Welcome to mirror list, hosted at ThFree Co, Russian Federation.

github.com/prusa3d/PrusaSlicer.git - Unnamed repository; edit this file 'description' to name the repository.
summaryrefslogtreecommitdiff
path: root/src
diff options
context:
space:
mode:
authorbubnikv <bubnikv@gmail.com>2020-04-24 10:41:48 +0300
committerbubnikv <bubnikv@gmail.com>2020-04-24 10:41:48 +0300
commite390ebc95c09db6947d7c009108aa4fbf66f90ad (patch)
tree0ad0ec8e806b44db71002f471a7c4e08341919ef /src
parent03eb5ffcd5d71181e2c0533060fd94a6601be76f (diff)
WIP: Monotonous infill
Diffstat (limited to 'src')
-rw-r--r--src/libslic3r/Fill/FillRectilinear2.cpp836
-rw-r--r--src/libslic3r/GCode.cpp9
2 files changed, 474 insertions, 371 deletions
diff --git a/src/libslic3r/Fill/FillRectilinear2.cpp b/src/libslic3r/Fill/FillRectilinear2.cpp
index c2c19046e..3d5710d29 100644
--- a/src/libslic3r/Fill/FillRectilinear2.cpp
+++ b/src/libslic3r/Fill/FillRectilinear2.cpp
@@ -179,8 +179,8 @@ struct SegmentIntersection
// Kept grouped with other booleans for smaller memory footprint.
LinkType prev_on_contour_type { LinkType::Horizontal };
LinkType next_on_contour_type { LinkType::Horizontal };
- LinkQuality prev_on_contour_quality { true };
- LinkQuality next_on_contour_quality { true };
+ LinkQuality prev_on_contour_quality { LinkQuality::Valid };
+ LinkQuality next_on_contour_quality { LinkQuality::Valid };
// Was this segment along the y axis consumed?
// Up means up along the vertical segment.
bool consumed_vertical_up { false };
@@ -237,36 +237,34 @@ struct SegmentIntersection
int left_vertical(Direction dir) const { return (dir == Direction::Up ? this->has_left_vertical_up() : this->has_left_vertical_down()) ? this->prev_on_contour : -1; }
int left_vertical() const { return this->has_left_vertical() ? this->prev_on_contour : -1; }
int left_vertical_outside() const { return this->is_low() ? this->left_vertical_down() : this->left_vertical_up(); }
- int right_vertical_up() const { return this->has_right_vertical_up() ? this->prev_on_contour : -1; }
- int right_vertical_down() const { return this->has_right_vertical_down() ? this->prev_on_contour : -1; }
+ int right_vertical_up() const { return this->has_right_vertical_up() ? this->next_on_contour : -1; }
+ int right_vertical_down() const { return this->has_right_vertical_down() ? this->next_on_contour : -1; }
int right_vertical(Direction dir) const { return (dir == Direction::Up ? this->has_right_vertical_up() : this->has_right_vertical_down()) ? this->next_on_contour : -1; }
- int right_vertical() const { return this->has_right_vertical() ? this->prev_on_contour : -1; }
+ int right_vertical() const { return this->has_right_vertical() ? this->next_on_contour : -1; }
int right_vertical_outside() const { return this->is_low() ? this->right_vertical_down() : this->right_vertical_up(); }
int vertical_up(Side side) const { return side == Side::Left ? this->left_vertical_up() : this->right_vertical_up(); }
int vertical_down(Side side) const { return side == Side::Left ? this->left_vertical_down() : this->right_vertical_down(); }
int vertical_outside(Side side) const { return side == Side::Left ? this->left_vertical_outside() : this->right_vertical_outside(); }
+ // Returns -1 if there is no link up.
int vertical_up() const {
- assert(! this->has_left_vertical_up() || ! this->has_right_vertical_up());
return this->has_left_vertical_up() ? this->left_vertical_up() : this->right_vertical_up();
}
LinkQuality vertical_up_quality() const {
- assert(! this->has_left_vertical_up() || ! this->has_right_vertical_up());
+ assert(this->has_left_vertical_up() != this->has_right_vertical_up());
return this->has_left_vertical_up() ? this->prev_on_contour_quality : this->next_on_contour_quality;
}
+ // Returns -1 if there is no link down.
int vertical_down() const {
- assert(! this->has_left_vertical_down() || ! this->has_right_vertical_down());
+// assert(! this->has_left_vertical_down() || ! this->has_right_vertical_down());
return this->has_left_vertical_down() ? this->left_vertical_down() : this->right_vertical_down();
}
LinkQuality vertical_down_quality() const {
- assert(! this->has_left_vertical_down() || ! this->has_right_vertical_down());
+ assert(this->has_left_vertical_down() != this->has_right_vertical_down());
return this->has_left_vertical_down() ? this->prev_on_contour_quality : this->next_on_contour_quality;
}
int vertical_outside() const { return this->is_low() ? this->vertical_down() : this->vertical_up(); }
-// int next_up() const { return this->prev_on_contour_vertical ? -1 : this->prev_on_contour; }
-// int next_right() const { return this->next_on_contour_vertical ? -1 : this->next_on_contour; }
-
// Compare two y intersection points given by rational numbers.
// Note that the rational number is given as pos_p/pos_q, where pos_p is int64 and pos_q is uint32.
// This function calculates pos_p * other.pos_q < other.pos_p * pos_q as a 48bit number.
@@ -489,32 +487,32 @@ static inline IntersectionTypeOtherVLine intersection_type_on_prev_next_vertical
size_t iIntersection,
SegmentIntersection::Side side)
{
- const SegmentedIntersectionLine &il_this = segs[iVerticalLine];
- const SegmentIntersection &itsct_this = il_this.intersections[iIntersection];
- if (itsct_this.has_vertical(side))
+ const SegmentedIntersectionLine &vline_this = segs[iVerticalLine];
+ const SegmentIntersection &it_this = vline_this.intersections[iIntersection];
+ if (it_this.has_vertical(side))
// Not the first intersection along the contor. This intersection point
// has been preceded by an intersection point along the vertical line.
return INTERSECTION_TYPE_OTHER_VLINE_NOT_FIRST;
- int iIntersectionOther = itsct_this.horizontal(side);
+ int iIntersectionOther = it_this.horizontal(side);
if (iIntersectionOther == -1)
return INTERSECTION_TYPE_OTHER_VLINE_UNDEFINED;
assert(side == SegmentIntersection::Side::Right ? (iVerticalLine + 1 < segs.size()) : (iVerticalLine > 0));
- const SegmentedIntersectionLine &il_other = segs[side == SegmentIntersection::Side::Right ? (iVerticalLine+1) : (iVerticalLine-1)];
- const SegmentIntersection &itsct_other = il_other.intersections[iIntersectionOther];
- assert(itsct_other.is_inner());
+ const SegmentedIntersectionLine &vline_other = segs[side == SegmentIntersection::Side::Right ? (iVerticalLine + 1) : (iVerticalLine - 1)];
+ const SegmentIntersection &it_other = vline_other.intersections[iIntersectionOther];
+ assert(it_other.is_inner());
assert(iIntersectionOther > 0);
- assert(iIntersectionOther + 1 < il_other.intersections.size());
+ assert(iIntersectionOther + 1 < vline_other.intersections.size());
// Is iIntersectionOther at the boundary of a vertical segment?
- const SegmentIntersection &itsct_other2 = il_other.intersections[itsct_other.is_low() ? iIntersectionOther - 1 : iIntersectionOther + 1];
- if (itsct_other2.is_inner())
+ const SegmentIntersection &it_other2 = vline_other.intersections[it_other.is_low() ? iIntersectionOther - 1 : iIntersectionOther + 1];
+ if (it_other2.is_inner())
// Cannot follow a perimeter segment into the middle of another vertical segment.
// Only perimeter segments connecting to the end of a vertical segment are followed.
return INTERSECTION_TYPE_OTHER_VLINE_INNER;
- assert(itsct_other.is_low() == itsct_other2.is_low());
- if (side == SegmentIntersection::Side::Right ? itsct_this.consumed_perimeter_right : itsct_other.consumed_perimeter_right)
+ assert(it_other.is_low() == it_other2.is_low());
+ if (side == SegmentIntersection::Side::Right ? it_this.consumed_perimeter_right : it_other.consumed_perimeter_right)
// This perimeter segment was already consumed.
return INTERSECTION_TYPE_OTHER_VLINE_CONSUMED;
- if (itsct_other.is_low() ? itsct_other.consumed_vertical_up : il_other.intersections[iIntersectionOther-1].consumed_vertical_up)
+ if (it_other.is_low() ? it_other.consumed_vertical_up : vline_other.intersections[iIntersectionOther - 1].consumed_vertical_up)
// This vertical segment was already consumed.
return INTERSECTION_TYPE_OTHER_VLINE_CONSUMED;
return INTERSECTION_TYPE_OTHER_VLINE_OK;
@@ -555,23 +553,23 @@ static inline coordf_t measure_perimeter_prev_next_segment_length(
return coordf_t(-1);
}
- const SegmentedIntersectionLine &il = segs[iVerticalLine];
- const SegmentIntersection &itsct = il.intersections[iIntersection];
- const SegmentedIntersectionLine &il2 = segs[iVerticalLineOther];
- const SegmentIntersection &itsct2 = il2.intersections[iIntersection2];
- assert(itsct.iContour == itsct2.iContour);
- const Polygon &poly = poly_with_offset.contour(itsct.iContour);
-// const bool ccw = poly_with_offset.is_contour_ccw(il.iContour);
- assert(itsct.type == itsct2.type);
- assert(itsct.iContour == itsct2.iContour);
- assert(itsct.is_inner());
- const bool forward = itsct.is_low() == dir_is_next;
-
- Point p1(il.pos, itsct.pos());
- Point p2(il2.pos, itsct2.pos());
+ const SegmentedIntersectionLine &vline = segs[iVerticalLine];
+ const SegmentIntersection &it = vline.intersections[iIntersection];
+ const SegmentedIntersectionLine &vline2 = segs[iVerticalLineOther];
+ const SegmentIntersection &it2 = vline2.intersections[iIntersection2];
+ assert(it.iContour == it2.iContour);
+ const Polygon &poly = poly_with_offset.contour(it.iContour);
+// const bool ccw = poly_with_offset.is_contour_ccw(vline.iContour);
+ assert(it.type == it2.type);
+ assert(it.iContour == it2.iContour);
+ assert(it.is_inner());
+ const bool forward = it.is_low() == dir_is_next;
+
+ Point p1(vline.pos, it.pos());
+ Point p2(vline2.pos, it2.pos());
return forward ?
- segment_length(poly, itsct .iSegment, p1, itsct2.iSegment, p2) :
- segment_length(poly, itsct2.iSegment, p2, itsct .iSegment, p1);
+ segment_length(poly, it .iSegment, p1, it2.iSegment, p2) :
+ segment_length(poly, it2.iSegment, p2, it .iSegment, p1);
}
static inline coordf_t measure_perimeter_prev_segment_length(
@@ -736,10 +734,10 @@ static inline float measure_outer_contour_slab(
distance_of_segmens(poly, iSegBelow, itsct.iSegment, true);
int d_up = (iAbove == -1) ? std::numeric_limits<int>::max() :
distance_of_segmens(poly, iSegAbove, itsct.iSegment, true);
- if (intrsctn_type_prev == INTERSECTION_TYPE_OTHER_VLINE_OK && d_horiz > std::min(d_down, d_up))
+ if (intrsection_type_prev == INTERSECTION_TYPE_OTHER_VLINE_OK && d_horiz > std::min(d_down, d_up))
// The vertical crossing comes eralier than the prev crossing.
// Disable the perimeter going back.
- intrsctn_type_prev = INTERSECTION_TYPE_OTHER_VLINE_NOT_FIRST;
+ intrsection_type_prev = INTERSECTION_TYPE_OTHER_VLINE_NOT_FIRST;
if (d_up > std::min(d_horiz, d_down))
// The horizontal crossing comes earlier than the vertical crossing.
vert_seg_dir_valid_mask &= ~DIR_BACKWARD;
@@ -918,7 +916,7 @@ static std::vector<SegmentedIntersectionLine> slice_region_by_vertical_lines(con
}
// Verify the segments. If something is wrong, give up.
-#define ASSERT_THROW(CONDITION) do { assert(CONDITION); throw InfillFailedException(); } while (0)
+#define ASSERT_THROW(CONDITION) do { assert(CONDITION); if (! (CONDITION)) throw InfillFailedException(); } while (0)
for (size_t i_seg = 0; i_seg < segs.size(); ++ i_seg) {
SegmentedIntersectionLine &sil = segs[i_seg];
// The intersection points have to be even.
@@ -952,18 +950,19 @@ static void connect_segment_intersections_by_contours(const ExPolygonWithOffset
const SegmentedIntersectionLine *il_prev = i_vline > 0 ? &segs[i_vline - 1] : nullptr;
const SegmentedIntersectionLine *il_next = i_vline + 1 < segs.size() ? &segs[i_vline + 1] : nullptr;
- for (size_t i_intersection = 0; i_intersection + 1 < il.intersections.size(); ++ i_intersection) {
+ for (int i_intersection = 0; i_intersection < il.intersections.size(); ++ i_intersection) {
SegmentIntersection &itsct = il.intersections[i_intersection];
const Polygon &poly = poly_with_offset.contour(itsct.iContour);
// 1) Find possible connection points on the previous / next vertical line.
- // Find an intersection point on iVerticalLineOther, intersecting iInnerContour
- // at the same orientation as iIntersection, and being closest to iIntersection
+ // Find an intersection point on il_prev, intersecting i_intersection
+ // at the same orientation as i_intersection, and being closest to i_intersection
// in the number of contour segments, when following the direction of the contour.
+ //FIXME this has O(n) time complexity. Likely an O(log(n)) scheme is possible.
int iprev = -1;
if (il_prev) {
int dmin = std::numeric_limits<int>::max();
- for (size_t i = 0; i < il_prev->intersections.size(); ++ i) {
+ for (int i = 0; i < il_prev->intersections.size(); ++ i) {
const SegmentIntersection &itsct2 = il_prev->intersections[i];
if (itsct.iContour == itsct2.iContour && itsct.type == itsct2.type) {
// The intersection points lie on the same contour and have the same orientation.
@@ -976,10 +975,11 @@ static void connect_segment_intersections_by_contours(const ExPolygonWithOffset
}
}
}
+ // The same for il_next.
int inext = -1;
if (il_next) {
int dmin = std::numeric_limits<int>::max();
- for (size_t i = 0; i < il_next->intersections.size(); ++ i) {
+ for (int i = 0; i < il_next->intersections.size(); ++ i) {
const SegmentIntersection &itsct2 = il_next->intersections[i];
if (itsct.iContour == itsct2.iContour && itsct.type == itsct2.type) {
// The intersection points lie on the same contour and have the same orientation.
@@ -996,14 +996,14 @@ static void connect_segment_intersections_by_contours(const ExPolygonWithOffset
// 2) Find possible connection points on the same vertical line.
int iabove = -1;
// Does the perimeter intersect the current vertical line above intrsctn?
- for (size_t i = i_intersection + 1; i + 1 < il.intersections.size(); ++ i)
+ for (int i = i_intersection + 1; i < il.intersections.size(); ++ i)
if (il.intersections[i].iContour == itsct.iContour) {
iabove = i;
break;
}
// Does the perimeter intersect the current vertical line below intrsctn?
int ibelow = -1;
- for (size_t i = i_intersection - 1; i > 0; -- i)
+ for (int i = i_intersection - 1; i >= 0; -- i)
if (il.intersections[i].iContour == itsct.iContour) {
ibelow = i;
break;
@@ -1019,7 +1019,7 @@ static void connect_segment_intersections_by_contours(const ExPolygonWithOffset
int d_down = (ibelow == -1) ? std::numeric_limits<int>::max() :
distance_of_segmens(poly, il.intersections[ibelow].iSegment, itsct.iSegment, forward);
int d_up = (iabove == -1) ? std::numeric_limits<int>::max() :
- distance_of_segmens(poly, il.intersections[ibelow].iSegment, itsct.iSegment, forward);
+ distance_of_segmens(poly, il.intersections[iabove].iSegment, itsct.iSegment, forward);
if (d_horiz < std::min(d_down, d_up)) {
itsct.prev_on_contour = iprev;
itsct.prev_on_contour_type = SegmentIntersection::LinkType::Horizontal;
@@ -1061,7 +1061,7 @@ static void connect_segment_intersections_by_contours(const ExPolygonWithOffset
// Such intersection shall always exist.
static const SegmentIntersection& end_of_vertical_run_raw(const SegmentIntersection &start)
{
- assert(start.type != SegmentIntersection::INNER_LOW);
+ assert(start.type == SegmentIntersection::INNER_LOW);
// Step back to the beginning of the vertical segment to mark it as consumed.
auto *it = &start;
do {
@@ -1083,7 +1083,7 @@ static SegmentIntersection& end_of_vertical_run_raw(SegmentIntersection &start)
// Such intersection shall always exist.
static const SegmentIntersection& end_of_vertical_run(const SegmentedIntersectionLine &il, const SegmentIntersection &start)
{
- assert(start.type != SegmentIntersection::INNER_LOW);
+ assert(start.type == SegmentIntersection::INNER_LOW);
const SegmentIntersection *end = &end_of_vertical_run_raw(start);
assert(end->type == SegmentIntersection::INNER_HIGH);
for (;;) {
@@ -1263,17 +1263,17 @@ static void traverse_graph_generate_polylines(
{
// For each outer only chords, measure their maximum distance to the bow of the outer contour.
// Mark an outer only chord as consumed, if the distance is low.
- for (size_t i_vline = 0; i_vline < segs.size(); ++i_vline) {
- SegmentedIntersectionLine& seg = segs[i_vline];
- for (size_t i_intersection = 0; i_intersection + 1 < seg.intersections.size(); ++i_intersection) {
- if (seg.intersections[i_intersection].type == SegmentIntersection::OUTER_LOW &&
- seg.intersections[i_intersection + 1].type == SegmentIntersection::OUTER_HIGH) {
+ for (int i_vline = 0; i_vline < segs.size(); ++ i_vline) {
+ SegmentedIntersectionLine &vline = segs[i_vline];
+ for (int i_intersection = 0; i_intersection + 1 < vline.intersections.size(); ++ i_intersection) {
+ if (vline.intersections[i_intersection].type == SegmentIntersection::OUTER_LOW &&
+ vline.intersections[i_intersection + 1].type == SegmentIntersection::OUTER_HIGH) {
bool consumed = false;
// if (params.full_infill()) {
// measure_outer_contour_slab(poly_with_offset, segs, i_vline, i_ntersection);
// } else
consumed = true;
- seg.intersections[i_intersection].consumed_vertical_up = consumed;
+ vline.intersections[i_intersection].consumed_vertical_up = consumed;
}
}
}
@@ -1283,34 +1283,34 @@ static void traverse_graph_generate_polylines(
// Naively one would expect to achieve best results by chaining the paths by the shortest distance,
// but that procedure does not create the longest continuous paths.
// A simple "sweep left to right" procedure achieves better results.
- size_t i_vline = 0;
- size_t i_intersection = size_t(-1);
+ int i_vline = 0;
+ int i_intersection = -1;
// Follow the line, connect the lines into a graph.
// Until no new line could be added to the output path:
Point pointLast;
- Polyline* polyline_current = NULL;
- if (!polylines_out.empty())
+ Polyline* polyline_current = nullptr;
+ if (! polylines_out.empty())
pointLast = polylines_out.back().points.back();
for (;;) {
- if (i_intersection == size_t(-1)) {
+ if (i_intersection == -1) {
// The path has been interrupted. Find a next starting point, closest to the previous extruder position.
coordf_t dist2min = std::numeric_limits<coordf_t>().max();
- for (size_t i_vline2 = 0; i_vline2 < segs.size(); ++i_vline2) {
- const SegmentedIntersectionLine& seg = segs[i_vline2];
- if (!seg.intersections.empty()) {
- assert(seg.intersections.size() > 1);
+ for (int i_vline2 = 0; i_vline2 < segs.size(); ++ i_vline2) {
+ const SegmentedIntersectionLine &vline = segs[i_vline2];
+ if (! vline.intersections.empty()) {
+ assert(vline.intersections.size() > 1);
// Even number of intersections with the loops.
- assert((seg.intersections.size() & 1) == 0);
- assert(seg.intersections.front().type == SegmentIntersection::OUTER_LOW);
- for (size_t i = 0; i < seg.intersections.size(); ++i) {
- const SegmentIntersection& intrsctn = seg.intersections[i];
+ assert((vline.intersections.size() & 1) == 0);
+ assert(vline.intersections.front().type == SegmentIntersection::OUTER_LOW);
+ for (int i = 0; i < vline.intersections.size(); ++ i) {
+ const SegmentIntersection& intrsctn = vline.intersections[i];
if (intrsctn.is_outer()) {
assert(intrsctn.is_low() || i > 0);
bool consumed = intrsctn.is_low() ?
intrsctn.consumed_vertical_up :
- seg.intersections[i - 1].consumed_vertical_up;
- if (!consumed) {
- coordf_t dist2 = sqr(coordf_t(pointLast(0) - seg.pos)) + sqr(coordf_t(pointLast(1) - intrsctn.pos()));
+ vline.intersections[i - 1].consumed_vertical_up;
+ if (! consumed) {
+ coordf_t dist2 = sqr(coordf_t(pointLast(0) - vline.pos)) + sqr(coordf_t(pointLast(1) - intrsctn.pos()));
if (dist2 < dist2min) {
dist2min = dist2;
i_vline = i_vline2;
@@ -1326,7 +1326,7 @@ static void traverse_graph_generate_polylines(
}
}
}
- if (i_intersection == size_t(-1))
+ if (i_intersection == -1)
// We are finished.
break;
found:
@@ -1339,220 +1339,196 @@ static void traverse_graph_generate_polylines(
}
// From the initial point (i_vline, i_intersection), follow a path.
- SegmentedIntersectionLine& seg = segs[i_vline];
- SegmentIntersection* intrsctn = &seg.intersections[i_intersection];
- bool going_up = intrsctn->is_low();
- bool try_connect = false;
+ SegmentedIntersectionLine &vline = segs[i_vline];
+ SegmentIntersection *it = &vline.intersections[i_intersection];
+ bool going_up = it->is_low();
+ bool try_connect = false;
if (going_up) {
- assert(!intrsctn->consumed_vertical_up);
- assert(i_intersection + 1 < seg.intersections.size());
+ assert(! it->consumed_vertical_up);
+ assert(i_intersection + 1 < vline.intersections.size());
// Step back to the beginning of the vertical segment to mark it as consumed.
- if (intrsctn->is_inner()) {
+ if (it->is_inner()) {
assert(i_intersection > 0);
- --intrsctn;
- --i_intersection;
+ -- it;
+ -- i_intersection;
}
// Consume the complete vertical segment up to the outer contour.
do {
- intrsctn->consumed_vertical_up = true;
- ++intrsctn;
- ++i_intersection;
- assert(i_intersection < seg.intersections.size());
- } while (intrsctn->type != SegmentIntersection::OUTER_HIGH);
- if ((intrsctn - 1)->is_inner()) {
+ it->consumed_vertical_up = true;
+ ++ it;
+ ++ i_intersection;
+ assert(i_intersection < vline.intersections.size());
+ } while (it->type != SegmentIntersection::OUTER_HIGH);
+ if ((it - 1)->is_inner()) {
// Step back.
- --intrsctn;
- --i_intersection;
- assert(intrsctn->type == SegmentIntersection::INNER_HIGH);
+ -- it;
+ -- i_intersection;
+ assert(it->type == SegmentIntersection::INNER_HIGH);
try_connect = true;
}
} else {
// Going down.
- assert(intrsctn->is_high());
+ assert(it->is_high());
assert(i_intersection > 0);
- assert(!(intrsctn - 1)->consumed_vertical_up);
+ assert(!(it - 1)->consumed_vertical_up);
// Consume the complete vertical segment up to the outer contour.
- if (intrsctn->is_inner())
- intrsctn->consumed_vertical_up = true;
+ if (it->is_inner())
+ it->consumed_vertical_up = true;
do {
assert(i_intersection > 0);
- --intrsctn;
- --i_intersection;
- intrsctn->consumed_vertical_up = true;
- } while (intrsctn->type != SegmentIntersection::OUTER_LOW);
- if ((intrsctn + 1)->is_inner()) {
+ -- it;
+ -- i_intersection;
+ it->consumed_vertical_up = true;
+ } while (it->type != SegmentIntersection::OUTER_LOW);
+ if ((it + 1)->is_inner()) {
// Step back.
- ++intrsctn;
- ++i_intersection;
- assert(intrsctn->type == SegmentIntersection::INNER_LOW);
+ ++ it;
+ ++ i_intersection;
+ assert(it->type == SegmentIntersection::INNER_LOW);
try_connect = true;
}
}
if (try_connect) {
// Decide, whether to finish the segment, or whether to follow the perimeter.
-
// 1) Find possible connection points on the previous / next vertical line.
- IntersectionTypeOtherVLine intrsctn_type_prev = intersection_type_on_prev_vertical_line(segs, i_vline, i_intersection);
+ IntersectionTypeOtherVLine intrsection_type_prev = intersection_type_on_prev_vertical_line(segs, i_vline, i_intersection);
IntersectionTypeOtherVLine intrsctn_type_next = intersection_type_on_next_vertical_line(segs, i_vline, i_intersection);
// Try to connect to a previous or next vertical line, making a zig-zag pattern.
- if (intrsctn_type_prev == INTERSECTION_TYPE_OTHER_VLINE_OK || intrsctn_type_next == INTERSECTION_TYPE_OTHER_VLINE_OK) {
- int iPrev = intrsctn->left_horizontal();
- int iNext = intrsctn->right_horizontal();
- coordf_t distPrev = (intrsctn_type_prev != INTERSECTION_TYPE_OTHER_VLINE_OK) ? std::numeric_limits<coord_t>::max() :
- measure_perimeter_prev_segment_length(poly_with_offset, segs, i_vline, i_intersection, iPrev);
- coordf_t distNext = (intrsctn_type_next != INTERSECTION_TYPE_OTHER_VLINE_OK) ? std::numeric_limits<coord_t>::max() :
- measure_perimeter_next_segment_length(poly_with_offset, segs, i_vline, i_intersection, iNext);
+ if (intrsection_type_prev == INTERSECTION_TYPE_OTHER_VLINE_OK || intrsctn_type_next == INTERSECTION_TYPE_OTHER_VLINE_OK) {
+ // A horizontal connection along the perimeter line exists.
+ int i_prev = it->left_horizontal();
+ int i_next = it->right_horizontal();
+ coordf_t dist_prev = (intrsection_type_prev != INTERSECTION_TYPE_OTHER_VLINE_OK) ? std::numeric_limits<coord_t>::max() :
+ measure_perimeter_prev_segment_length(poly_with_offset, segs, i_vline, i_intersection, i_prev);
+ coordf_t dist_next = (intrsctn_type_next != INTERSECTION_TYPE_OTHER_VLINE_OK) ? std::numeric_limits<coord_t>::max() :
+ measure_perimeter_next_segment_length(poly_with_offset, segs, i_vline, i_intersection, i_next);
// Take the shorter path.
//FIXME this may not be always the best strategy to take the shortest connection line now.
- bool take_next = (intrsctn_type_prev == INTERSECTION_TYPE_OTHER_VLINE_OK && intrsctn_type_next == INTERSECTION_TYPE_OTHER_VLINE_OK) ?
- (distNext < distPrev) :
+ bool take_next = (intrsection_type_prev == INTERSECTION_TYPE_OTHER_VLINE_OK && intrsctn_type_next == INTERSECTION_TYPE_OTHER_VLINE_OK) ?
+ (dist_next < dist_prev) :
intrsctn_type_next == INTERSECTION_TYPE_OTHER_VLINE_OK;
- assert(intrsctn->is_inner());
- bool skip = params.dont_connect || (link_max_length > 0 && (take_next ? distNext : distPrev) > link_max_length);
+ assert(it->is_inner());
+ bool skip = params.dont_connect || (link_max_length > 0 && (take_next ? dist_next : dist_prev) > link_max_length);
if (skip) {
+#if 1
// Just skip the connecting contour and start a new path.
goto dont_connect;
- polyline_current->points.push_back(Point(seg.pos, intrsctn->pos()));
- polylines_out.push_back(Polyline());
+#else
+ polyline_current->points.emplace_back(vline.pos, it->pos());
+ polylines_out.emplace_back();
polyline_current = &polylines_out.back();
const SegmentedIntersectionLine& il2 = segs[take_next ? (i_vline + 1) : (i_vline - 1)];
- polyline_current->points.push_back(Point(il2.pos, il2.intersections[take_next ? iNext : iPrev].pos()));
+ polyline_current->points.emplace_back(il2.pos, il2.intersections[take_next ? i_next : i_prev].pos());
+#endif
} else {
- polyline_current->points.push_back(Point(seg.pos, intrsctn->pos()));
- emit_perimeter_prev_next_segment(poly_with_offset, segs, i_vline, intrsctn->iContour, i_intersection, take_next ? iNext : iPrev, *polyline_current, take_next);
+ polyline_current->points.emplace_back(vline.pos, it->pos());
+ emit_perimeter_prev_next_segment(poly_with_offset, segs, i_vline, it->iContour, i_intersection, take_next ? i_next : i_prev, *polyline_current, take_next);
}
// Mark both the left and right connecting segment as consumed, because one cannot go to this intersection point as it has been consumed.
- if (iPrev != -1)
- segs[i_vline - 1].intersections[iPrev].consumed_perimeter_right = true;
- if (iNext != -1)
- intrsctn->consumed_perimeter_right = true;
+ if (i_prev != -1)
+ segs[i_vline - 1].intersections[i_prev].consumed_perimeter_right = true;
+ if (i_next != -1)
+ it->consumed_perimeter_right = true;
//FIXME consume the left / right connecting segments at the other end of this line? Currently it is not critical because a perimeter segment is not followed if the vertical segment at the other side has already been consumed.
// Advance to the neighbor line.
if (take_next) {
- ++i_vline;
- i_intersection = iNext;
+ ++ i_vline;
+ i_intersection = i_next;
}
else {
- --i_vline;
- i_intersection = iPrev;
+ -- i_vline;
+ i_intersection = i_prev;
}
continue;
}
// 5) Try to connect to a previous or next point on the same vertical line.
- if (int inext = intrsctn->vertical_outside(); inext != -1) {
+ if (int inext = it->vertical_outside(); inext != -1) {
bool valid = true;
// Verify, that there is no intersection with the inner contour up to the end of the contour segment.
// Verify, that the successive segment has not been consumed yet.
if (going_up) {
- if (seg.intersections[inext].consumed_vertical_up)
+ if (vline.intersections[inext].consumed_vertical_up)
valid = false;
else {
- for (int i = (int)i_intersection + 1; i < inext && valid; ++i)
- if (seg.intersections[i].is_inner())
+ for (int i = i_intersection + 1; i < inext && valid; ++ i)
+ if (vline.intersections[i].is_inner())
valid = false;
}
} else {
- if (seg.intersections[inext - 1].consumed_vertical_up)
+ if (vline.intersections[inext - 1].consumed_vertical_up)
valid = false;
else {
- for (int i = inext + 1; i < (int)i_intersection && valid; ++i)
- if (seg.intersections[i].is_inner())
+ for (int i = inext + 1; i < i_intersection && valid; ++ i)
+ if (vline.intersections[i].is_inner())
valid = false;
}
}
if (valid) {
- const Polygon& poly = poly_with_offset.contour(intrsctn->iContour);
- assert(intrsctn->iContour == seg.intersections[inext].iContour);
- int iSegNext = seg.intersections[inext].iSegment;
+ const Polygon &poly = poly_with_offset.contour(it->iContour);
+ assert(it->iContour == vline.intersections[inext].iContour);
// Skip this perimeter line?
bool skip = params.dont_connect;
- bool dir_forward = intrsctn->has_right_vertical_outside();
+ bool dir_forward = it->has_right_vertical_outside();
if (! skip && link_max_length > 0) {
coordf_t link_length = measure_perimeter_segment_on_vertical_line_length(
poly_with_offset, segs, i_vline, i_intersection, inext, dir_forward);
skip = link_length > link_max_length;
}
- polyline_current->points.push_back(Point(seg.pos, intrsctn->pos()));
+ polyline_current->points.emplace_back(vline.pos, it->pos());
if (skip) {
// Just skip the connecting contour and start a new path.
- polylines_out.push_back(Polyline());
+ polylines_out.emplace_back();
polyline_current = &polylines_out.back();
- polyline_current->points.push_back(Point(seg.pos, seg.intersections[inext].pos()));
+ polyline_current->points.emplace_back(vline.pos, vline.intersections[inext].pos());
} else {
// Consume the connecting contour and the next segment.
- emit_perimeter_segment_on_vertical_line(poly_with_offset, segs, i_vline, intrsctn->iContour, i_intersection, inext, *polyline_current, dir_forward);
+ emit_perimeter_segment_on_vertical_line(poly_with_offset, segs, i_vline, it->iContour, i_intersection, inext, *polyline_current, dir_forward);
}
// Mark both the left and right connecting segment as consumed, because one cannot go to this intersection point as it has been consumed.
// If there are any outer intersection points skipped (bypassed) by the contour,
// mark them as processed.
- if (going_up) {
- for (int i = (int)i_intersection; i < inext; ++i)
- seg.intersections[i].consumed_vertical_up = true;
- } else {
- for (int i = inext; i < (int)i_intersection; ++i)
- seg.intersections[i].consumed_vertical_up = true;
- }
- // seg.intersections[going_up ? i_intersection : i_intersection - 1].consumed_vertical_up = true;
- intrsctn->consumed_perimeter_right = true;
- i_intersection = inext;
if (going_up)
- ++intrsctn;
+ for (int i = i_intersection; i < inext; ++ i)
+ vline.intersections[i].consumed_vertical_up = true;
else
- --intrsctn;
- intrsctn->consumed_perimeter_right = true;
+ for (int i = inext; i < i_intersection; ++ i)
+ vline.intersections[i].consumed_vertical_up = true;
+ // seg.intersections[going_up ? i_intersection : i_intersection - 1].consumed_vertical_up = true;
+ it->consumed_perimeter_right = true;
+ (going_up ? ++ it : -- it)->consumed_perimeter_right = true;
+ i_intersection = inext;
continue;
}
}
+
dont_connect:
// No way to continue the current polyline. Take the rest of the line up to the outer contour.
// This will finish the polyline, starting another polyline at a new point.
- if (going_up)
- ++intrsctn;
- else
- --intrsctn;
+ going_up ? ++ it : -- it;
}
// Finish the current vertical line,
// reset the current vertical line to pick a new starting point in the next round.
- assert(intrsctn->is_outer());
- assert(intrsctn->is_high() == going_up);
- pointLast = Point(seg.pos, intrsctn->pos());
- polyline_current->points.push_back(pointLast);
+ assert(it->is_outer());
+ assert(it->is_high() == going_up);
+ pointLast = Point(vline.pos, it->pos());
+ polyline_current->points.emplace_back(pointLast);
// Handle duplicate points and zero length segments.
polyline_current->remove_duplicate_points();
- assert(!polyline_current->has_duplicate_points());
+ assert(! polyline_current->has_duplicate_points());
// Handle nearly zero length edges.
if (polyline_current->points.size() <= 1 ||
(polyline_current->points.size() == 2 &&
std::abs(polyline_current->points.front()(0) - polyline_current->points.back()(0)) < SCALED_EPSILON &&
std::abs(polyline_current->points.front()(1) - polyline_current->points.back()(1)) < SCALED_EPSILON))
polylines_out.pop_back();
- intrsctn = NULL;
- i_intersection = -1;
- polyline_current = NULL;
+ it = nullptr;
+ i_intersection = -1;
+ polyline_current = nullptr;
}
}
-struct MonotonousRegion;
-
-struct NextMonotonousRegion
-{
- MonotonousRegion *region;
- struct Path {
- float length { 0 }; // Length of the link to the next region.
- float visibility { 0 }; // 1 / length. Which length, just to the next region, or including the path accross the region?
- float pheromone { 0 }; // <0, 1>
- };
- enum Index : int {
- LowLow,
- LowHigh,
- HighLow,
- HighHigh
- };
- Path paths[4];
-};
-
struct MonotonousRegion
{
struct Boundary {
@@ -1565,20 +1541,28 @@ struct MonotonousRegion
Boundary right;
// Length when starting at left.low
- double len1;
+ float len1 { 0.f };
// Length when starting at left.high
- double len2;
+ float len2 { 0.f };
// If true, then when starting at left.low, then ending at right.high and vice versa.
// If false, then ending at the same side as starting.
- bool flips;
+ bool flips { false };
+ bool length(bool region_flipped) const { return region_flipped ? len2 : len1; }
int left_intersection_point(bool region_flipped) const { return region_flipped ? left.high : left.low; }
int right_intersection_point(bool region_flipped) const { return (region_flipped == flips) ? right.low : right.high; }
// Left regions are used to track whether all regions left to this one have already been printed.
boost::container::small_vector<MonotonousRegion*, 4> left_neighbors;
// Right regions are held to pick a next region to be extruded using the "Ant colony" heuristics.
- boost::container::small_vector<NextMonotonousRegion, 4> right_neighbors;
+ boost::container::small_vector<MonotonousRegion*, 4> right_neighbors;
+};
+
+struct AntPath
+{
+ float length { -1. }; // Length of the link to the next region.
+ float visibility { -1. }; // 1 / length. Which length, just to the next region, or including the path accross the region?
+ float pheromone { 0 }; // <0, 1>
};
struct MonotonousRegionLink
@@ -1587,10 +1571,65 @@ struct MonotonousRegionLink
bool flipped;
// Distance of right side of this region to left side of the next region, if the "flipped" flag of this region and the next region
// is applied as defined.
- NextMonotonousRegion::Path *next;
+ AntPath *next;
// Distance of right side of this region to left side of the next region, if the "flipped" flag of this region and the next region
// is applied in reverse order as if the zig-zags were flipped.
- NextMonotonousRegion::Path *next_flipped;
+ AntPath *next_flipped;
+};
+
+class AntPathMatrix
+{
+public:
+ AntPathMatrix(const std::vector<MonotonousRegion> &regions, const ExPolygonWithOffset &poly_with_offset, const std::vector<SegmentedIntersectionLine> &segs) :
+ m_regions(regions),
+ m_poly_with_offset(poly_with_offset),
+ m_segs(segs),
+ // From end of one region to the start of another region, both flipped or not flipped.
+ m_matrix(regions.size() * regions.size() * 4) {}
+
+ AntPath& operator()(const MonotonousRegion &region_from, bool flipped_from, const MonotonousRegion &region_to, bool flipped_to)
+ {
+ int row = 2 * int(&region_from - m_regions.data()) + flipped_from;
+ int col = 2 * int(&region_to - m_regions.data()) + flipped_to;
+ AntPath &path = m_matrix[row * m_regions.size() * 2 + col];
+ if (path.length == -1.) {
+ // This path is accessed for the first time. Update the length and cost.
+ int i_from = region_from.right_intersection_point(flipped_from);
+ int i_to = region_to.left_intersection_point(flipped_to);
+ const SegmentedIntersectionLine &vline_from = m_segs[region_from.right.vline];
+ const SegmentedIntersectionLine &vline_to = m_segs[region_to.left.vline];
+ if (region_from.right.vline + 1 == region_from.left.vline) {
+ int i_right = vline_from.intersections[i_from].right_horizontal();
+ if (i_right == i_to && vline_from.intersections[i_from].next_on_contour_quality == SegmentIntersection::LinkQuality::Valid) {
+ // Measure length along the contour.
+ path.length = measure_perimeter_next_segment_length(m_poly_with_offset, m_segs, region_from.right.vline, i_from, i_to);
+ }
+ }
+ if (path.length == -1.) {
+ // Just apply the Eucledian distance of the end points.
+ path.length = Vec2f(vline_to.pos - vline_from.pos, vline_to.intersections[i_to].pos() - vline_from.intersections[i_from].pos()).norm();
+ }
+ path.visibility = 1. / (path.length + EPSILON);
+ }
+ return path;
+ }
+
+ AntPath& operator()(const MonotonousRegionLink &region_from, const MonotonousRegion &region_to, bool flipped_to)
+ { return (*this)(*region_from.region, region_from.flipped, region_to, flipped_to); }
+ AntPath& operator()(const MonotonousRegion &region_from, bool flipped_from, const MonotonousRegionLink &region_to)
+ { return (*this)(region_from, flipped_from, *region_to.region, region_to.flipped); }
+ AntPath& operator()(const MonotonousRegionLink &region_from, const MonotonousRegionLink &region_to)
+ { return (*this)(*region_from.region, region_from.flipped, *region_to.region, region_to.flipped); }
+
+private:
+ // Source regions, used for addressing and updating m_matrix.
+ const std::vector<MonotonousRegion> &m_regions;
+ // To calculate the intersection points and contour lengths.
+ const ExPolygonWithOffset &m_poly_with_offset;
+ const std::vector<SegmentedIntersectionLine> &m_segs;
+ // From end of one region to the start of another region, both flipped or not flipped.
+ //FIXME one may possibly use sparse representation of the matrix.
+ std::vector<AntPath> m_matrix;
};
static const SegmentIntersection& vertical_run_bottom(const SegmentedIntersectionLine &vline, const SegmentIntersection &start)
@@ -1601,10 +1640,15 @@ static const SegmentIntersection& vertical_run_bottom(const SegmentedIntersectio
for (;;) {
while (it->type != SegmentIntersection::INNER_LOW)
-- it;
- int down = it->vertical_down();
- if (down == -1 || it->vertical_down_quality() != SegmentIntersection::LinkQuality::Valid)
- break;
- it = &vline.intersections[down];
+ if ((it - 1)->type == SegmentIntersection::INNER_HIGH)
+ -- it;
+ else {
+ int down = it->vertical_down();
+ if (down == -1 || it->vertical_down_quality() != SegmentIntersection::LinkQuality::Valid)
+ break;
+ it = &vline.intersections[down];
+ assert(it->type == SegmentIntersection::INNER_HIGH);
+ }
}
return *it;
}
@@ -1621,10 +1665,15 @@ static const SegmentIntersection& vertical_run_top(const SegmentedIntersectionLi
for (;;) {
while (it->type != SegmentIntersection::INNER_HIGH)
++ it;
- int up = it->vertical_up();
- if (up == -1 || it->vertical_up_quality() != SegmentIntersection::LinkQuality::Valid)
- break;
- it = &vline.intersections[up];
+ if ((it + 1)->type == SegmentIntersection::INNER_LOW)
+ ++ it;
+ else {
+ int up = it->vertical_up();
+ if (up == -1 || it->vertical_up_quality() != SegmentIntersection::LinkQuality::Valid)
+ break;
+ it = &vline.intersections[up];
+ assert(it->type == SegmentIntersection::INNER_LOW);
+ }
}
return *it;
}
@@ -1719,41 +1768,53 @@ static std::vector<MonotonousRegion> generate_montonous_regions(std::vector<Segm
{
std::vector<MonotonousRegion> monotonous_regions;
- for (size_t i_vline_seed = 0; i_vline_seed < segs.size(); ++ i_vline_seed) {
+ for (int i_vline_seed = 0; i_vline_seed < segs.size(); ++ i_vline_seed) {
SegmentedIntersectionLine &vline_seed = segs[i_vline_seed];
- for (size_t i_intersection_seed = 1; i_intersection_seed + 1 < vline_seed.intersections.size(); ) {
+ for (int i_intersection_seed = 1; i_intersection_seed + 1 < vline_seed.intersections.size(); ) {
while (i_intersection_seed + 1 < vline_seed.intersections.size() &&
vline_seed.intersections[i_intersection_seed].type != SegmentIntersection::INNER_LOW)
++ i_intersection_seed;
SegmentIntersection *start = &vline_seed.intersections[i_intersection_seed];
- SegmentIntersection *end = &end_of_vertical_run_raw(*start);
+ SegmentIntersection *end = &end_of_vertical_run(vline_seed, *start);
if (! start->consumed_vertical_up) {
// Draw a new monotonous region starting with this segment.
// while there is only a single right neighbor
- start->consumed_vertical_up = true;
- size_t i_vline = i_vline_seed;
+ int i_vline = i_vline_seed;
std::pair<SegmentIntersection*, SegmentIntersection*> left(start, end);
MonotonousRegion region;
region.left.vline = i_vline;
- region.left.low = left.first - vline_seed.intersections.data();
- region.left.high = left.second - vline_seed.intersections.data();
+ region.left.low = int(left.first - vline_seed.intersections.data());
+ region.left.high = int(left.second - vline_seed.intersections.data());
region.right = region.left;
+ start->consumed_vertical_up = true;
+ int num_lines = 1;
while (++ i_vline < segs.size()) {
SegmentedIntersectionLine &vline_left = segs[i_vline - 1];
SegmentedIntersectionLine &vline_right = segs[i_vline];
- std::pair<SegmentIntersection*, SegmentIntersection*> right = right_overlap(left, vline_right);
- std::pair<SegmentIntersection*, SegmentIntersection*> right_left = left_overlap(right, vline_left);
+ std::pair<SegmentIntersection*, SegmentIntersection*> right = right_overlap(left, vline_right);
+ if (right.first == nullptr)
+ // No neighbor at the right side of the current segment.
+ break;
+ SegmentIntersection* right_top_first = &vertical_run_top(vline_right, *right.first);
+ if (right_top_first != right.second)
+ // This segment overlaps with multiple segments at its right side.
+ break;
+ std::pair<SegmentIntersection*, SegmentIntersection*> right_left = left_overlap(right, vline_left);
if (left != right_left)
- // Left & right draws don't overlap exclusively.
+ // Left & right draws don't overlap exclusively, right neighbor segment overlaps with multiple segments at its left.
break;
region.right.vline = i_vline;
- region.right.low = right.first - vline_right.intersections.data();
- region.right.high = right.second - vline_right.intersections.data();
+ region.right.low = int(right.first - vline_right.intersections.data());
+ region.right.high = int(right.second - vline_right.intersections.data());
right.first->consumed_vertical_up = true;
+ ++ num_lines;
left = right;
}
+ // Even number of lines makes the infill zig-zag to exit on the other side of the region than where it starts.
+ region.flips = (num_lines & 1) != 0;
+ monotonous_regions.emplace_back(region);
}
- i_intersection_seed = end - vline_seed.intersections.data() + 1;
+ i_intersection_seed = int(end - vline_seed.intersections.data()) + 1;
}
}
@@ -1781,38 +1842,41 @@ static void connect_monotonous_regions(std::vector<MonotonousRegion> &regions, s
for (MonotonousRegion &region : regions) {
if (region.left.vline > 0) {
auto &vline = segs[region.left.vline];
- auto begin = &vline.intersections[region.left.low];
- auto end = &vline.intersections[region.left.high];
- for (;;) {
- MapType key(begin, nullptr);
- auto it = std::lower_bound(map_intersection_to_region_end.begin(), map_intersection_to_region_end.end(), key);
- assert(it != map_intersection_to_region_end.end() && it->first == key.first);
- NextMonotonousRegion next_region{ &region };
- it->second->right_neighbors.emplace_back(next_region);
- SegmentIntersection *next = &vertical_run_top(vline, *begin);
- if (next == end)
- break;
- while (next->type != SegmentIntersection::INNER_LOW)
- ++ next;
- begin = next;
- }
+ auto &vline_left = segs[region.left.vline - 1];
+ auto[lbegin, lend] = left_overlap(vline.intersections[region.left.low], vline.intersections[region.left.high], vline_left);
+ if (lbegin != nullptr) {
+ for (;;) {
+ MapType key(lbegin, nullptr);
+ auto it = std::lower_bound(map_intersection_to_region_end.begin(), map_intersection_to_region_end.end(), key);
+ assert(it != map_intersection_to_region_end.end() && it->first == key.first);
+ it->second->right_neighbors.emplace_back(&region);
+ SegmentIntersection *lnext = &vertical_run_top(vline_left, *lbegin);
+ if (lnext == lend)
+ break;
+ while (lnext->type != SegmentIntersection::INNER_LOW)
+ ++ lnext;
+ lbegin = lnext;
+ }
+ }
}
if (region.right.vline + 1 < segs.size()) {
auto &vline = segs[region.right.vline];
- auto begin = &vline.intersections[region.right.low];
- auto end = &vline.intersections[region.right.high];
- for (;;) {
- MapType key(begin, nullptr);
- auto it = std::lower_bound(map_intersection_to_region_start.begin(), map_intersection_to_region_start.end(), key);
- assert(it != map_intersection_to_region_start.end() && it->first == key.first);
- it->second->left_neighbors.emplace_back(&region);
- SegmentIntersection *next = &vertical_run_top(vline, *begin);
- if (next == end)
- break;
- while (next->type != SegmentIntersection::INNER_LOW)
- ++ next;
- begin = next;
- }
+ auto &vline_right = segs[region.right.vline + 1];
+ auto [rbegin, rend] = right_overlap(vline.intersections[region.right.low], vline.intersections[region.right.high], vline_right);
+ if (rbegin != nullptr) {
+ for (;;) {
+ MapType key(rbegin, nullptr);
+ auto it = std::lower_bound(map_intersection_to_region_start.begin(), map_intersection_to_region_start.end(), key);
+ assert(it != map_intersection_to_region_start.end() && it->first == key.first);
+ it->second->left_neighbors.emplace_back(&region);
+ SegmentIntersection *rnext = &vertical_run_top(vline_right, *rbegin);
+ if (rnext == rend)
+ break;
+ while (rnext->type != SegmentIntersection::INNER_LOW)
+ ++ rnext;
+ rbegin = rnext;
+ }
+ }
}
}
}
@@ -1821,7 +1885,7 @@ static void connect_monotonous_regions(std::vector<MonotonousRegion> &regions, s
// https://www.chalmers.se/en/departments/math/research/research-groups/optimization/OptimizationMasterTheses/MScThesis-RaadSalman-final.pdf
// Algorithm 6.1 Lexicographic Path Preserving 3-opt
// Optimize path while maintaining the ordering constraints.
-void monotonous_3_opt(std::vector<MonotonousRegionLink> &path, std::vector<SegmentedIntersectionLine> &segs)
+void monotonous_3_opt(std::vector<MonotonousRegionLink> &path, const std::vector<SegmentedIntersectionLine> &segs)
{
// When doing the 3-opt path preserving flips, one has to fulfill two constraints:
//
@@ -1842,19 +1906,19 @@ void monotonous_3_opt(std::vector<MonotonousRegionLink> &path, std::vector<Segme
// Find a run through monotonous infill blocks using an 'Ant colony" optimization method.
static std::vector<MonotonousRegionLink> chain_monotonous_regions(
- std::vector<MonotonousRegion> &regions, std::vector<SegmentedIntersectionLine> &segs, std::mt19937_64 &rng)
+ std::vector<MonotonousRegion> &regions, const ExPolygonWithOffset &poly_with_offset, const std::vector<SegmentedIntersectionLine> &segs, std::mt19937_64 &rng)
{
// Start point of a region (left) given the direction of the initial infill line.
auto region_start_point = [&segs](const MonotonousRegion &region, bool dir) {
- SegmentedIntersectionLine &vline = segs[region.left.vline];
- SegmentIntersection &ipt = vline.intersections[dir ? region.left.high : region.left.low];
+ const SegmentedIntersectionLine &vline = segs[region.left.vline];
+ const SegmentIntersection &ipt = vline.intersections[dir ? region.left.high : region.left.low];
return Vec2f(float(vline.pos), float(ipt.pos()));
};
// End point of a region (right) given the direction of the initial infill line and whether the monotonous run contains
// even or odd number of vertical lines.
auto region_end_point = [&segs](const MonotonousRegion &region, bool dir) {
- SegmentedIntersectionLine &vline = segs[region.right.vline];
- SegmentIntersection &ipt = vline.intersections[(dir == region.flips) ? region.right.low : region.right.high];
+ const SegmentedIntersectionLine &vline = segs[region.right.vline];
+ const SegmentIntersection &ipt = vline.intersections[(dir == region.flips) ? region.right.low : region.right.high];
return Vec2f(float(vline.pos), float(ipt.pos()));
};
@@ -1867,7 +1931,7 @@ static std::vector<MonotonousRegionLink> chain_monotonous_regions(
if (region.left_neighbors.empty())
queue.emplace_back(&region);
else
- left_neighbors_unprocessed[&region - regions.data()] = region.left_neighbors.size();
+ left_neighbors_unprocessed[&region - regions.data()] = int(region.left_neighbors.size());
// Make copy of structures that need to be initialized at each ant iteration.
auto left_neighbors_unprocessed_initial = left_neighbors_unprocessed;
auto queue_initial = queue;
@@ -1878,14 +1942,16 @@ static std::vector<MonotonousRegionLink> chain_monotonous_regions(
float best_path_length = std::numeric_limits<float>::max();
struct NextCandidate {
- NextMonotonousRegion *region;
- NextMonotonousRegion::Path *link;
- NextMonotonousRegion::Path *link_flipped;
- float cost;
- bool dir;
+ MonotonousRegion *region;
+ AntPath *link;
+ AntPath *link_flipped;
+ float cost;
+ bool dir;
};
std::vector<NextCandidate> next_candidates;
+ AntPathMatrix path_matrix(regions, poly_with_offset, segs);
+
// How many times to repeat the ant simulation.
constexpr int num_runs = 10;
// With how many ants each of the run will be performed?
@@ -1900,10 +1966,10 @@ static std::vector<MonotonousRegionLink> chain_monotonous_regions(
constexpr float pheromone_alpha = 1.f; // pheromone exponent
constexpr float pheromone_beta = 2.f; // attractiveness weighted towards edge length
// Cost of traversing a link between two monotonous regions.
- auto path_cost = [pheromone_alpha, pheromone_beta](NextMonotonousRegion::Path &path) {
+ auto path_cost = [pheromone_alpha, pheromone_beta](AntPath &path) {
return pow(path.pheromone, pheromone_alpha) * pow(path.visibility, pheromone_beta);
};
- for (int run = 0; run < num_runs; ++ run)
+ for (int run = 0; run < num_runs; ++ run)
{
for (int ant = 0; ant < num_ants; ++ ant)
{
@@ -1911,92 +1977,111 @@ static std::vector<MonotonousRegionLink> chain_monotonous_regions(
path.clear();
queue = queue_initial;
left_neighbors_unprocessed = left_neighbors_unprocessed_initial;
- while (! queue.empty()) {
- // Sort the queue by distance to the last point.
- // Take a candidate based on shortest distance? or ant colony?
- if (path.empty()) {
- // Pick randomly the first from the queue at random orientation.
- int first_idx = std::uniform_int_distribution<>(0, int(queue.size()) - 1)(rng);
- path.emplace_back(MonotonousRegionLink{ queue[first_idx], rng() > rng.max() / 2 });
- *(queue.begin() + first_idx) = std::move(queue.back());
- queue.pop_back();
- } else {
- // Pick the closest neighbor from the queue?
- }
- -- left_neighbors_unprocessed[path.back().region - regions.data()];
- while (! path.back().region->right_neighbors.empty()) {
- // Chain.
- MonotonousRegion &region = *path.back().region;
- bool dir = path.back().flipped;
- Vec2f end_pt = region_end_point(region, dir);
- // Sort by distance to pt.
- next_candidates.reserve(region.right_neighbors.size() * 2);
- for (NextMonotonousRegion &next : region.right_neighbors) {
- int unprocessed = left_neighbors_unprocessed[next.region - regions.data()];
- assert(unprocessed > 0);
- if (unprocessed == 1) {
- // Dependencies of the successive blocks are satisfied.
- bool flip = dir == region.flips;
- auto path_cost = [pheromone_alpha, pheromone_beta](NextMonotonousRegion::Path& path) {
- return pow(path.pheromone, pheromone_alpha) * pow(path.visibility, pheromone_beta);
- };
- NextMonotonousRegion::Path &path_low = next.paths[flip ? NextMonotonousRegion::HighLow : NextMonotonousRegion::LowLow];
- NextMonotonousRegion::Path &path_low_flipped = next.paths[flip ? NextMonotonousRegion::LowHigh : NextMonotonousRegion::HighHigh];
- NextMonotonousRegion::Path &path_high = next.paths[flip ? NextMonotonousRegion::HighHigh : NextMonotonousRegion::LowHigh];
- NextMonotonousRegion::Path &path_high_flipped = next.paths[flip ? NextMonotonousRegion::LowLow : NextMonotonousRegion::HighLow];
- next_candidates.emplace_back(NextCandidate{ &next, &path_low, &path_low_flipped, path_cost(path_low), false });
- next_candidates.emplace_back(NextCandidate{ &next, &path_high, &path_high_flipped, path_cost(path_high), true });
- }
+ // Pick randomly the first from the queue at random orientation.
+ int first_idx = std::uniform_int_distribution<>(0, int(queue.size()) - 1)(rng);
+ path.emplace_back(MonotonousRegionLink{ queue[first_idx], rng() > rng.max() / 2 });
+ *(queue.begin() + first_idx) = std::move(queue.back());
+ queue.pop_back();
+ assert(left_neighbors_unprocessed[path.back().region - regions.data()] == 0);
+
+ while (! queue.empty() || ! path.back().region->right_neighbors.empty()) {
+ // Chain.
+ MonotonousRegion &region = *path.back().region;
+ bool dir = path.back().flipped;
+ Vec2f end_pt = region_end_point(region, dir);
+ // Sort by distance to pt.
+ next_candidates.clear();
+ next_candidates.reserve(region.right_neighbors.size() * 2);
+ for (MonotonousRegion *next : region.right_neighbors) {
+ int &unprocessed = left_neighbors_unprocessed[next - regions.data()];
+ assert(unprocessed > 0);
+ if (-- unprocessed == 0) {
+ // Dependencies of the successive blocks are satisfied.
+ AntPath &path1 = path_matrix(region, dir, *next, false);
+ AntPath &path1_flipped = path_matrix(region, ! dir, *next, true);
+ AntPath &path2 = path_matrix(region, dir, *next, true);
+ AntPath &path2_flipped = path_matrix(region, ! dir, *next, false);
+ next_candidates.emplace_back(NextCandidate{ next, &path1, &path1_flipped, path_cost(path1), false });
+ next_candidates.emplace_back(NextCandidate{ next, &path2, &path2_flipped, path_cost(path2), true });
}
- //std::sort(next_candidates.begin(), next_candidates.end(), [](const auto &l, const auto &r) { l.dist < r.dist; });
- float dice = float(rng()) / float(rng.max());
- std::vector<NextCandidate>::iterator take_path;
- if (dice < probability_take_best) {
- // Take the lowest cost path.
- take_path = std::min_element(next_candidates.begin(), next_candidates.end(), [](auto &l, auto &r){ return l.cost < r.cost; });
- } else {
- // Take the path based on the cost.
- // Calculate the total cost.
- float total_cost = std::accumulate(next_candidates.begin(), next_candidates.end(), 0.f, [](const float l, const NextCandidate& r) { return l + r.cost; });
- // Take a random path based on the cost.
- float cost_threshold = floor(float(rng()) * total_cost / float(rng.max()));
- take_path = next_candidates.end();
- -- take_path;
- for (auto it = next_candidates.begin(); it < next_candidates.end(); ++ it)
- if (cost_threshold -= it->cost <= 0.) {
- take_path = it;
- break;
- }
- }
- // Extend the path.
- NextMonotonousRegion &next_region = *take_path->region;
- bool next_dir = take_path->dir;
- path.back().next = take_path->link;
- path.back().next_flipped = take_path->link_flipped;
- path.emplace_back(MonotonousRegionLink{ next_region.region, next_dir });
- // Decrease the number of next block dependencies.
- -- left_neighbors_unprocessed[next_region.region - regions.data()];
- // Update pheromones along this link.
- take_path->link->pheromone = (1.f - pheromone_evaporation) * take_path->link->pheromone + pheromone_evaporation * pheromone_initial_deposit;
}
+ size_t num_direct_neighbors = next_candidates.size();
+ //FIXME add the queue items to the candidates? These are valid moves as well.
+ if (num_direct_neighbors == 0) {
+ // Add the queue candidates.
+ for (MonotonousRegion *next : queue) {
+ AntPath &path1 = path_matrix(region, dir, *next, false);
+ AntPath &path1_flipped = path_matrix(region, ! dir, *next, true);
+ AntPath &path2 = path_matrix(region, dir, *next, true);
+ AntPath &path2_flipped = path_matrix(region, ! dir, *next, false);
+ next_candidates.emplace_back(NextCandidate{ next, &path1, &path1_flipped, path_cost(path1), false });
+ next_candidates.emplace_back(NextCandidate{ next, &path2, &path2_flipped, path_cost(path2), true });
+ }
+ }
+ float dice = float(rng()) / float(rng.max());
+ std::vector<NextCandidate>::iterator take_path;
+ if (dice < probability_take_best) {
+ // Take the lowest cost path.
+ take_path = std::min_element(next_candidates.begin(), next_candidates.end(), [](auto &l, auto &r){ return l.cost < r.cost; });
+ } else {
+ // Take the path based on the cost.
+ // Calculate the total cost.
+ float total_cost = std::accumulate(next_candidates.begin(), next_candidates.end(), 0.f, [](const float l, const NextCandidate& r) { return l + r.cost; });
+ // Take a random path based on the cost.
+ float cost_threshold = floor(float(rng()) * total_cost / float(rng.max()));
+ take_path = next_candidates.end();
+ -- take_path;
+ for (auto it = next_candidates.begin(); it < next_candidates.end(); ++ it)
+ if (cost_threshold -= it->cost <= 0.) {
+ take_path = it;
+ break;
+ }
+ }
+ // Move the other right neighbors with satisified constraints to the queue.
+ bool direct_neighbor_taken = take_path - next_candidates.begin() < num_direct_neighbors;
+ for (std::vector<NextCandidate>::iterator it_next_candidate = next_candidates.begin(); it_next_candidate != next_candidates.begin() + num_direct_neighbors; ++ it_next_candidate)
+ if ((queue.empty() || it_next_candidate->region != queue.back()) && it_next_candidate->region != take_path->region)
+ queue.emplace_back(it_next_candidate->region);
+ if (take_path - next_candidates.begin() >= num_direct_neighbors) {
+ // Remove the selected path from the queue.
+ auto it = std::find(queue.begin(), queue.end(), take_path->region);
+ *it = queue.back();
+ queue.pop_back();
+ }
+ // Extend the path.
+ MonotonousRegion *next_region = take_path->region;
+ bool next_dir = take_path->dir;
+ path.back().next = take_path->link;
+ path.back().next_flipped = take_path->link_flipped;
+ path.emplace_back(MonotonousRegionLink{ next_region, next_dir });
+ // Update pheromones along this link.
+ take_path->link->pheromone = (1.f - pheromone_evaporation) * take_path->link->pheromone + pheromone_evaporation * pheromone_initial_deposit;
}
// Perform 3-opt local optimization of the path.
monotonous_3_opt(path, segs);
// Measure path length.
- float path_length = std::accumulate(path.begin(), path.end(), 0.f, [](const float l, const MonotonousRegionLink& r) { return l + r.next->length; });
+ assert(! path.empty());
+ float path_length = std::accumulate(path.begin(), path.end() - 1,
+ path.back().region->length(path.back().flipped),
+ [&path_matrix](const float l, const MonotonousRegionLink &r) {
+ const MonotonousRegionLink &next = *(&r + 1);
+ return l + r.region->length(r.flipped) + path_matrix(*r.region, r.flipped, *next.region, next.flipped).length;
+ });
// Save the shortest path.
if (path_length < best_path_length) {
best_path_length = path_length;
- std::swap(best_path_length, path_length);
+ std::swap(best_path, path);
}
}
// Reinforce the path feromones with the best path.
- float total_cost = best_path_length;
- for (MonotonousRegionLink &link : path)
+ float total_cost = best_path_length + EPSILON;
+ for (size_t i = 0; i + 1 < path.size(); ++ i) {
+ MonotonousRegionLink &link = path[i];
link.next->pheromone = (1.f - pheromone_evaporation) * link.next->pheromone + pheromone_evaporation / total_cost;
+ }
}
return best_path;
@@ -2055,76 +2140,76 @@ static void polylines_from_paths(const std::vector<MonotonousRegionLink> &path,
}
for (;;) {
- const SegmentedIntersectionLine &seg = segs[i_vline];
- const SegmentIntersection *intrsctn = &seg.intersections[i_intersection];
- const bool going_up = intrsctn->is_low();
+ const SegmentedIntersectionLine &vline = segs[i_vline];
+ const SegmentIntersection *it = &vline.intersections[i_intersection];
+ const bool going_up = it->is_low();
if (polyline == nullptr) {
polylines_out.emplace_back();
polyline = &polylines_out.back();
// Extend the infill line up to the outer contour.
- polyline->points.emplace_back(seg.pos, (intrsctn + (going_up ? - 1 : 1))->pos());
+ polyline->points.emplace_back(vline.pos, (it + (going_up ? - 1 : 1))->pos());
} else
- polyline->points.emplace_back(seg.pos, intrsctn->pos());
+ polyline->points.emplace_back(vline.pos, it->pos());
- int iright = intrsctn->right_horizontal();
+ int iright = it->right_horizontal();
if (going_up) {
// Consume the complete vertical segment up to the inner contour.
for (;;) {
do {
- ++ intrsctn;
- iright = std::max(iright, intrsctn->right_horizontal());
- } while (intrsctn->type != SegmentIntersection::INNER_HIGH);
- polyline->points.emplace_back(seg.pos, intrsctn->pos());
- int inext = intrsctn->vertical_up();
+ ++ it;
+ iright = std::max(iright, it->right_horizontal());
+ } while (it->type != SegmentIntersection::INNER_HIGH);
+ polyline->points.emplace_back(vline.pos, it->pos());
+ int inext = it->vertical_up();
if (inext == -1)
break;
- const Polygon &poly = poly_with_offset.contour(intrsctn->iContour);
- assert(intrsctn->iContour == seg.intersections[inext].iContour);
- emit_perimeter_segment_on_vertical_line(poly_with_offset, segs, i_vline, intrsctn->iContour, i_intersection, inext, *polyline, intrsctn->has_right_vertical_up());
- intrsctn = seg.intersections.data() + inext;
+ const Polygon &poly = poly_with_offset.contour(it->iContour);
+ assert(it->iContour == vline.intersections[inext].iContour);
+ emit_perimeter_segment_on_vertical_line(poly_with_offset, segs, i_vline, it->iContour, it - vline.intersections.data(), inext, *polyline, it->has_left_vertical_up());
+ it = vline.intersections.data() + inext;
}
} else {
// Going down.
- assert(intrsctn->is_high());
+ assert(it->is_high());
assert(i_intersection > 0);
for (;;) {
do {
- -- intrsctn;
- if (int iright_new = intrsctn->right_horizontal(); iright_new != -1)
+ -- it;
+ if (int iright_new = it->right_horizontal(); iright_new != -1)
iright = iright_new;
- } while (intrsctn->type != SegmentIntersection::INNER_LOW);
- polyline->points.emplace_back(seg.pos, intrsctn->pos());
- int inext = intrsctn->vertical_down();
+ } while (it->type != SegmentIntersection::INNER_LOW);
+ polyline->points.emplace_back(vline.pos, it->pos());
+ int inext = it->vertical_down();
if (inext == -1)
break;
- const Polygon &poly = poly_with_offset.contour(intrsctn->iContour);
- assert(intrsctn->iContour == seg.intersections[inext].iContour);
- emit_perimeter_segment_on_vertical_line(poly_with_offset, segs, i_vline, intrsctn->iContour, intrsctn - seg.intersections.data(), inext, *polyline, intrsctn->has_right_vertical_down());
- intrsctn = seg.intersections.data() + inext;
+ const Polygon &poly = poly_with_offset.contour(it->iContour);
+ assert(it->iContour == vline.intersections[inext].iContour);
+ emit_perimeter_segment_on_vertical_line(poly_with_offset, segs, i_vline, it->iContour, it - vline.intersections.data(), inext, *polyline, it->has_right_vertical_down());
+ it = vline.intersections.data() + inext;
}
}
if (i_vline == region.right.vline)
break;
- int inext = intrsctn->right_horizontal();
- if (inext != -1 && intrsctn->next_on_contour_quality == SegmentIntersection::LinkQuality::Valid) {
+ int inext = it->right_horizontal();
+ if (inext != -1 && it->next_on_contour_quality == SegmentIntersection::LinkQuality::Valid) {
// Emit a horizontal connection contour.
- emit_perimeter_prev_next_segment(poly_with_offset, segs, i_vline, intrsctn->iContour, intrsctn - seg.intersections.data(), inext, *polyline, true);
+ emit_perimeter_prev_next_segment(poly_with_offset, segs, i_vline, it->iContour, it - vline.intersections.data(), inext, *polyline, true);
i_intersection = inext;
} else {
// Finish the current vertical line,
- going_up ? ++ intrsctn : -- intrsctn;
- assert(intrsctn->is_outer());
- assert(intrsctn->is_high() == going_up);
- polyline->points.back() = Point(seg.pos, intrsctn->pos());
+ going_up ? ++ it : -- it;
+ assert(it->is_outer());
+ assert(it->is_high() == going_up);
+ polyline->points.back() = Point(vline.pos, it->pos());
finish_polyline();
if (inext == -1) {
// Find the end of the next overlapping vertical segment.
const SegmentedIntersectionLine &vline_right = segs[i_vline + 1];
const SegmentIntersection *right = going_up ?
&vertical_run_top(vline_right, vline_right.intersections[iright]) : &vertical_run_bottom(vline_right, vline_right.intersections[iright]);
- i_intersection = right - vline_right.intersections.data();
+ i_intersection = int(right - vline_right.intersections.data());
} else
i_intersection = inext;
}
@@ -2132,6 +2217,18 @@ static void polylines_from_paths(const std::vector<MonotonousRegionLink> &path,
++ i_vline;
}
}
+
+ if (polyline != nullptr) {
+ // Finish the current vertical line,
+ const MonotonousRegion &region = *path.back().region;
+ const SegmentedIntersectionLine &vline = segs[region.right.vline];
+ const SegmentIntersection *ip = &vline.intersections[region.right_intersection_point(path.back().flipped)];
+ assert(ip->is_inner());
+ ip->is_low() ? -- ip : ++ ip;
+ assert(ip->is_outer());
+ polyline->points.back() = Point(vline.pos, ip->pos());
+ finish_polyline();
+ }
}
bool FillRectilinear2::fill_surface_by_lines(const Surface *surface, const FillParams &params, float angleBase, float pattern_shift, Polylines &polylines_out)
@@ -2224,13 +2321,16 @@ bool FillRectilinear2::fill_surface_by_lines(const Surface *surface, const FillP
svg.Close();
#endif /* SLIC3R_DEBUG */
+ //FIXME this is a hack to get the monotonous infill rolling. We likely want a smarter switch, likely based on user decison.
bool monotonous_infill = params.density > 0.99;
if (monotonous_infill) {
std::vector<MonotonousRegion> regions = generate_montonous_regions(segs);
connect_monotonous_regions(regions, segs);
- std::mt19937_64 rng;
- std::vector<MonotonousRegionLink> path = chain_monotonous_regions(regions, segs, rng);
- polylines_from_paths(path, poly_with_offset, segs, polylines_out);
+ if (! regions.empty()) {
+ std::mt19937_64 rng;
+ std::vector<MonotonousRegionLink> path = chain_monotonous_regions(regions, poly_with_offset, segs, rng);
+ polylines_from_paths(path, poly_with_offset, segs, polylines_out);
+ }
} else
traverse_graph_generate_polylines(poly_with_offset, params, this->link_max_length, segs, polylines_out);
diff --git a/src/libslic3r/GCode.cpp b/src/libslic3r/GCode.cpp
index 01a804ee7..b5890f578 100644
--- a/src/libslic3r/GCode.cpp
+++ b/src/libslic3r/GCode.cpp
@@ -3439,10 +3439,13 @@ void GCode::ObjectByExtruder::Island::Region::append(const Type type, const Extr
// First we append the entities, there are eec->entities.size() of them:
size_t old_size = perimeters_or_infills->size();
- size_t new_size = old_size + eec->entities.size();
+ size_t new_size = old_size + (eec->can_reverse() ? eec->entities.size() : 1);
perimeters_or_infills->reserve(new_size);
- for (auto* ee : eec->entities)
- perimeters_or_infills->emplace_back(ee);
+ if (eec->can_reverse()) {
+ for (auto* ee : eec->entities)
+ perimeters_or_infills->emplace_back(ee);
+ } else
+ perimeters_or_infills->emplace_back(const_cast<ExtrusionEntityCollection*>(eec));
if (copies_extruder != nullptr) {
// Don't reallocate overrides if not needed.