Welcome to mirror list, hosted at ThFree Co, Russian Federation.

spaces-unittest.cc « heap « unittests « test « v8 « deps - github.com/nodejs/node.git - Unnamed repository; edit this file 'description' to name the repository.
summaryrefslogtreecommitdiff
blob: 296c85d7072d7f244bddd0d43a9ca96e55ae985d (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
// Copyright 2017 the V8 project authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.

#include "src/heap/spaces.h"
#include <memory>
#include "src/common/globals.h"
#include "src/execution/isolate.h"
#include "src/heap/heap-inl.h"
#include "src/heap/heap-write-barrier-inl.h"
#include "src/heap/heap.h"
#include "src/heap/spaces-inl.h"
#include "test/unittests/test-utils.h"

namespace v8 {
namespace internal {

using SpacesTest = TestWithIsolate;

TEST_F(SpacesTest, CompactionSpaceMerge) {
  Heap* heap = i_isolate()->heap();
  OldSpace* old_space = heap->old_space();
  EXPECT_TRUE(old_space != nullptr);

  CompactionSpace* compaction_space =
      new CompactionSpace(heap, OLD_SPACE, NOT_EXECUTABLE,
                          LocalSpaceKind::kCompactionSpaceForMarkCompact);
  EXPECT_TRUE(compaction_space != nullptr);

  for (Page* p : *old_space) {
    // Unlink free lists from the main space to avoid reusing the memory for
    // compaction spaces.
    old_space->UnlinkFreeListCategories(p);
  }

  // Cannot loop until "Available()" since we initially have 0 bytes available
  // and would thus neither grow, nor be able to allocate an object.
  const int kNumObjects = 10;
  const int kNumObjectsPerPage =
      compaction_space->AreaSize() / kMaxRegularHeapObjectSize;
  const int kExpectedPages =
      (kNumObjects + kNumObjectsPerPage - 1) / kNumObjectsPerPage;
  for (int i = 0; i < kNumObjects; i++) {
    HeapObject object =
        compaction_space->AllocateRawUnaligned(kMaxRegularHeapObjectSize)
            .ToObjectChecked();
    heap->CreateFillerObjectAt(object.address(), kMaxRegularHeapObjectSize,
                               ClearRecordedSlots::kNo);
  }
  int pages_in_old_space = old_space->CountTotalPages();
  int pages_in_compaction_space = compaction_space->CountTotalPages();
  EXPECT_EQ(kExpectedPages, pages_in_compaction_space);
  old_space->MergeLocalSpace(compaction_space);
  EXPECT_EQ(pages_in_old_space + pages_in_compaction_space,
            old_space->CountTotalPages());

  delete compaction_space;
}

class OffThreadAllocationThread final : public base::Thread {
 public:
  explicit OffThreadAllocationThread(Heap* heap)
      : Thread(Options("OffThreadAllocationThread")), heap_(heap) {}
  void Run() override {
    off_thread_space_ = std::make_unique<OffThreadSpace>(heap_);
    EXPECT_TRUE(off_thread_space_ != nullptr);

    // Cannot loop until "Available()" since we initially have 0 bytes available
    // and would thus neither grow, nor be able to allocate an object.
    const int kNumObjects = 10;
    const int kNumObjectsPerPage =
        off_thread_space_->AreaSize() / kMaxRegularHeapObjectSize;
    const int kExpectedPages =
        (kNumObjects + kNumObjectsPerPage - 1) / kNumObjectsPerPage;
    for (int i = 0; i < kNumObjects; i++) {
      HeapObject object =
          off_thread_space_->AllocateRawUnaligned(kMaxRegularHeapObjectSize)
              .ToObjectChecked();
      heap_->CreateFillerObjectAt(object.address(), kMaxRegularHeapObjectSize,
                                  ClearRecordedSlots::kNo);
    }
    int pages_in_off_thread_space = off_thread_space_->CountTotalPages();
    EXPECT_EQ(kExpectedPages, pages_in_off_thread_space);
  }

  OffThreadSpace* space() { return off_thread_space_.get(); }

 private:
  Heap* heap_;
  std::unique_ptr<OffThreadSpace> off_thread_space_;
};

TEST_F(SpacesTest, OffThreadSpaceAllocate) {
  Heap* heap = i_isolate()->heap();

  static const int kNumThreads = 10;
  std::unique_ptr<OffThreadAllocationThread> threads[10];
  for (int i = 0; i < kNumThreads; ++i) {
    threads[i] = std::make_unique<OffThreadAllocationThread>(heap);
  }
  for (int i = 0; i < kNumThreads; ++i) {
    CHECK(threads[i]->Start());
  }
  for (int i = 0; i < kNumThreads; ++i) {
    threads[i]->Join();
  }
}

TEST_F(SpacesTest, OffThreadSpaceMerge) {
  Heap* heap = i_isolate()->heap();
  OldSpace* old_space = heap->old_space();
  EXPECT_TRUE(old_space != nullptr);

  static const int kNumThreads = 10;
  std::unique_ptr<OffThreadAllocationThread> threads[10];
  for (int i = 0; i < kNumThreads; ++i) {
    threads[i] = std::make_unique<OffThreadAllocationThread>(heap);
  }
  for (int i = 0; i < kNumThreads; ++i) {
    CHECK(threads[i]->Start());
  }
  for (int i = 0; i < kNumThreads; ++i) {
    threads[i]->Join();
  }

  int pages_in_old_space = old_space->CountTotalPages();

  int expected_merged_pages = 0;
  for (int i = 0; i < kNumThreads; ++i) {
    int pages_in_off_thread_space = threads[i]->space()->CountTotalPages();

    old_space->MergeLocalSpace(threads[i]->space());
    expected_merged_pages += pages_in_off_thread_space;
  }

  EXPECT_EQ(pages_in_old_space + expected_merged_pages,
            old_space->CountTotalPages());
}

TEST_F(SpacesTest, OffThreadSpaceMergeDuringIncrementalMarking) {
  Heap* heap = i_isolate()->heap();
  OldSpace* old_space = heap->old_space();
  EXPECT_TRUE(old_space != nullptr);

  static const int kNumThreads = 10;
  std::unique_ptr<OffThreadAllocationThread> threads[10];
  for (int i = 0; i < kNumThreads; ++i) {
    threads[i] = std::make_unique<OffThreadAllocationThread>(heap);
  }
  for (int i = 0; i < kNumThreads; ++i) {
    CHECK(threads[i]->Start());
  }
  for (int i = 0; i < kNumThreads; ++i) {
    threads[i]->Join();
  }

  heap->StartIncrementalMarking(Heap::kNoGCFlags,
                                GarbageCollectionReason::kTesting);

  int pages_in_old_space = old_space->CountTotalPages();

  int expected_merged_pages = 0;
  for (int i = 0; i < kNumThreads; ++i) {
    int pages_in_off_thread_space = threads[i]->space()->CountTotalPages();

    old_space->MergeLocalSpace(threads[i]->space());
    expected_merged_pages += pages_in_off_thread_space;
  }

  heap->FinalizeIncrementalMarkingAtomically(GarbageCollectionReason::kTesting);

  EXPECT_EQ(pages_in_old_space + expected_merged_pages,
            old_space->CountTotalPages());
}

class LargeOffThreadAllocationThread final : public base::Thread {
 public:
  explicit LargeOffThreadAllocationThread(Heap* heap)
      : Thread(Options("LargeOffThreadAllocationThread")), heap_(heap) {}
  void Run() override {
    off_thread_lo_space_ = std::make_unique<OffThreadLargeObjectSpace>(heap_);
    EXPECT_TRUE(off_thread_lo_space_ != nullptr);

    const int kNumObjects = 10;
    const int kExpectedPages = kNumObjects;
    for (int i = 0; i < kNumObjects; i++) {
      HeapObject object =
          off_thread_lo_space_
              ->AllocateRaw(kMaxRegularHeapObjectSize + kTaggedSize)
              .ToObjectChecked();
      heap_->CreateFillerObjectAt(object.address(),
                                  kMaxRegularHeapObjectSize + kTaggedSize,
                                  ClearRecordedSlots::kNo);
    }
    int pages_in_off_thread_space = off_thread_lo_space_->PageCount();
    EXPECT_EQ(kExpectedPages, pages_in_off_thread_space);
  }

  OffThreadLargeObjectSpace* space() { return off_thread_lo_space_.get(); }

 private:
  Heap* heap_;
  std::unique_ptr<OffThreadLargeObjectSpace> off_thread_lo_space_;
};

TEST_F(SpacesTest, OffThreadLargeObjectSpaceAllocate) {
  Heap* heap = i_isolate()->heap();

  static const int kNumThreads = 10;
  std::unique_ptr<LargeOffThreadAllocationThread> threads[10];
  for (int i = 0; i < kNumThreads; ++i) {
    threads[i] = std::make_unique<LargeOffThreadAllocationThread>(heap);
  }
  for (int i = 0; i < kNumThreads; ++i) {
    CHECK(threads[i]->Start());
  }
  for (int i = 0; i < kNumThreads; ++i) {
    threads[i]->Join();
  }
}

TEST_F(SpacesTest, OffThreadLargeObjectSpaceMerge) {
  Heap* heap = i_isolate()->heap();
  OldLargeObjectSpace* lo_space = heap->lo_space();
  EXPECT_TRUE(lo_space != nullptr);

  static const int kNumThreads = 10;
  std::unique_ptr<LargeOffThreadAllocationThread> threads[10];
  for (int i = 0; i < kNumThreads; ++i) {
    threads[i] = std::make_unique<LargeOffThreadAllocationThread>(heap);
  }
  for (int i = 0; i < kNumThreads; ++i) {
    CHECK(threads[i]->Start());
  }
  for (int i = 0; i < kNumThreads; ++i) {
    threads[i]->Join();
  }

  int pages_in_old_space = lo_space->PageCount();

  int expected_merged_pages = 0;
  for (int i = 0; i < kNumThreads; ++i) {
    int pages_in_off_thread_space = threads[i]->space()->PageCount();

    lo_space->MergeOffThreadSpace(threads[i]->space());
    expected_merged_pages += pages_in_off_thread_space;
  }

  EXPECT_EQ(pages_in_old_space + expected_merged_pages, lo_space->PageCount());
}

TEST_F(SpacesTest, OffThreadLargeObjectSpaceMergeDuringIncrementalMarking) {
  Heap* heap = i_isolate()->heap();
  OldLargeObjectSpace* lo_space = heap->lo_space();
  EXPECT_TRUE(lo_space != nullptr);

  static const int kNumThreads = 10;
  std::unique_ptr<LargeOffThreadAllocationThread> threads[10];
  for (int i = 0; i < kNumThreads; ++i) {
    threads[i] = std::make_unique<LargeOffThreadAllocationThread>(heap);
  }
  for (int i = 0; i < kNumThreads; ++i) {
    CHECK(threads[i]->Start());
  }
  for (int i = 0; i < kNumThreads; ++i) {
    threads[i]->Join();
  }

  int pages_in_old_space = lo_space->PageCount();

  int expected_merged_pages = 0;
  for (int i = 0; i < kNumThreads; ++i) {
    int pages_in_off_thread_space = threads[i]->space()->PageCount();

    lo_space->MergeOffThreadSpace(threads[i]->space());
    expected_merged_pages += pages_in_off_thread_space;
  }

  EXPECT_EQ(pages_in_old_space + expected_merged_pages, lo_space->PageCount());
}

TEST_F(SpacesTest, WriteBarrierFromHeapObject) {
  constexpr Address address1 = Page::kPageSize;
  HeapObject object1 = HeapObject::unchecked_cast(Object(address1));
  MemoryChunk* chunk1 = MemoryChunk::FromHeapObject(object1);
  heap_internals::MemoryChunk* slim_chunk1 =
      heap_internals::MemoryChunk::FromHeapObject(object1);
  EXPECT_EQ(static_cast<void*>(chunk1), static_cast<void*>(slim_chunk1));
  constexpr Address address2 = 2 * Page::kPageSize - 1;
  HeapObject object2 = HeapObject::unchecked_cast(Object(address2));
  MemoryChunk* chunk2 = MemoryChunk::FromHeapObject(object2);
  heap_internals::MemoryChunk* slim_chunk2 =
      heap_internals::MemoryChunk::FromHeapObject(object2);
  EXPECT_EQ(static_cast<void*>(chunk2), static_cast<void*>(slim_chunk2));
}

TEST_F(SpacesTest, WriteBarrierIsMarking) {
  const size_t kSizeOfMemoryChunk = sizeof(MemoryChunk);
  char memory[kSizeOfMemoryChunk];
  memset(&memory, 0, kSizeOfMemoryChunk);
  MemoryChunk* chunk = reinterpret_cast<MemoryChunk*>(&memory);
  heap_internals::MemoryChunk* slim_chunk =
      reinterpret_cast<heap_internals::MemoryChunk*>(&memory);
  EXPECT_FALSE(chunk->IsFlagSet(MemoryChunk::INCREMENTAL_MARKING));
  EXPECT_FALSE(slim_chunk->IsMarking());
  chunk->SetFlag(MemoryChunk::INCREMENTAL_MARKING);
  EXPECT_TRUE(chunk->IsFlagSet(MemoryChunk::INCREMENTAL_MARKING));
  EXPECT_TRUE(slim_chunk->IsMarking());
  chunk->ClearFlag(MemoryChunk::INCREMENTAL_MARKING);
  EXPECT_FALSE(chunk->IsFlagSet(MemoryChunk::INCREMENTAL_MARKING));
  EXPECT_FALSE(slim_chunk->IsMarking());
}

TEST_F(SpacesTest, WriteBarrierInYoungGenerationToSpace) {
  const size_t kSizeOfMemoryChunk = sizeof(MemoryChunk);
  char memory[kSizeOfMemoryChunk];
  memset(&memory, 0, kSizeOfMemoryChunk);
  MemoryChunk* chunk = reinterpret_cast<MemoryChunk*>(&memory);
  heap_internals::MemoryChunk* slim_chunk =
      reinterpret_cast<heap_internals::MemoryChunk*>(&memory);
  EXPECT_FALSE(chunk->InYoungGeneration());
  EXPECT_FALSE(slim_chunk->InYoungGeneration());
  chunk->SetFlag(MemoryChunk::TO_PAGE);
  EXPECT_TRUE(chunk->InYoungGeneration());
  EXPECT_TRUE(slim_chunk->InYoungGeneration());
  chunk->ClearFlag(MemoryChunk::TO_PAGE);
  EXPECT_FALSE(chunk->InYoungGeneration());
  EXPECT_FALSE(slim_chunk->InYoungGeneration());
}

TEST_F(SpacesTest, WriteBarrierInYoungGenerationFromSpace) {
  const size_t kSizeOfMemoryChunk = sizeof(MemoryChunk);
  char memory[kSizeOfMemoryChunk];
  memset(&memory, 0, kSizeOfMemoryChunk);
  MemoryChunk* chunk = reinterpret_cast<MemoryChunk*>(&memory);
  heap_internals::MemoryChunk* slim_chunk =
      reinterpret_cast<heap_internals::MemoryChunk*>(&memory);
  EXPECT_FALSE(chunk->InYoungGeneration());
  EXPECT_FALSE(slim_chunk->InYoungGeneration());
  chunk->SetFlag(MemoryChunk::FROM_PAGE);
  EXPECT_TRUE(chunk->InYoungGeneration());
  EXPECT_TRUE(slim_chunk->InYoungGeneration());
  chunk->ClearFlag(MemoryChunk::FROM_PAGE);
  EXPECT_FALSE(chunk->InYoungGeneration());
  EXPECT_FALSE(slim_chunk->InYoungGeneration());
}

TEST_F(SpacesTest, CodeRangeAddressReuse) {
  CodeRangeAddressHint hint;
  // Create code ranges.
  Address code_range1 = hint.GetAddressHint(100);
  Address code_range2 = hint.GetAddressHint(200);
  Address code_range3 = hint.GetAddressHint(100);

  // Since the addresses are random, we cannot check that they are different.

  // Free two code ranges.
  hint.NotifyFreedCodeRange(code_range1, 100);
  hint.NotifyFreedCodeRange(code_range2, 200);

  // The next two code ranges should reuse the freed addresses.
  Address code_range4 = hint.GetAddressHint(100);
  EXPECT_EQ(code_range4, code_range1);
  Address code_range5 = hint.GetAddressHint(200);
  EXPECT_EQ(code_range5, code_range2);

  // Free the third code range and check address reuse.
  hint.NotifyFreedCodeRange(code_range3, 100);
  Address code_range6 = hint.GetAddressHint(100);
  EXPECT_EQ(code_range6, code_range3);
}

// Tests that FreeListMany::SelectFreeListCategoryType returns what it should.
TEST_F(SpacesTest, FreeListManySelectFreeListCategoryType) {
  FreeListMany free_list;

  // Testing that all sizes below 256 bytes get assigned the correct category
  for (size_t size = 0; size <= FreeListMany::kPreciseCategoryMaxSize; size++) {
    FreeListCategoryType cat = free_list.SelectFreeListCategoryType(size);
    if (cat == 0) {
      // If cat == 0, then we make sure that |size| doesn't fit in the 2nd
      // category.
      EXPECT_LT(size, free_list.categories_min[1]);
    } else {
      // Otherwise, size should fit in |cat|, but not in |cat+1|.
      EXPECT_LE(free_list.categories_min[cat], size);
      EXPECT_LT(size, free_list.categories_min[cat + 1]);
    }
  }

  // Testing every size above 256 would take long time, so test only some
  // "interesting cases": picking some number in the middle of the categories,
  // as well as at the categories' bounds.
  for (int cat = kFirstCategory + 1; cat <= free_list.last_category_; cat++) {
    std::vector<size_t> sizes;
    // Adding size less than this category's minimum
    sizes.push_back(free_list.categories_min[cat] - 8);
    // Adding size equal to this category's minimum
    sizes.push_back(free_list.categories_min[cat]);
    // Adding size greater than this category's minimum
    sizes.push_back(free_list.categories_min[cat] + 8);
    // Adding size between this category's minimum and the next category
    if (cat != free_list.last_category_) {
      sizes.push_back(
          (free_list.categories_min[cat] + free_list.categories_min[cat + 1]) /
          2);
    }

    for (size_t size : sizes) {
      FreeListCategoryType cat = free_list.SelectFreeListCategoryType(size);
      if (cat == free_list.last_category_) {
        // If cat == last_category, then we make sure that |size| indeeds fits
        // in the last category.
        EXPECT_LE(free_list.categories_min[cat], size);
      } else {
        // Otherwise, size should fit in |cat|, but not in |cat+1|.
        EXPECT_LE(free_list.categories_min[cat], size);
        EXPECT_LT(size, free_list.categories_min[cat + 1]);
      }
    }
  }
}

// Tests that FreeListMany::GuaranteedAllocatable returns what it should.
TEST_F(SpacesTest, FreeListManyGuaranteedAllocatable) {
  FreeListMany free_list;

  for (int cat = kFirstCategory; cat < free_list.last_category_; cat++) {
    std::vector<size_t> sizes;
    // Adding size less than this category's minimum
    sizes.push_back(free_list.categories_min[cat] - 8);
    // Adding size equal to this category's minimum
    sizes.push_back(free_list.categories_min[cat]);
    // Adding size greater than this category's minimum
    sizes.push_back(free_list.categories_min[cat] + 8);
    if (cat != free_list.last_category_) {
      // Adding size between this category's minimum and the next category
      sizes.push_back(
          (free_list.categories_min[cat] + free_list.categories_min[cat + 1]) /
          2);
    }

    for (size_t size : sizes) {
      FreeListCategoryType cat_free =
          free_list.SelectFreeListCategoryType(size);
      size_t guaranteed_allocatable = free_list.GuaranteedAllocatable(size);
      if (cat_free == free_list.last_category_) {
        // If |cat_free| == last_category, then guaranteed_allocatable must
        // return the last category, because when allocating, the last category
        // is searched entirely.
        EXPECT_EQ(free_list.SelectFreeListCategoryType(guaranteed_allocatable),
                  free_list.last_category_);
      } else if (size < free_list.categories_min[0]) {
        // If size < free_list.categories_min[0], then the bytes are wasted, and
        // guaranteed_allocatable should return 0.
        EXPECT_EQ(guaranteed_allocatable, 0ul);
      } else {
        // Otherwise, |guaranteed_allocatable| is equal to the minimum of
        // |size|'s category (|cat_free|);
        EXPECT_EQ(free_list.categories_min[cat_free], guaranteed_allocatable);
      }
    }
  }
}

// Tests that
// FreeListManyCachedFastPath::SelectFastAllocationFreeListCategoryType returns
// what it should.
TEST_F(SpacesTest,
       FreeListManyCachedFastPathSelectFastAllocationFreeListCategoryType) {
  FreeListManyCachedFastPath free_list;

  for (int cat = kFirstCategory; cat <= free_list.last_category_; cat++) {
    std::vector<size_t> sizes;
    // Adding size less than this category's minimum
    sizes.push_back(free_list.categories_min[cat] - 8);
    // Adding size equal to this category's minimum
    sizes.push_back(free_list.categories_min[cat]);
    // Adding size greater than this category's minimum
    sizes.push_back(free_list.categories_min[cat] + 8);
    // Adding size between this category's minimum and the next category
    if (cat != free_list.last_category_) {
      sizes.push_back(
          (free_list.categories_min[cat] + free_list.categories_min[cat + 1]) /
          2);
    }

    for (size_t size : sizes) {
      FreeListCategoryType cat =
          free_list.SelectFastAllocationFreeListCategoryType(size);
      if (size <= FreeListManyCachedFastPath::kTinyObjectMaxSize) {
        // For tiny objects, the first category of the fast path should be
        // chosen.
        EXPECT_TRUE(cat == FreeListManyCachedFastPath::kFastPathFirstCategory);
      } else if (size >= free_list.categories_min[free_list.last_category_] -
                             FreeListManyCachedFastPath::kFastPathOffset) {
        // For objects close to the minimum of the last category, the last
        // category is chosen.
        EXPECT_EQ(cat, free_list.last_category_);
      } else {
        // For other objects, the chosen category must satisfy that its minimum
        // is at least |size|+1.85k.
        EXPECT_GE(free_list.categories_min[cat],
                  size + FreeListManyCachedFastPath::kFastPathOffset);
        // And the smaller categoriy's minimum is less than |size|+1.85k
        // (otherwise it would have been chosen instead).
        EXPECT_LT(free_list.categories_min[cat - 1],
                  size + FreeListManyCachedFastPath::kFastPathOffset);
      }
    }
  }
}

}  // namespace internal
}  // namespace v8