Welcome to mirror list, hosted at ThFree Co, Russian Federation.

type-visitor.cc « torque « src « v8 « deps - github.com/nodejs/node.git - Unnamed repository; edit this file 'description' to name the repository.
summaryrefslogtreecommitdiff
blob: 5b61baf3a833171f4e1e8a0ec9e11ac285007db8 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
// Copyright 2017 the V8 project authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.

#include "src/torque/type-visitor.h"

#include "src/common/globals.h"
#include "src/torque/declarable.h"
#include "src/torque/global-context.h"
#include "src/torque/server-data.h"
#include "src/torque/type-inference.h"
#include "src/torque/type-oracle.h"

namespace v8 {
namespace internal {
namespace torque {

const Type* TypeVisitor::ComputeType(TypeDeclaration* decl,
                                     MaybeSpecializationKey specialized_from,
                                     Scope* specialization_requester) {
  SourcePosition requester_position = CurrentSourcePosition::Get();
  CurrentSourcePosition::Scope scope(decl->pos);
  Scope* current_scope = CurrentScope::Get();
  if (specialized_from) {
    current_scope = TypeOracle::CreateGenericTypeInstantiationNamespace();
    current_scope->SetSpecializationRequester(
        {requester_position, specialization_requester,
         Type::ComputeName(decl->name->value, specialized_from)});
  }
  CurrentScope::Scope new_current_scope_scope(current_scope);
  if (specialized_from) {
    auto& params = specialized_from->generic->generic_parameters();
    auto arg_types_iterator = specialized_from->specialized_types.begin();
    for (auto param : params) {
      TypeAlias* alias =
          Declarations::DeclareType(param.name, *arg_types_iterator);
      alias->SetIsUserDefined(false);
      arg_types_iterator++;
    }
  }

  switch (decl->kind) {
#define ENUM_ITEM(name)        \
  case AstNode::Kind::k##name: \
    return ComputeType(name::cast(decl), specialized_from);
    AST_TYPE_DECLARATION_NODE_KIND_LIST(ENUM_ITEM)
#undef ENUM_ITEM
    default:
      UNIMPLEMENTED();
  }
}

const Type* TypeVisitor::ComputeType(TypeAliasDeclaration* decl,
                                     MaybeSpecializationKey specialized_from) {
  const Type* type = ComputeType(decl->type);
  type->AddAlias(decl->name->value);
  return type;
}

namespace {
std::string ComputeGeneratesType(base::Optional<std::string> opt_gen,
                                 bool enforce_tnode_type) {
  if (!opt_gen) return "";
  const std::string& generates = *opt_gen;
  if (enforce_tnode_type) {
    if (generates.length() < 7 || generates.substr(0, 6) != "TNode<" ||
        generates.substr(generates.length() - 1, 1) != ">") {
      ReportError("generated type \"", generates,
                  "\" should be of the form \"TNode<...>\"");
    }
    return generates.substr(6, generates.length() - 7);
  }
  return generates;
}
}  // namespace

const AbstractType* TypeVisitor::ComputeType(
    AbstractTypeDeclaration* decl, MaybeSpecializationKey specialized_from) {
  std::string generates =
      ComputeGeneratesType(decl->generates, !decl->is_constexpr);

  const Type* parent_type = nullptr;
  if (decl->extends) {
    parent_type = TypeVisitor::ComputeType(*decl->extends);
    if (parent_type->IsUnionType()) {
      // UnionType::IsSupertypeOf requires that types can only extend from non-
      // union types in order to work correctly.
      ReportError("type \"", decl->name->value,
                  "\" cannot extend a type union");
    }
  }

  if (decl->is_constexpr && decl->transient) {
    ReportError("cannot declare a transient type that is also constexpr");
  }

  const Type* non_constexpr_version = nullptr;
  if (decl->is_constexpr) {
    QualifiedName non_constexpr_name{GetNonConstexprName(decl->name->value)};
    if (auto type = Declarations::TryLookupType(non_constexpr_name)) {
      non_constexpr_version = *type;
    }
  }

  AbstractTypeFlags flags = AbstractTypeFlag::kNone;
  if (decl->transient) flags |= AbstractTypeFlag::kTransient;
  if (decl->is_constexpr) flags |= AbstractTypeFlag::kConstexpr;

  return TypeOracle::GetAbstractType(parent_type, decl->name->value, flags,
                                     generates, non_constexpr_version,
                                     specialized_from);
}

void DeclareMethods(AggregateType* container_type,
                    const std::vector<Declaration*>& methods) {
  for (auto declaration : methods) {
    CurrentSourcePosition::Scope pos_scope(declaration->pos);
    TorqueMacroDeclaration* method =
        TorqueMacroDeclaration::DynamicCast(declaration);
    Signature signature = TypeVisitor::MakeSignature(method);
    signature.parameter_names.insert(
        signature.parameter_names.begin() + signature.implicit_count,
        MakeNode<Identifier>(kThisParameterName));
    Statement* body = *(method->body);
    const std::string& method_name(method->name->value);
    signature.parameter_types.types.insert(
        signature.parameter_types.types.begin() + signature.implicit_count,
        container_type);
    Declarations::CreateMethod(container_type, method_name, signature, body);
  }
}

const BitFieldStructType* TypeVisitor::ComputeType(
    BitFieldStructDeclaration* decl, MaybeSpecializationKey specialized_from) {
  CurrentSourcePosition::Scope position_scope(decl->pos);
  if (specialized_from.has_value()) {
    ReportError("Bitfield struct specialization is not supported");
  }
  const Type* parent = TypeVisitor::ComputeType(decl->parent);
  if (!IsAnyUnsignedInteger(parent)) {
    ReportError(
        "Bitfield struct must extend from an unsigned integer type, not ",
        parent->ToString());
  }
  auto opt_size = SizeOf(parent);
  if (!opt_size.has_value()) {
    ReportError("Cannot determine size of bitfield struct ", decl->name->value,
                " because of unsized parent type ", parent->ToString());
  }
  const size_t size = 8 * std::get<0>(*opt_size);  // Convert bytes to bits.
  BitFieldStructType* type = TypeOracle::GetBitFieldStructType(parent, decl);

  // Iterate through all of the declared fields, checking their validity and
  // registering them on the newly-constructed BitFieldStructType instance.
  int offset = 0;
  for (const auto& field : decl->fields) {
    CurrentSourcePosition::Scope field_position_scope(
        field.name_and_type.type->pos);
    const Type* field_type = TypeVisitor::ComputeType(field.name_and_type.type);
    if (!IsAllowedAsBitField(field_type)) {
      ReportError("Type not allowed as bitfield: ",
                  field.name_and_type.name->value);
    }

    // Compute the maximum number of bits that could be used for a field of this
    // type. Booleans are a special case, not included in SizeOf, because their
    // runtime size is 32 bits but they should only occupy 1 bit as a bitfield.
    size_t field_type_size = 0;
    if (field_type->IsSubtypeOf(TypeOracle::GetBoolType())) {
      field_type_size = 1;
    } else {
      auto opt_field_type_size = SizeOf(field_type);
      if (!opt_field_type_size.has_value()) {
        ReportError("Size unknown for type ", field_type->ToString());
      }
      field_type_size = 8 * std::get<0>(*opt_field_type_size);
    }

    if (field.num_bits < 1 ||
        static_cast<size_t>(field.num_bits) > field_type_size) {
      ReportError("Invalid number of bits for ",
                  field.name_and_type.name->value);
    }
    type->RegisterField({field.name_and_type.name->pos,
                         {field.name_and_type.name->value, field_type},
                         offset,
                         field.num_bits});
    offset += field.num_bits;
    if (static_cast<size_t>(offset) > size) {
      ReportError("Too many total bits in ", decl->name->value);
    }
  }

  return type;
}

const StructType* TypeVisitor::ComputeType(
    StructDeclaration* decl, MaybeSpecializationKey specialized_from) {
  StructType* struct_type = TypeOracle::GetStructType(decl, specialized_from);
  CurrentScope::Scope struct_namespace_scope(struct_type->nspace());
  CurrentSourcePosition::Scope position_activator(decl->pos);

  ResidueClass offset = 0;
  for (auto& field : decl->fields) {
    CurrentSourcePosition::Scope position_activator(
        field.name_and_type.type->pos);
    const Type* field_type = TypeVisitor::ComputeType(field.name_and_type.type);
    if (field_type->IsConstexpr()) {
      ReportError("struct field \"", field.name_and_type.name->value,
                  "\" carries constexpr type \"", *field_type, "\"");
    }
    Field f{field.name_and_type.name->pos,
            struct_type,
            base::nullopt,
            {field.name_and_type.name->value, field_type},
            offset.SingleValue(),
            false,
            field.const_qualified,
            false};
    auto optional_size = SizeOf(f.name_and_type.type);
    struct_type->RegisterField(f);
    // Offsets are assigned based on an assumption of no space between members.
    // This might lead to invalid alignment in some cases, but most structs are
    // never actually packed in memory together (they just represent a batch of
    // CSA TNode values that should be passed around together). For any struct
    // that is used as a class field, we verify its offsets when setting up the
    // class type.
    if (optional_size.has_value()) {
      size_t field_size = 0;
      std::tie(field_size, std::ignore) = *optional_size;
      offset += field_size;
    } else {
      // Structs may contain fields that aren't representable in packed form. If
      // so, the offset of subsequent fields are marked as invalid.
      offset = ResidueClass::Unknown();
    }
  }
  return struct_type;
}

const ClassType* TypeVisitor::ComputeType(
    ClassDeclaration* decl, MaybeSpecializationKey specialized_from) {
  // TODO(sigurds): Remove this hack by introducing a declarable for classes.
  const TypeAlias* alias =
      Declarations::LookupTypeAlias(QualifiedName(decl->name->value));
  DCHECK_EQ(*alias->delayed_, decl);
  ClassFlags flags = decl->flags;
  bool is_shape = flags & ClassFlag::kIsShape;
  std::string generates = decl->name->value;
  const Type* super_type = TypeVisitor::ComputeType(decl->super);
  if (is_shape) {
    if (!(flags & ClassFlag::kExtern)) {
      ReportError("Shapes must be extern, add \"extern\" to the declaration.");
    }
    if (flags & ClassFlag::kUndefinedLayout) {
      ReportError("Shapes need to define their layout.");
    }
    const ClassType* super_class = ClassType::DynamicCast(super_type);
    if (!super_class ||
        !super_class->IsSubtypeOf(TypeOracle::GetJSObjectType())) {
      Error("Shapes need to extend a subclass of ",
            *TypeOracle::GetJSObjectType())
          .Throw();
    }
    // Shapes use their super class in CSA code since they have incomplete
    // support for type-checks on the C++ side.
    generates = super_class->name();
  }
  if (super_type != TypeOracle::GetStrongTaggedType()) {
    const ClassType* super_class = ClassType::DynamicCast(super_type);
    if (!super_class) {
      ReportError(
          "class \"", decl->name->value,
          "\" must extend either StrongTagged or an already declared class");
    }
    if (super_class->HasUndefinedLayout() &&
        !(flags & ClassFlag::kUndefinedLayout)) {
      Error("Class \"", decl->name->value,
            "\" defines its layout but extends a class which does not")
          .Position(decl->pos);
    }
    if ((flags & ClassFlag::kExport) &&
        !(super_class->ShouldExport() || super_class->IsExtern())) {
      Error("cannot export class ", decl->name,
            " because superclass is neither @export or extern");
    }
  }
  if ((flags & ClassFlag::kGenerateBodyDescriptor ||
       flags & ClassFlag::kExport) &&
      flags & ClassFlag::kUndefinedLayout) {
    Error("Class \"", decl->name->value,
          "\" requires a layout but doesn't have one");
  }
  if (flags & ClassFlag::kExtern) {
    if (decl->generates) {
      bool enforce_tnode_type = true;
      generates = ComputeGeneratesType(decl->generates, enforce_tnode_type);
    }
    if (flags & ClassFlag::kExport) {
      Error("cannot export a class that is marked extern");
    }
  } else {
    if (decl->generates) {
      ReportError("Only extern classes can specify a generated type.");
    }
    if (super_type != TypeOracle::GetStrongTaggedType()) {
      if (flags & ClassFlag::kUndefinedLayout) {
        Error("non-external classes must have defined layouts");
      }
    }
    flags = flags | ClassFlag::kGeneratePrint | ClassFlag::kGenerateVerify |
            ClassFlag::kGenerateBodyDescriptor;
  }

  return TypeOracle::GetClassType(super_type, decl->name->value, flags,
                                  generates, decl, alias);
}

const Type* TypeVisitor::ComputeType(TypeExpression* type_expression) {
  if (auto* basic = BasicTypeExpression::DynamicCast(type_expression)) {
    QualifiedName qualified_name{basic->namespace_qualification, basic->name};
    auto& args = basic->generic_arguments;
    const Type* type;
    SourcePosition pos = SourcePosition::Invalid();

    if (args.empty()) {
      auto* alias = Declarations::LookupTypeAlias(qualified_name);
      type = alias->type();
      pos = alias->GetDeclarationPosition();
    } else {
      auto* generic_type =
          Declarations::LookupUniqueGenericType(qualified_name);
      type = TypeOracle::GetGenericTypeInstance(generic_type,
                                                ComputeTypeVector(args));
      pos = generic_type->declaration()->name->pos;
    }

    if (GlobalContext::collect_language_server_data()) {
      LanguageServerData::AddDefinition(type_expression->pos, pos);
    }
    return type;

  } else if (auto* union_type =
                 UnionTypeExpression::DynamicCast(type_expression)) {
    return TypeOracle::GetUnionType(ComputeType(union_type->a),
                                    ComputeType(union_type->b));
  } else {
    auto* function_type_exp = FunctionTypeExpression::cast(type_expression);
    TypeVector argument_types;
    for (TypeExpression* type_exp : function_type_exp->parameters) {
      argument_types.push_back(ComputeType(type_exp));
    }
    return TypeOracle::GetBuiltinPointerType(
        argument_types, ComputeType(function_type_exp->return_type));
  }
}

Signature TypeVisitor::MakeSignature(const CallableDeclaration* declaration) {
  LabelDeclarationVector definition_vector;
  for (const auto& label : declaration->labels) {
    LabelDeclaration def = {label.name, ComputeTypeVector(label.types)};
    definition_vector.push_back(def);
  }
  base::Optional<std::string> arguments_variable;
  if (declaration->parameters.has_varargs)
    arguments_variable = declaration->parameters.arguments_variable;
  Signature result{declaration->parameters.names,
                   arguments_variable,
                   {ComputeTypeVector(declaration->parameters.types),
                    declaration->parameters.has_varargs},
                   declaration->parameters.implicit_count,
                   ComputeType(declaration->return_type),
                   definition_vector,
                   declaration->transitioning};
  return result;
}

void TypeVisitor::VisitClassFieldsAndMethods(
    ClassType* class_type, const ClassDeclaration* class_declaration) {
  const ClassType* super_class = class_type->GetSuperClass();
  ResidueClass class_offset = 0;
  size_t header_size = 0;
  if (super_class) {
    class_offset = super_class->size();
    header_size = super_class->header_size();
  }

  for (const ClassFieldExpression& field_expression :
       class_declaration->fields) {
    CurrentSourcePosition::Scope position_activator(
        field_expression.name_and_type.type->pos);
    const Type* field_type = ComputeType(field_expression.name_and_type.type);
    if (class_type->IsShape()) {
      if (!field_type->IsSubtypeOf(TypeOracle::GetObjectType())) {
        ReportError(
            "in-object properties only support subtypes of Object, but "
            "found type ",
            *field_type);
      }
      if (field_expression.weak) {
        ReportError("in-object properties cannot be weak");
      }
    }
    base::Optional<Expression*> array_length = field_expression.index;
    const Field& field = class_type->RegisterField(
        {field_expression.name_and_type.name->pos,
         class_type,
         array_length,
         {field_expression.name_and_type.name->value, field_type},
         class_offset.SingleValue(),
         field_expression.weak,
         field_expression.const_qualified,
         field_expression.generate_verify});
    ResidueClass field_size = std::get<0>(field.GetFieldSizeInformation());
    if (field.index) {
      // Validate that a value at any index in a packed array is aligned
      // correctly, since it is possible to define a struct whose size is not a
      // multiple of its alignment.
      field.ValidateAlignment(class_offset +
                              field_size * ResidueClass::Unknown());

      if (auto literal = NumberLiteralExpression::DynamicCast(*field.index)) {
        size_t value = static_cast<size_t>(literal->number);
        if (value != literal->number) {
          Error("non-integral array length").Position(field.pos);
        }
        field_size *= value;
      } else {
        field_size *= ResidueClass::Unknown();
      }
    }
    field.ValidateAlignment(class_offset);
    class_offset += field_size;
    // In-object properties are not considered part of the header.
    if (class_offset.SingleValue() && !class_type->IsShape()) {
      header_size = *class_offset.SingleValue();
    }
    if (!field.index && !class_offset.SingleValue()) {
      Error("Indexed fields have to be at the end of the object")
          .Position(field.pos);
    }
  }
  DCHECK_GT(header_size, 0);
  class_type->header_size_ = header_size;
  class_type->size_ = class_offset;
  class_type->GenerateAccessors();
  DeclareMethods(class_type, class_declaration->methods);
}

void TypeVisitor::VisitStructMethods(
    StructType* struct_type, const StructDeclaration* struct_declaration) {
  DeclareMethods(struct_type, struct_declaration->methods);
}

const Type* TypeVisitor::ComputeTypeForStructExpression(
    TypeExpression* type_expression,
    const std::vector<const Type*>& term_argument_types) {
  auto* basic = BasicTypeExpression::DynamicCast(type_expression);
  if (!basic) {
    ReportError("expected basic type expression referring to struct");
  }

  QualifiedName qualified_name{basic->namespace_qualification, basic->name};
  base::Optional<GenericType*> maybe_generic_type =
      Declarations::TryLookupGenericType(qualified_name);

  StructDeclaration* decl =
      maybe_generic_type
          ? StructDeclaration::DynamicCast((*maybe_generic_type)->declaration())
          : nullptr;

  // Compute types of non-generic structs as usual
  if (!(maybe_generic_type && decl)) {
    const Type* type = ComputeType(type_expression);
    if (!type->IsStructType() && !type->IsBitFieldStructType()) {
      ReportError(*type,
                  " is not a struct or bitfield struct, but used like one");
    }
    return type;
  }

  auto generic_type = *maybe_generic_type;
  auto explicit_type_arguments = ComputeTypeVector(basic->generic_arguments);

  std::vector<TypeExpression*> term_parameters;
  auto& fields = decl->fields;
  term_parameters.reserve(fields.size());
  for (auto& field : fields) {
    term_parameters.push_back(field.name_and_type.type);
  }

  CurrentScope::Scope generic_scope(generic_type->ParentScope());
  TypeArgumentInference inference(generic_type->generic_parameters(),
                                  explicit_type_arguments, term_parameters,
                                  term_argument_types);

  if (inference.HasFailed()) {
    ReportError("failed to infer type arguments for struct ", basic->name,
                " initialization: ", inference.GetFailureReason());
  }
  if (GlobalContext::collect_language_server_data()) {
    LanguageServerData::AddDefinition(type_expression->pos,
                                      generic_type->declaration()->name->pos);
  }
  return StructType::cast(
      TypeOracle::GetGenericTypeInstance(generic_type, inference.GetResult()));
}

}  // namespace torque
}  // namespace internal
}  // namespace v8