/* * Copyright 2019-2022 The OpenSSL Project Authors. All Rights Reserved. * * Licensed under the Apache License 2.0 (the "License"). You may not use * this file except in compliance with the License. You can obtain a copy * in the file LICENSE in the source distribution or at * https://www.openssl.org/source/license.html */ #include #include #include #include #include /* For TLS1_3_VERSION */ #include #include "internal/nelem.h" static OSSL_FUNC_keymgmt_import_fn xor_import; static OSSL_FUNC_keymgmt_import_types_fn xor_import_types; static OSSL_FUNC_keymgmt_export_fn xor_export; static OSSL_FUNC_keymgmt_export_types_fn xor_export_types; int tls_provider_init(const OSSL_CORE_HANDLE *handle, const OSSL_DISPATCH *in, const OSSL_DISPATCH **out, void **provctx); #define XOR_KEY_SIZE 32 /* * Top secret. This algorithm only works if no one knows what this number is. * Please don't tell anyone what it is. * * This algorithm is for testing only - don't really use it! */ static const unsigned char private_constant[XOR_KEY_SIZE] = { 0xd3, 0x6b, 0x54, 0xec, 0x5b, 0xac, 0x89, 0x96, 0x8c, 0x2c, 0x66, 0xa5, 0x67, 0x0d, 0xe3, 0xdd, 0x43, 0x69, 0xbc, 0x83, 0x3d, 0x60, 0xc7, 0xb8, 0x2b, 0x1c, 0x5a, 0xfd, 0xb5, 0xcd, 0xd0, 0xf8 }; typedef struct xorkey_st { unsigned char privkey[XOR_KEY_SIZE]; unsigned char pubkey[XOR_KEY_SIZE]; int hasprivkey; int haspubkey; } XORKEY; /* Key Management for the dummy XOR KEX and KEM algorithms */ static OSSL_FUNC_keymgmt_new_fn xor_newdata; static OSSL_FUNC_keymgmt_free_fn xor_freedata; static OSSL_FUNC_keymgmt_has_fn xor_has; static OSSL_FUNC_keymgmt_dup_fn xor_dup; static OSSL_FUNC_keymgmt_gen_init_fn xor_gen_init; static OSSL_FUNC_keymgmt_gen_set_params_fn xor_gen_set_params; static OSSL_FUNC_keymgmt_gen_settable_params_fn xor_gen_settable_params; static OSSL_FUNC_keymgmt_gen_fn xor_gen; static OSSL_FUNC_keymgmt_gen_cleanup_fn xor_gen_cleanup; static OSSL_FUNC_keymgmt_get_params_fn xor_get_params; static OSSL_FUNC_keymgmt_gettable_params_fn xor_gettable_params; static OSSL_FUNC_keymgmt_set_params_fn xor_set_params; static OSSL_FUNC_keymgmt_settable_params_fn xor_settable_params; /* * Dummy "XOR" Key Exchange algorithm. We just xor the private and public keys * together. Don't use this! */ static OSSL_FUNC_keyexch_newctx_fn xor_newctx; static OSSL_FUNC_keyexch_init_fn xor_init; static OSSL_FUNC_keyexch_set_peer_fn xor_set_peer; static OSSL_FUNC_keyexch_derive_fn xor_derive; static OSSL_FUNC_keyexch_freectx_fn xor_freectx; static OSSL_FUNC_keyexch_dupctx_fn xor_dupctx; /* * Dummy "XOR" Key Encapsulation Method. We just build a KEM over the xor KEX. * Don't use this! */ static OSSL_FUNC_kem_newctx_fn xor_newctx; static OSSL_FUNC_kem_freectx_fn xor_freectx; static OSSL_FUNC_kem_dupctx_fn xor_dupctx; static OSSL_FUNC_kem_encapsulate_init_fn xor_init; static OSSL_FUNC_kem_encapsulate_fn xor_encapsulate; static OSSL_FUNC_kem_decapsulate_init_fn xor_init; static OSSL_FUNC_kem_decapsulate_fn xor_decapsulate; /* * We define 2 dummy TLS groups called "xorgroup" and "xorkemgroup" for test * purposes */ struct tls_group_st { unsigned int group_id; /* for "tls-group-id", see provider-base(7) */ unsigned int secbits; unsigned int mintls; unsigned int maxtls; unsigned int mindtls; unsigned int maxdtls; unsigned int is_kem; /* boolean */ }; #define XORGROUP_NAME "xorgroup" #define XORGROUP_NAME_INTERNAL "xorgroup-int" static struct tls_group_st xor_group = { 0, /* group_id, set by randomize_tls_group_id() */ 128, /* secbits */ TLS1_3_VERSION, /* mintls */ 0, /* maxtls */ -1, /* mindtls */ -1, /* maxdtls */ 0 /* is_kem */ }; #define XORKEMGROUP_NAME "xorkemgroup" #define XORKEMGROUP_NAME_INTERNAL "xorkemgroup-int" static struct tls_group_st xor_kemgroup = { 0, /* group_id, set by randomize_tls_group_id() */ 128, /* secbits */ TLS1_3_VERSION, /* mintls */ 0, /* maxtls */ -1, /* mindtls */ -1, /* maxdtls */ 1 /* is_kem */ }; #define ALGORITHM "XOR" static const OSSL_PARAM xor_group_params[] = { OSSL_PARAM_utf8_string(OSSL_CAPABILITY_TLS_GROUP_NAME, XORGROUP_NAME, sizeof(XORGROUP_NAME)), OSSL_PARAM_utf8_string(OSSL_CAPABILITY_TLS_GROUP_NAME_INTERNAL, XORGROUP_NAME_INTERNAL, sizeof(XORGROUP_NAME_INTERNAL)), OSSL_PARAM_utf8_string(OSSL_CAPABILITY_TLS_GROUP_ALG, ALGORITHM, sizeof(ALGORITHM)), OSSL_PARAM_uint(OSSL_CAPABILITY_TLS_GROUP_ID, &xor_group.group_id), OSSL_PARAM_uint(OSSL_CAPABILITY_TLS_GROUP_SECURITY_BITS, &xor_group.secbits), OSSL_PARAM_int(OSSL_CAPABILITY_TLS_GROUP_MIN_TLS, &xor_group.mintls), OSSL_PARAM_int(OSSL_CAPABILITY_TLS_GROUP_MAX_TLS, &xor_group.maxtls), OSSL_PARAM_int(OSSL_CAPABILITY_TLS_GROUP_MIN_DTLS, &xor_group.mindtls), OSSL_PARAM_int(OSSL_CAPABILITY_TLS_GROUP_MAX_DTLS, &xor_group.maxdtls), OSSL_PARAM_uint(OSSL_CAPABILITY_TLS_GROUP_IS_KEM, &xor_group.is_kem), OSSL_PARAM_END }; static const OSSL_PARAM xor_kemgroup_params[] = { OSSL_PARAM_utf8_string(OSSL_CAPABILITY_TLS_GROUP_NAME, XORKEMGROUP_NAME, sizeof(XORKEMGROUP_NAME)), OSSL_PARAM_utf8_string(OSSL_CAPABILITY_TLS_GROUP_NAME_INTERNAL, XORKEMGROUP_NAME_INTERNAL, sizeof(XORKEMGROUP_NAME_INTERNAL)), OSSL_PARAM_utf8_string(OSSL_CAPABILITY_TLS_GROUP_ALG, ALGORITHM, sizeof(ALGORITHM)), OSSL_PARAM_uint(OSSL_CAPABILITY_TLS_GROUP_ID, &xor_kemgroup.group_id), OSSL_PARAM_uint(OSSL_CAPABILITY_TLS_GROUP_SECURITY_BITS, &xor_kemgroup.secbits), OSSL_PARAM_int(OSSL_CAPABILITY_TLS_GROUP_MIN_TLS, &xor_kemgroup.mintls), OSSL_PARAM_int(OSSL_CAPABILITY_TLS_GROUP_MAX_TLS, &xor_kemgroup.maxtls), OSSL_PARAM_int(OSSL_CAPABILITY_TLS_GROUP_MIN_DTLS, &xor_kemgroup.mindtls), OSSL_PARAM_int(OSSL_CAPABILITY_TLS_GROUP_MAX_DTLS, &xor_kemgroup.maxdtls), OSSL_PARAM_uint(OSSL_CAPABILITY_TLS_GROUP_IS_KEM, &xor_kemgroup.is_kem), OSSL_PARAM_END }; #define NUM_DUMMY_GROUPS 50 static char *dummy_group_names[NUM_DUMMY_GROUPS]; static int tls_prov_get_capabilities(void *provctx, const char *capability, OSSL_CALLBACK *cb, void *arg) { int ret; int i; const char *dummy_base = "dummy"; const size_t dummy_name_max_size = strlen(dummy_base) + 3; if (strcmp(capability, "TLS-GROUP") != 0) { /* We don't support this capability */ return 0; } /* Register our 2 groups */ ret = cb(xor_group_params, arg); ret &= cb(xor_kemgroup_params, arg); /* * Now register some dummy groups > GROUPLIST_INCREMENT (== 40) as defined * in ssl/t1_lib.c, to make sure we exercise the code paths for registering * large numbers of groups. */ for (i = 0; i < NUM_DUMMY_GROUPS; i++) { OSSL_PARAM dummygroup[OSSL_NELEM(xor_group_params)]; memcpy(dummygroup, xor_group_params, sizeof(xor_group_params)); /* Give the dummy group a unique name */ if (dummy_group_names[i] == NULL) { dummy_group_names[i] = OPENSSL_zalloc(dummy_name_max_size); if (dummy_group_names[i] == NULL) return 0; BIO_snprintf(dummy_group_names[i], dummy_name_max_size, "%s%d", dummy_base, i); } dummygroup[0].data = dummy_group_names[i]; dummygroup[0].data_size = strlen(dummy_group_names[i]) + 1; ret &= cb(dummygroup, arg); } return ret; } /* * Dummy "XOR" Key Exchange algorithm. We just xor the private and public keys * together. Don't use this! */ typedef struct { XORKEY *key; XORKEY *peerkey; void *provctx; } PROV_XOR_CTX; static void *xor_newctx(void *provctx) { PROV_XOR_CTX *pxorctx = OPENSSL_zalloc(sizeof(PROV_XOR_CTX)); if (pxorctx == NULL) return NULL; pxorctx->provctx = provctx; return pxorctx; } static int xor_init(void *vpxorctx, void *vkey, ossl_unused const OSSL_PARAM params[]) { PROV_XOR_CTX *pxorctx = (PROV_XOR_CTX *)vpxorctx; if (pxorctx == NULL || vkey == NULL) return 0; pxorctx->key = vkey; return 1; } static int xor_set_peer(void *vpxorctx, void *vpeerkey) { PROV_XOR_CTX *pxorctx = (PROV_XOR_CTX *)vpxorctx; if (pxorctx == NULL || vpeerkey == NULL) return 0; pxorctx->peerkey = vpeerkey; return 1; } static int xor_derive(void *vpxorctx, unsigned char *secret, size_t *secretlen, size_t outlen) { PROV_XOR_CTX *pxorctx = (PROV_XOR_CTX *)vpxorctx; int i; if (pxorctx->key == NULL || pxorctx->peerkey == NULL) return 0; *secretlen = XOR_KEY_SIZE; if (secret == NULL) return 1; if (outlen < XOR_KEY_SIZE) return 0; for (i = 0; i < XOR_KEY_SIZE; i++) secret[i] = pxorctx->key->privkey[i] ^ pxorctx->peerkey->pubkey[i]; return 1; } static void xor_freectx(void *pxorctx) { OPENSSL_free(pxorctx); } static void *xor_dupctx(void *vpxorctx) { PROV_XOR_CTX *srcctx = (PROV_XOR_CTX *)vpxorctx; PROV_XOR_CTX *dstctx; dstctx = OPENSSL_zalloc(sizeof(*srcctx)); if (dstctx == NULL) return NULL; *dstctx = *srcctx; return dstctx; } static const OSSL_DISPATCH xor_keyexch_functions[] = { { OSSL_FUNC_KEYEXCH_NEWCTX, (void (*)(void))xor_newctx }, { OSSL_FUNC_KEYEXCH_INIT, (void (*)(void))xor_init }, { OSSL_FUNC_KEYEXCH_DERIVE, (void (*)(void))xor_derive }, { OSSL_FUNC_KEYEXCH_SET_PEER, (void (*)(void))xor_set_peer }, { OSSL_FUNC_KEYEXCH_FREECTX, (void (*)(void))xor_freectx }, { OSSL_FUNC_KEYEXCH_DUPCTX, (void (*)(void))xor_dupctx }, { 0, NULL } }; static const OSSL_ALGORITHM tls_prov_keyexch[] = { /* * Obviously this is not FIPS approved, but in order to test in conjunction * with the FIPS provider we pretend that it is. */ { "XOR", "provider=tls-provider,fips=yes", xor_keyexch_functions }, { NULL, NULL, NULL } }; /* * Dummy "XOR" Key Encapsulation Method. We just build a KEM over the xor KEX. * Don't use this! */ static int xor_encapsulate(void *vpxorctx, unsigned char *ct, size_t *ctlen, unsigned char *ss, size_t *sslen) { /* * We are building this around a KEX: * * 1. we generate ephemeral keypair * 2. we encode our ephemeral pubkey as the outgoing ct * 3. we derive using our ephemeral privkey in combination with the peer * pubkey from the ctx; the result is our ss. */ int rv = 0; void *genctx = NULL, *derivectx = NULL; XORKEY *ourkey = NULL; PROV_XOR_CTX *pxorctx = vpxorctx; if (ct == NULL || ss == NULL) { /* Just return sizes */ if (ctlen == NULL && sslen == NULL) return 0; if (ctlen != NULL) *ctlen = XOR_KEY_SIZE; if (sslen != NULL) *sslen = XOR_KEY_SIZE; return 1; } /* 1. Generate keypair */ genctx = xor_gen_init(pxorctx->provctx, OSSL_KEYMGMT_SELECT_KEYPAIR, NULL); if (genctx == NULL) goto end; ourkey = xor_gen(genctx, NULL, NULL); if (ourkey == NULL) goto end; /* 2. Encode ephemeral pubkey as ct */ memcpy(ct, ourkey->pubkey, XOR_KEY_SIZE); *ctlen = XOR_KEY_SIZE; /* 3. Derive ss via KEX */ derivectx = xor_newctx(pxorctx->provctx); if (derivectx == NULL || !xor_init(derivectx, ourkey, NULL) || !xor_set_peer(derivectx, pxorctx->key) || !xor_derive(derivectx, ss, sslen, XOR_KEY_SIZE)) goto end; rv = 1; end: xor_gen_cleanup(genctx); xor_freedata(ourkey); xor_freectx(derivectx); return rv; } static int xor_decapsulate(void *vpxorctx, unsigned char *ss, size_t *sslen, const unsigned char *ct, size_t ctlen) { /* * We are building this around a KEX: * * - ct is our peer's pubkey * - decapsulate is just derive. */ int rv = 0; void *derivectx = NULL; XORKEY *peerkey = NULL; PROV_XOR_CTX *pxorctx = vpxorctx; if (ss == NULL) { /* Just return size */ if (sslen == NULL) return 0; *sslen = XOR_KEY_SIZE; return 1; } if (ctlen != XOR_KEY_SIZE) return 0; peerkey = xor_newdata(pxorctx->provctx); if (peerkey == NULL) goto end; memcpy(peerkey->pubkey, ct, XOR_KEY_SIZE); /* Derive ss via KEX */ derivectx = xor_newctx(pxorctx->provctx); if (derivectx == NULL || !xor_init(derivectx, pxorctx->key, NULL) || !xor_set_peer(derivectx, peerkey) || !xor_derive(derivectx, ss, sslen, XOR_KEY_SIZE)) goto end; rv = 1; end: xor_freedata(peerkey); xor_freectx(derivectx); return rv; } static const OSSL_DISPATCH xor_kem_functions[] = { { OSSL_FUNC_KEM_NEWCTX, (void (*)(void))xor_newctx }, { OSSL_FUNC_KEM_FREECTX, (void (*)(void))xor_freectx }, { OSSL_FUNC_KEM_DUPCTX, (void (*)(void))xor_dupctx }, { OSSL_FUNC_KEM_ENCAPSULATE_INIT, (void (*)(void))xor_init }, { OSSL_FUNC_KEM_ENCAPSULATE, (void (*)(void))xor_encapsulate }, { OSSL_FUNC_KEM_DECAPSULATE_INIT, (void (*)(void))xor_init }, { OSSL_FUNC_KEM_DECAPSULATE, (void (*)(void))xor_decapsulate }, { 0, NULL } }; static const OSSL_ALGORITHM tls_prov_kem[] = { /* * Obviously this is not FIPS approved, but in order to test in conjunction * with the FIPS provider we pretend that it is. */ { "XOR", "provider=tls-provider,fips=yes", xor_kem_functions }, { NULL, NULL, NULL } }; /* Key Management for the dummy XOR key exchange algorithm */ static void *xor_newdata(void *provctx) { return OPENSSL_zalloc(sizeof(XORKEY)); } static void xor_freedata(void *keydata) { OPENSSL_free(keydata); } static int xor_has(const void *vkey, int selection) { const XORKEY *key = vkey; int ok = 0; if (key != NULL) { ok = 1; if ((selection & OSSL_KEYMGMT_SELECT_PUBLIC_KEY) != 0) ok = ok && key->haspubkey; if ((selection & OSSL_KEYMGMT_SELECT_PRIVATE_KEY) != 0) ok = ok && key->hasprivkey; } return ok; } static void *xor_dup(const void *vfromkey, int selection) { XORKEY *tokey = xor_newdata(NULL); const XORKEY *fromkey = vfromkey; int ok = 0; if (tokey != NULL && fromkey != NULL) { ok = 1; if ((selection & OSSL_KEYMGMT_SELECT_PUBLIC_KEY) != 0) { if (fromkey->haspubkey) { memcpy(tokey->pubkey, fromkey->pubkey, XOR_KEY_SIZE); tokey->haspubkey = 1; } else { tokey->haspubkey = 0; } } if ((selection & OSSL_KEYMGMT_SELECT_PRIVATE_KEY) != 0) { if (fromkey->hasprivkey) { memcpy(tokey->privkey, fromkey->privkey, XOR_KEY_SIZE); tokey->hasprivkey = 1; } else { tokey->hasprivkey = 0; } } } if (!ok) { xor_freedata(tokey); tokey = NULL; } return tokey; } static ossl_inline int xor_get_params(void *vkey, OSSL_PARAM params[]) { XORKEY *key = vkey; OSSL_PARAM *p; if ((p = OSSL_PARAM_locate(params, OSSL_PKEY_PARAM_BITS)) != NULL && !OSSL_PARAM_set_int(p, XOR_KEY_SIZE)) return 0; if ((p = OSSL_PARAM_locate(params, OSSL_PKEY_PARAM_SECURITY_BITS)) != NULL && !OSSL_PARAM_set_int(p, xor_group.secbits)) return 0; if ((p = OSSL_PARAM_locate(params, OSSL_PKEY_PARAM_ENCODED_PUBLIC_KEY)) != NULL) { if (p->data_type != OSSL_PARAM_OCTET_STRING) return 0; p->return_size = XOR_KEY_SIZE; if (p->data != NULL && p->data_size >= XOR_KEY_SIZE) memcpy(p->data, key->pubkey, XOR_KEY_SIZE); } return 1; } static const OSSL_PARAM xor_params[] = { OSSL_PARAM_int(OSSL_PKEY_PARAM_BITS, NULL), OSSL_PARAM_int(OSSL_PKEY_PARAM_SECURITY_BITS, NULL), OSSL_PARAM_octet_string(OSSL_PKEY_PARAM_ENCODED_PUBLIC_KEY, NULL, 0), OSSL_PARAM_END }; static const OSSL_PARAM *xor_gettable_params(void *provctx) { return xor_params; } static int xor_set_params(void *vkey, const OSSL_PARAM params[]) { XORKEY *key = vkey; const OSSL_PARAM *p; p = OSSL_PARAM_locate_const(params, OSSL_PKEY_PARAM_ENCODED_PUBLIC_KEY); if (p != NULL) { if (p->data_type != OSSL_PARAM_OCTET_STRING || p->data_size != XOR_KEY_SIZE) return 0; memcpy(key->pubkey, p->data, XOR_KEY_SIZE); key->haspubkey = 1; } return 1; } static const OSSL_PARAM xor_known_settable_params[] = { OSSL_PARAM_octet_string(OSSL_PKEY_PARAM_ENCODED_PUBLIC_KEY, NULL, 0), OSSL_PARAM_END }; static const OSSL_PARAM *xor_settable_params(void *provctx) { return xor_known_settable_params; } struct xor_gen_ctx { int selection; OSSL_LIB_CTX *libctx; }; static void *xor_gen_init(void *provctx, int selection, const OSSL_PARAM params[]) { struct xor_gen_ctx *gctx = NULL; if ((selection & (OSSL_KEYMGMT_SELECT_KEYPAIR | OSSL_KEYMGMT_SELECT_DOMAIN_PARAMETERS)) == 0) return NULL; if ((gctx = OPENSSL_zalloc(sizeof(*gctx))) != NULL) gctx->selection = selection; /* Our provctx is really just an OSSL_LIB_CTX */ gctx->libctx = (OSSL_LIB_CTX *)provctx; if (!xor_gen_set_params(gctx, params)) { OPENSSL_free(gctx); return NULL; } return gctx; } static int xor_gen_set_params(void *genctx, const OSSL_PARAM params[]) { struct xor_gen_ctx *gctx = genctx; const OSSL_PARAM *p; if (gctx == NULL) return 0; p = OSSL_PARAM_locate_const(params, OSSL_PKEY_PARAM_GROUP_NAME); if (p != NULL) { if (p->data_type != OSSL_PARAM_UTF8_STRING || (strcmp(p->data, XORGROUP_NAME_INTERNAL) != 0 && strcmp(p->data, XORKEMGROUP_NAME_INTERNAL) != 0)) return 0; } return 1; } static const OSSL_PARAM *xor_gen_settable_params(ossl_unused void *genctx, ossl_unused void *provctx) { static OSSL_PARAM settable[] = { OSSL_PARAM_utf8_string(OSSL_PKEY_PARAM_GROUP_NAME, NULL, 0), OSSL_PARAM_END }; return settable; } static void *xor_gen(void *genctx, OSSL_CALLBACK *osslcb, void *cbarg) { struct xor_gen_ctx *gctx = genctx; XORKEY *key = OPENSSL_zalloc(sizeof(*key)); size_t i; if (key == NULL) return NULL; if ((gctx->selection & OSSL_KEYMGMT_SELECT_KEYPAIR) != 0) { if (RAND_bytes_ex(gctx->libctx, key->privkey, XOR_KEY_SIZE, 0) <= 0) { OPENSSL_free(key); return NULL; } for (i = 0; i < XOR_KEY_SIZE; i++) key->pubkey[i] = key->privkey[i] ^ private_constant[i]; key->hasprivkey = 1; key->haspubkey = 1; } return key; } /* IMPORT + EXPORT */ static int xor_import(void *vkey, int select, const OSSL_PARAM params[]) { XORKEY *key = vkey; const OSSL_PARAM *param_priv_key, *param_pub_key; unsigned char privkey[XOR_KEY_SIZE]; unsigned char pubkey[XOR_KEY_SIZE]; void *pprivkey = privkey, *ppubkey = pubkey; size_t priv_len = 0, pub_len = 0; int res = 0; if (key == NULL || (select & OSSL_KEYMGMT_SELECT_KEYPAIR) == 0) return 0; memset(privkey, 0, sizeof(privkey)); memset(pubkey, 0, sizeof(pubkey)); param_priv_key = OSSL_PARAM_locate_const(params, OSSL_PKEY_PARAM_PRIV_KEY); param_pub_key = OSSL_PARAM_locate_const(params, OSSL_PKEY_PARAM_PUB_KEY); if ((param_priv_key != NULL && !OSSL_PARAM_get_octet_string(param_priv_key, &pprivkey, sizeof(privkey), &priv_len)) || (param_pub_key != NULL && !OSSL_PARAM_get_octet_string(param_pub_key, &ppubkey, sizeof(pubkey), &pub_len))) goto err; if (priv_len > 0) { memcpy(key->privkey, privkey, priv_len); key->hasprivkey = 1; } if (pub_len > 0) { memcpy(key->pubkey, pubkey, pub_len); key->haspubkey = 1; } res = 1; err: return res; } static int xor_export(void *vkey, int select, OSSL_CALLBACK *param_cb, void *cbarg) { XORKEY *key = vkey; OSSL_PARAM params[3], *p = params; if (key == NULL || (select & OSSL_KEYMGMT_SELECT_KEYPAIR) == 0) return 0; *p++ = OSSL_PARAM_construct_octet_string(OSSL_PKEY_PARAM_PRIV_KEY, key->privkey, sizeof(key->privkey)); *p++ = OSSL_PARAM_construct_octet_string(OSSL_PKEY_PARAM_PUB_KEY, key->pubkey, sizeof(key->pubkey)); *p++ = OSSL_PARAM_construct_end(); return param_cb(params, cbarg); } static const OSSL_PARAM xor_key_types[] = { OSSL_PARAM_BN(OSSL_PKEY_PARAM_PUB_KEY, NULL, 0), OSSL_PARAM_BN(OSSL_PKEY_PARAM_PRIV_KEY, NULL, 0), OSSL_PARAM_END }; static const OSSL_PARAM *xor_import_types(int select) { return (select & OSSL_KEYMGMT_SELECT_KEYPAIR) != 0 ? xor_key_types : NULL; } static const OSSL_PARAM *xor_export_types(int select) { return (select & OSSL_KEYMGMT_SELECT_KEYPAIR) != 0 ? xor_key_types : NULL; } static void xor_gen_cleanup(void *genctx) { OPENSSL_free(genctx); } static const OSSL_DISPATCH xor_keymgmt_functions[] = { { OSSL_FUNC_KEYMGMT_NEW, (void (*)(void))xor_newdata }, { OSSL_FUNC_KEYMGMT_GEN_INIT, (void (*)(void))xor_gen_init }, { OSSL_FUNC_KEYMGMT_GEN_SET_PARAMS, (void (*)(void))xor_gen_set_params }, { OSSL_FUNC_KEYMGMT_GEN_SETTABLE_PARAMS, (void (*)(void))xor_gen_settable_params }, { OSSL_FUNC_KEYMGMT_GEN, (void (*)(void))xor_gen }, { OSSL_FUNC_KEYMGMT_GEN_CLEANUP, (void (*)(void))xor_gen_cleanup }, { OSSL_FUNC_KEYMGMT_GET_PARAMS, (void (*) (void))xor_get_params }, { OSSL_FUNC_KEYMGMT_GETTABLE_PARAMS, (void (*) (void))xor_gettable_params }, { OSSL_FUNC_KEYMGMT_SET_PARAMS, (void (*) (void))xor_set_params }, { OSSL_FUNC_KEYMGMT_SETTABLE_PARAMS, (void (*) (void))xor_settable_params }, { OSSL_FUNC_KEYMGMT_HAS, (void (*)(void))xor_has }, { OSSL_FUNC_KEYMGMT_DUP, (void (*)(void))xor_dup }, { OSSL_FUNC_KEYMGMT_FREE, (void (*)(void))xor_freedata }, { OSSL_FUNC_KEYMGMT_IMPORT, (void (*)(void))xor_import }, { OSSL_FUNC_KEYMGMT_IMPORT_TYPES, (void (*)(void))xor_import_types }, { OSSL_FUNC_KEYMGMT_EXPORT, (void (*)(void))xor_export }, { OSSL_FUNC_KEYMGMT_EXPORT_TYPES, (void (*)(void))xor_export_types }, { 0, NULL } }; static const OSSL_ALGORITHM tls_prov_keymgmt[] = { /* * Obviously this is not FIPS approved, but in order to test in conjunction * with the FIPS provider we pretend that it is. */ { "XOR", "provider=tls-provider,fips=yes", xor_keymgmt_functions }, { NULL, NULL, NULL } }; static const OSSL_ALGORITHM *tls_prov_query(void *provctx, int operation_id, int *no_cache) { *no_cache = 0; switch (operation_id) { case OSSL_OP_KEYMGMT: return tls_prov_keymgmt; case OSSL_OP_KEYEXCH: return tls_prov_keyexch; case OSSL_OP_KEM: return tls_prov_kem; } return NULL; } static void tls_prov_teardown(void *provctx) { int i; OSSL_LIB_CTX_free(provctx); for (i = 0; i < NUM_DUMMY_GROUPS; i++) { OPENSSL_free(dummy_group_names[i]); dummy_group_names[i] = NULL; } } /* Functions we provide to the core */ static const OSSL_DISPATCH tls_prov_dispatch_table[] = { { OSSL_FUNC_PROVIDER_TEARDOWN, (void (*)(void))tls_prov_teardown }, { OSSL_FUNC_PROVIDER_QUERY_OPERATION, (void (*)(void))tls_prov_query }, { OSSL_FUNC_PROVIDER_GET_CAPABILITIES, (void (*)(void))tls_prov_get_capabilities }, { 0, NULL } }; static unsigned int randomize_tls_group_id(OSSL_LIB_CTX *libctx) { /* * Randomise the group_id we're going to use to ensure we don't interoperate * with anything but ourselves. */ unsigned int group_id; static unsigned int mem[10] = { 0 }; static int in_mem = 0; int i; retry: if (RAND_bytes_ex(libctx, (unsigned char *)&group_id, sizeof(group_id), 0) <= 0) return 0; /* * Ensure group_id is within the IANA Reserved for private use range * (65024-65279) */ group_id %= 65279 - 65024; group_id += 65024; /* Ensure we did not already issue this group_id */ for (i = 0; i < in_mem; i++) if (mem[i] == group_id) goto retry; /* Add this group_id to the list of ids issued by this function */ mem[in_mem++] = group_id; return group_id; } int tls_provider_init(const OSSL_CORE_HANDLE *handle, const OSSL_DISPATCH *in, const OSSL_DISPATCH **out, void **provctx) { OSSL_LIB_CTX *libctx = OSSL_LIB_CTX_new(); if (libctx == NULL) return 0; *provctx = libctx; /* * Randomise the group_id we're going to use to ensure we don't interoperate * with anything but ourselves. */ xor_group.group_id = randomize_tls_group_id(libctx); xor_kemgroup.group_id = randomize_tls_group_id(libctx); *out = tls_prov_dispatch_table; return 1; }