/* * c_jhash.c Jenkins Hash * * Copyright (c) 1997 Bob Jenkins * * lookup8.c, by Bob Jenkins, January 4 1997, Public Domain. * hash(), hash2(), hash3, and _c_mix() are externally useful functions. * Routines to test the hash are included if SELF_TEST is defined. * You can use this free for any purpose. It has no warranty. * * See http://burtleburtle.net/bob/hash/evahash.html */ /** * @file c_jhash.h * * @brief Interface of the cynapses jhash implementation * * @defgroup cynJHashInternals cynapses libc jhash function * @ingroup cynLibraryAPI * * @{ */ #ifndef _C_JHASH_H #define _C_JHASH_H #include #define c_hashsize(n) ((uint8_t) 1 << (n)) #define c_hashmask(n) (xhashsize(n) - 1) /** * _c_mix -- Mix 3 32-bit values reversibly. * * For every delta with one or two bit set, and the deltas of all three * high bits or all three low bits, whether the original value of a,b,c * is almost all zero or is uniformly distributed, * If _c_mix() is run forward or backward, at least 32 bits in a,b,c * have at least 1/4 probability of changing. * If _c_mix() is run forward, every bit of c will change between 1/3 and * 2/3 of the time. (Well, 22/100 and 78/100 for some 2-bit deltas.) * _c_mix() was built out of 36 single-cycle latency instructions in a * structure that could supported 2x parallelism, like so: * a -= b; * a -= c; x = (c>>13); * b -= c; a ^= x; * b -= a; x = (a<<8); * c -= a; b ^= x; * c -= b; x = (b>>13); * ... * * Unfortunately, superscalar Pentiums and Sparcs can't take advantage * of that parallelism. They've also turned some of those single-cycle * latency instructions into multi-cycle latency instructions. Still, * this is the fastest good hash I could find. There were about 2^^68 * to choose from. I only looked at a billion or so. */ #define _c_mix(a,b,c) \ { \ a -= b; a -= c; a ^= (c>>13); \ b -= c; b -= a; b ^= (a<<8); \ c -= a; c -= b; c ^= (b>>13); \ a -= b; a -= c; a ^= (c>>12); \ b -= c; b -= a; b ^= (a<<16); \ c -= a; c -= b; c ^= (b>>5); \ a -= b; a -= c; a ^= (c>>3); \ b -= c; b -= a; b ^= (a<<10); \ c -= a; c -= b; c ^= (b>>15); \ } /** * _c_mix64 -- Mix 3 64-bit values reversibly. * * _c_mix64() takes 48 machine instructions, but only 24 cycles on a superscalar * machine (like Intel's new MMX architecture). It requires 4 64-bit * registers for 4::2 parallelism. * All 1-bit deltas, all 2-bit deltas, all deltas composed of top bits of * (a,b,c), and all deltas of bottom bits were tested. All deltas were * tested both on random keys and on keys that were nearly all zero. * These deltas all cause every bit of c to change between 1/3 and 2/3 * of the time (well, only 113/400 to 287/400 of the time for some * 2-bit delta). These deltas all cause at least 80 bits to change * among (a,b,c) when the _c_mix is run either forward or backward (yes it * is reversible). * This implies that a hash using _c_mix64 has no funnels. There may be * characteristics with 3-bit deltas or bigger, I didn't test for * those. */ #define _c_mix64(a,b,c) \ { \ a -= b; a -= c; a ^= (c>>43); \ b -= c; b -= a; b ^= (a<<9); \ c -= a; c -= b; c ^= (b>>8); \ a -= b; a -= c; a ^= (c>>38); \ b -= c; b -= a; b ^= (a<<23); \ c -= a; c -= b; c ^= (b>>5); \ a -= b; a -= c; a ^= (c>>35); \ b -= c; b -= a; b ^= (a<<49); \ c -= a; c -= b; c ^= (b>>11); \ a -= b; a -= c; a ^= (c>>12); \ b -= c; b -= a; b ^= (a<<18); \ c -= a; c -= b; c ^= (b>>22); \ } /** * @brief hash a variable-length key into a 32-bit value * * The best hash table sizes are powers of 2. There is no need to do * mod a prime (mod is sooo slow!). If you need less than 32 bits, * use a bitmask. For example, if you need only 10 bits, do * h = (h & hashmask(10)); * In which case, the hash table should have hashsize(10) elements. * * Use for hash table lookup, or anything where one collision in 2^32 is * acceptable. Do NOT use for cryptographic purposes. * * @param k The key (the unaligned variable-length array of bytes). * * @param length The length of the key, counting by bytes. * * @param initval Initial value, can be any 4-byte value. * * @return Returns a 32-bit value. Every bit of the key affects every bit * of the return value. Every 1-bit and 2-bit delta achieves * avalanche. About 36+6len instructions. */ static inline uint32_t c_jhash(const uint8_t *k, uint32_t length, uint32_t initval) { uint32_t a,b,c,len; /* Set up the internal state */ len = length; a = b = 0x9e3779b9; /* the golden ratio; an arbitrary value */ c = initval; /* the previous hash value */ while (len >= 12) { a += (k[0] +((uint32_t)k[1]<<8) +((uint32_t)k[2]<<16) +((uint32_t)k[3]<<24)); b += (k[4] +((uint32_t)k[5]<<8) +((uint32_t)k[6]<<16) +((uint32_t)k[7]<<24)); c += (k[8] +((uint32_t)k[9]<<8) +((uint32_t)k[10]<<16)+((uint32_t)k[11]<<24)); _c_mix(a,b,c); k += 12; len -= 12; } /* handle the last 11 bytes */ c += length; /* all the case statements fall through */ switch(len) { case 11: c+=((uint32_t)k[10]<<24); case 10: c+=((uint32_t)k[9]<<16); case 9 : c+=((uint32_t)k[8]<<8); /* the first byte of c is reserved for the length */ case 8 : b+=((uint32_t)k[7]<<24); case 7 : b+=((uint32_t)k[6]<<16); case 6 : b+=((uint32_t)k[5]<<8); case 5 : b+=k[4]; case 4 : a+=((uint32_t)k[3]<<24); case 3 : a+=((uint32_t)k[2]<<16); case 2 : a+=((uint32_t)k[1]<<8); case 1 : a+=k[0]; /* case 0: nothing left to add */ } _c_mix(a,b,c); return c; } /** * @brief hash a variable-length key into a 64-bit value * * The best hash table sizes are powers of 2. There is no need to do * mod a prime (mod is sooo slow!). If you need less than 64 bits, * use a bitmask. For example, if you need only 10 bits, do * h = (h & hashmask(10)); * In which case, the hash table should have hashsize(10) elements. * * Use for hash table lookup, or anything where one collision in 2^^64 * is acceptable. Do NOT use for cryptographic purposes. * * @param k The key (the unaligned variable-length array of bytes). * @param length The length of the key, counting by bytes. * @param intval Initial value, can be any 8-byte value. * * @return A 64-bit value. Every bit of the key affects every bit of * the return value. No funnels. Every 1-bit and 2-bit delta * achieves avalanche. About 41+5len instructions. */ static inline uint64_t c_jhash64(const uint8_t *k, uint64_t length, uint64_t intval) { uint64_t a,b,c,len; /* Set up the internal state */ len = length; a = b = intval; /* the previous hash value */ c = 0x9e3779b97f4a7c13LL; /* the golden ratio; an arbitrary value */ /* handle most of the key */ while (len >= 24) { a += (k[0] +((uint64_t)k[ 1]<< 8)+((uint64_t)k[ 2]<<16)+((uint64_t)k[ 3]<<24) +((uint64_t)k[4 ]<<32)+((uint64_t)k[ 5]<<40)+((uint64_t)k[ 6]<<48)+((uint64_t)k[ 7]<<56)); b += (k[8] +((uint64_t)k[ 9]<< 8)+((uint64_t)k[10]<<16)+((uint64_t)k[11]<<24) +((uint64_t)k[12]<<32)+((uint64_t)k[13]<<40)+((uint64_t)k[14]<<48)+((uint64_t)k[15]<<56)); c += (k[16] +((uint64_t)k[17]<< 8)+((uint64_t)k[18]<<16)+((uint64_t)k[19]<<24) +((uint64_t)k[20]<<32)+((uint64_t)k[21]<<40)+((uint64_t)k[22]<<48)+((uint64_t)k[23]<<56)); _c_mix64(a,b,c); k += 24; len -= 24; } /* handle the last 23 bytes */ c += length; switch(len) { case 23: c+=((uint64_t)k[22]<<56); case 22: c+=((uint64_t)k[21]<<48); case 21: c+=((uint64_t)k[20]<<40); case 20: c+=((uint64_t)k[19]<<32); case 19: c+=((uint64_t)k[18]<<24); case 18: c+=((uint64_t)k[17]<<16); case 17: c+=((uint64_t)k[16]<<8); /* the first byte of c is reserved for the length */ case 16: b+=((uint64_t)k[15]<<56); case 15: b+=((uint64_t)k[14]<<48); case 14: b+=((uint64_t)k[13]<<40); case 13: b+=((uint64_t)k[12]<<32); case 12: b+=((uint64_t)k[11]<<24); case 11: b+=((uint64_t)k[10]<<16); case 10: b+=((uint64_t)k[ 9]<<8); case 9: b+=((uint64_t)k[ 8]); case 8: a+=((uint64_t)k[ 7]<<56); case 7: a+=((uint64_t)k[ 6]<<48); case 6: a+=((uint64_t)k[ 5]<<40); case 5: a+=((uint64_t)k[ 4]<<32); case 4: a+=((uint64_t)k[ 3]<<24); case 3: a+=((uint64_t)k[ 2]<<16); case 2: a+=((uint64_t)k[ 1]<<8); case 1: a+=((uint64_t)k[ 0]); /* case 0: nothing left to add */ } _c_mix64(a,b,c); return c; } /** * }@ */ #endif /* _C_JHASH_H */