint32_t size =
      kHeaderSize + reservation_size + static_cast<uint32_t>(payload->size());

  // Allocate backing store and create result data.
  AllocateData(size);

  // Set header values.
  SetMagicNumber(serializer->isolate());
  SetHeaderValue(kNumReservationsOffset, static_cast<int>(reservations.size()));
  SetHeaderValue(kPayloadLengthOffset, static_cast<int>(payload->size()));

  // Copy reservation chunk sizes.
  CopyBytes(data_ + kHeaderSize, reinterpret_cast<byte*>(reservations.data()),
            reservation_size);

  // Copy serialized data.
  CopyBytes(data_ + kHeaderSize + reservation_size, payload->data(),
            static_cast<size_t>(payload->size()));
}

// Explicit instantiation.
template SnapshotData::SnapshotData(
    const Serializer<DefaultSerializerAllocator>* serializer);

std::vector<SerializedData::Reservation> SnapshotData::Reservations() const {
  uint32_t size = GetHeaderValue(kNumReservationsOffset);
  std::vector<SerializedData::Reservation> reservations(size);
  memcpy(reservations.data(), data_ + kHeaderSize,
         size * sizeof(SerializedData::Reservation));
  return reservations;
}

Vector<const byte> SnapshotData::Payload() const {
  uint32_t reservations_size =
      GetHeaderValue(kNumReservationsOffset) * kUInt32Size;
  const byte* payload = data_ + kHeaderSize + reservations_size;
  uint32_t length = GetHeaderValue(kPayloadLengthOffset);
  DCHECK_EQ(data_ + size_, payload + length);
  return Vector<const byte>(payload, length);
}

BuiltinSnapshotData::BuiltinSnapshotData(const BuiltinSerializer* serializer)
    : SnapshotData(serializer) {}

Vector<const byte> BuiltinSnapshotData::Payload() const {
  uint32_t reservations_size =
      GetHeaderValue(kNumReservationsOffset) * kUInt32Size;
  const byte* payload = data_ + kHeaderSize + reservations_size;
  const int builtin_offsets_size =
      BuiltinSnapshotUtils::kNumberOfCodeObjects * kUInt32Size;
  uint32_t payload_length = GetHeaderValue(kPayloadLengthOffset);
  DCHECK_EQ(data_ + size_, payload + payload_length);
  DCHECK_GT(payload_length, builtin_offsets_size);
  return Vector<const byte>(payload, payload_length - builtin_offsets_size);
}

Vector<const uint32_t> BuiltinSnapshotData::BuiltinOffsets() const {
  uint32_t reservations_size =
      GetHeaderValue(kNumReservationsOffset) * kUInt32Size;
  const byte* payload = data_ + kHeaderSize + reservations_size;
  const int builtin_offsets_size =
      BuiltinSnapshotUtils::kNumberOfCodeObjects * kUInt32Size;
  uint32_t payload_length = GetHeaderValue(kPayloadLengthOffset);
  DCHECK_EQ(data_ + size_, payload + payload_length);
  DCHECK_GT(payload_length, builtin_offsets_size);
  const uint32_t* data = reinterpret_cast<const uint32_t*>(
      payload + payload_length - builtin_offsets_size);
  return Vector<const uint32_t>(data,
                                BuiltinSnapshotUtils::kNumberOfCodeObjects);
}

}  // namespace internal
}  // namespace v8