Welcome to mirror list, hosted at ThFree Co, Russian Federation.

github.com/prusa3d/PrusaSlicer.git - Unnamed repository; edit this file 'description' to name the repository.
summaryrefslogtreecommitdiff
diff options
context:
space:
mode:
Diffstat (limited to 'ArduinoAddons/Arduino_1.6.x/libraries/L6470/L6470.cpp')
-rwxr-xr-xArduinoAddons/Arduino_1.6.x/libraries/L6470/L6470.cpp723
1 files changed, 723 insertions, 0 deletions
diff --git a/ArduinoAddons/Arduino_1.6.x/libraries/L6470/L6470.cpp b/ArduinoAddons/Arduino_1.6.x/libraries/L6470/L6470.cpp
new file mode 100755
index 000000000..8278c19ae
--- /dev/null
+++ b/ArduinoAddons/Arduino_1.6.x/libraries/L6470/L6470.cpp
@@ -0,0 +1,723 @@
+////////////////////////////////////////////////////////////
+//ORIGINAL CODE 12/12/2011- Mike Hord, SparkFun Electronics
+//LIBRARY Created by Adam Meyer of bildr Aug 18th 2012
+//Released as MIT license
+////////////////////////////////////////////////////////////
+
+#include <Arduino.h>
+#include "L6470.h"
+#include <SPI.h>
+
+#define ENABLE_RESET_PIN 0
+#define K_VALUE 100
+
+L6470::L6470(int SSPin){
+ _SSPin = SSPin;
+ // Serial.begin(9600);
+}
+
+void L6470::init(int k_value){
+ // This is the generic initialization function to set up the Arduino to
+ // communicate with the dSPIN chip.
+
+ // set up the input/output pins for the application.
+ pinMode(SLAVE_SELECT_PIN, OUTPUT); // The SPI peripheral REQUIRES the hardware SS pin-
+ // pin 10- to be an output. This is in here just
+ // in case some future user makes something other
+ // than pin 10 the SS pin.
+
+ pinMode(_SSPin, OUTPUT);
+ digitalWrite(_SSPin, HIGH);
+ pinMode(MOSI, OUTPUT);
+ pinMode(MISO, INPUT);
+ pinMode(SCK, OUTPUT);
+ pinMode(BUSYN, INPUT);
+#if (ENABLE_RESET_PIN == 1)
+ pinMode(RESET, OUTPUT);
+ // reset the dSPIN chip. This could also be accomplished by
+ // calling the "L6470::ResetDev()" function after SPI is initialized.
+ digitalWrite(RESET, HIGH);
+ delay(10);
+ digitalWrite(RESET, LOW);
+ delay(10);
+ digitalWrite(RESET, HIGH);
+ delay(10);
+#endif
+
+
+ // initialize SPI for the dSPIN chip's needs:
+ // most significant bit first,
+ // SPI clock not to exceed 5MHz,
+ // SPI_MODE3 (clock idle high, latch data on rising edge of clock)
+ SPI.begin();
+ SPI.setBitOrder(MSBFIRST);
+ SPI.setClockDivider(SPI_CLOCK_DIV16); // or 2, 8, 16, 32, 64
+ SPI.setDataMode(SPI_MODE3);
+
+ // First things first: let's check communications. The CONFIG register should
+ // power up to 0x2E88, so we can use that to check the communications.
+ if (GetParam(CONFIG) == 0x2E88){
+ //Serial.println('good to go');
+ }
+ else{
+ //Serial.println('Comm issue');
+ }
+
+#if (ENABLE_RESET_PIN == 0)
+ resetDev();
+#endif
+ // First, let's set the step mode register:
+ // - SYNC_EN controls whether the BUSY/SYNC pin reflects the step
+ // frequency or the BUSY status of the chip. We want it to be the BUSY
+ // status.
+ // - STEP_SEL_x is the microstepping rate- we'll go full step.
+ // - SYNC_SEL_x is the ratio of (micro)steps to toggles on the
+ // BUSY/SYNC pin (when that pin is used for SYNC). Make it 1:1, despite
+ // not using that pin.
+ //SetParam(STEP_MODE, !SYNC_EN | STEP_SEL_1 | SYNC_SEL_1);
+
+
+ SetParam(KVAL_RUN, k_value);
+ SetParam(KVAL_ACC, k_value);
+ SetParam(KVAL_DEC, k_value);
+ SetParam(KVAL_HOLD, k_value);
+
+ // Set up the CONFIG register as follows:
+ // PWM frequency divisor = 1
+ // PWM frequency multiplier = 2 (62.5kHz PWM frequency)
+ // Slew rate is 290V/us
+ // Do NOT shut down bridges on overcurrent
+ // Disable motor voltage compensation
+ // Hard stop on switch low
+ // 16MHz internal oscillator, nothing on output
+ SetParam(CONFIG, CONFIG_PWM_DIV_1 | CONFIG_PWM_MUL_2 | CONFIG_SR_290V_us| CONFIG_OC_SD_DISABLE | CONFIG_VS_COMP_DISABLE | CONFIG_SW_HARD_STOP | CONFIG_INT_16MHZ);
+ // Configure the RUN KVAL. This defines the duty cycle of the PWM of the bridges
+ // during running. 0xFF means that they are essentially NOT PWMed during run; this
+ // MAY result in more power being dissipated than you actually need for the task.
+ // Setting this value too low may result in failure to turn.
+ // There are ACC, DEC, and HOLD KVAL registers as well; you may need to play with
+ // those values to get acceptable performance for a given application.
+ //SetParam(KVAL_RUN, 0xFF);
+ // Calling GetStatus() clears the UVLO bit in the status register, which is set by
+ // default on power-up. The driver may not run without that bit cleared by this
+ // read operation.
+ getStatus();
+
+ hardStop(); //engage motors
+}
+
+boolean L6470::isBusy(){
+ int status = getStatus();
+ return !((status >> 1) & 0b1);
+}
+
+void L6470::setMicroSteps(int microSteps){
+ byte stepVal = 0;
+
+ for(stepVal = 0; stepVal < 8; stepVal++){
+ if(microSteps == 1) break;
+ microSteps = microSteps >> 1;
+ }
+
+ SetParam(STEP_MODE, !SYNC_EN | stepVal | SYNC_SEL_1);
+}
+
+void L6470::setThresholdSpeed(float thresholdSpeed){
+ // Configure the FS_SPD register- this is the speed at which the driver ceases
+ // microstepping and goes to full stepping. FSCalc() converts a value in steps/s
+ // to a value suitable for this register; to disable full-step switching, you
+ // can pass 0x3FF to this register.
+
+ if(thresholdSpeed == 0.0){
+ SetParam(FS_SPD, 0x3FF);
+ }
+ else{
+ SetParam(FS_SPD, FSCalc(thresholdSpeed));
+ }
+}
+
+
+void L6470::setCurrent(int current){}
+
+
+
+void L6470::setMaxSpeed(int speed){
+ // Configure the MAX_SPEED register- this is the maximum number of (micro)steps per
+ // second allowed. You'll want to mess around with your desired application to see
+ // how far you can push it before the motor starts to slip. The ACTUAL parameter
+ // passed to this function is in steps/tick; MaxSpdCalc() will convert a number of
+ // steps/s into an appropriate value for this function. Note that for any move or
+ // goto type function where no speed is specified, this value will be used.
+ SetParam(MAX_SPEED, MaxSpdCalc(speed));
+}
+
+
+void L6470::setMinSpeed(int speed){
+ // Configure the MAX_SPEED register- this is the maximum number of (micro)steps per
+ // second allowed. You'll want to mess around with your desired application to see
+ // how far you can push it before the motor starts to slip. The ACTUAL parameter
+ // passed to this function is in steps/tick; MaxSpdCalc() will convert a number of
+ // steps/s into an appropriate value for this function. Note that for any move or
+ // goto type function where no speed is specified, this value will be used.
+ SetParam(MIN_SPEED, MinSpdCalc(speed));
+}
+
+
+
+
+void L6470::setAcc(float acceleration){
+ // Configure the acceleration rate, in steps/tick/tick. There is also a DEC register;
+ // both of them have a function (AccCalc() and DecCalc() respectively) that convert
+ // from steps/s/s into the appropriate value for the register. Writing ACC to 0xfff
+ // sets the acceleration and deceleration to 'infinite' (or as near as the driver can
+ // manage). If ACC is set to 0xfff, DEC is ignored. To get infinite deceleration
+ // without infinite acceleration, only hard stop will work.
+ unsigned long accelerationBYTES = AccCalc(acceleration);
+ SetParam(ACC, accelerationBYTES);
+}
+
+
+void L6470::setDec(float deceleration){
+ unsigned long decelerationBYTES = DecCalc(deceleration);
+ SetParam(DEC, decelerationBYTES);
+}
+
+
+long L6470::getPos(){
+ unsigned long position = GetParam(ABS_POS);
+ return convert(position);
+}
+
+float L6470::getSpeed(){
+ /*
+ SPEED
+ The SPEED register contains the current motor speed, expressed in step/tick (format unsigned fixed point 0.28).
+ In order to convert the SPEED value in step/s the following formula can be used:
+ Equation 4
+ where SPEED is the integer number stored into the register and tick is 250 ns.
+ The available range is from 0 to 15625 step/s with a resolution of 0.015 step/s.
+ Note: The range effectively available to the user is limited by the MAX_SPEED parameter.
+ */
+
+ return (float) GetParam(SPEED);
+ //return (float) speed * pow(8, -22);
+ //return FSCalc(speed); NEEDS FIX
+}
+
+
+void L6470::setOverCurrent(unsigned int ma_current){
+ // Configure the overcurrent detection threshold.
+ byte OCValue = floor(ma_current / 375);
+ if(OCValue > 0x0F)OCValue = 0x0F;
+ SetParam(OCD_TH, OCValue);
+}
+
+void L6470::setStallCurrent(float ma_current){
+ byte STHValue = (byte)floor(ma_current / 31.25);
+ if(STHValue > 0x80)STHValue = 0x80;
+ if(STHValue < 0)STHValue = 0;
+ SetParam(STALL_TH, STHValue);
+}
+
+void L6470::SetLowSpeedOpt(boolean enable){
+ // Enable or disable the low-speed optimization option. If enabling,
+ // the other 12 bits of the register will be automatically zero.
+ // When disabling, the value will have to be explicitly written by
+ // the user with a SetParam() call. See the datasheet for further
+ // information about low-speed optimization.
+ Xfer(SET_PARAM | MIN_SPEED);
+ if (enable) Param(0x1000, 13);
+ else Param(0, 13);
+}
+
+
+void L6470::run(byte dir, float spd){
+ // RUN sets the motor spinning in a direction (defined by the constants
+ // FWD and REV). Maximum speed and minimum speed are defined
+ // by the MAX_SPEED and MIN_SPEED registers; exceeding the FS_SPD value
+ // will switch the device into full-step mode.
+ // The SpdCalc() function is provided to convert steps/s values into
+ // appropriate integer values for this function.
+ unsigned long speedVal = SpdCalc(spd);
+
+ Xfer(RUN | dir);
+ if (speedVal > 0xFFFFF) speedVal = 0xFFFFF;
+ Xfer((byte)(speedVal >> 16));
+ Xfer((byte)(speedVal >> 8));
+ Xfer((byte)(speedVal));
+}
+
+
+void L6470::Step_Clock(byte dir){
+ // STEP_CLOCK puts the device in external step clocking mode. When active,
+ // pin 25, STCK, becomes the step clock for the device, and steps it in
+ // the direction (set by the FWD and REV constants) imposed by the call
+ // of this function. Motion commands (RUN, MOVE, etc) will cause the device
+ // to exit step clocking mode.
+ Xfer(STEP_CLOCK | dir);
+}
+
+void L6470::move(long n_step){
+ // MOVE will send the motor n_step steps (size based on step mode) in the
+ // direction imposed by dir (FWD or REV constants may be used). The motor
+ // will accelerate according the acceleration and deceleration curves, and
+ // will run at MAX_SPEED. Stepping mode will adhere to FS_SPD value, as well.
+
+ byte dir;
+
+ if(n_step >= 0){
+ dir = FWD;
+ }
+ else{
+ dir = REV;
+ }
+
+ long n_stepABS = abs(n_step);
+
+ Xfer(MOVE | dir); //set direction
+ if (n_stepABS > 0x3FFFFF) n_step = 0x3FFFFF;
+ Xfer((byte)(n_stepABS >> 16));
+ Xfer((byte)(n_stepABS >> 8));
+ Xfer((byte)(n_stepABS));
+}
+
+void L6470::goTo(long pos){
+ // GOTO operates much like MOVE, except it produces absolute motion instead
+ // of relative motion. The motor will be moved to the indicated position
+ // in the shortest possible fashion.
+
+ Xfer(GOTO);
+ if (pos > 0x3FFFFF) pos = 0x3FFFFF;
+ Xfer((byte)(pos >> 16));
+ Xfer((byte)(pos >> 8));
+ Xfer((byte)(pos));
+}
+
+
+void L6470::goTo_DIR(byte dir, long pos){
+ // Same as GOTO, but with user constrained rotational direction.
+
+ Xfer(GOTO_DIR);
+ if (pos > 0x3FFFFF) pos = 0x3FFFFF;
+ Xfer((byte)(pos >> 16));
+ Xfer((byte)(pos >> 8));
+ Xfer((byte)(pos));
+}
+
+void L6470::goUntil(byte act, byte dir, unsigned long spd){
+ // GoUntil will set the motor running with direction dir (REV or
+ // FWD) until a falling edge is detected on the SW pin. Depending
+ // on bit SW_MODE in CONFIG, either a hard stop or a soft stop is
+ // performed at the falling edge, and depending on the value of
+ // act (either RESET or COPY) the value in the ABS_POS register is
+ // either RESET to 0 or COPY-ed into the MARK register.
+ Xfer(GO_UNTIL | act | dir);
+ if (spd > 0x3FFFFF) spd = 0x3FFFFF;
+ Xfer((byte)(spd >> 16));
+ Xfer((byte)(spd >> 8));
+ Xfer((byte)(spd));
+}
+
+void L6470::releaseSW(byte act, byte dir){
+ // Similar in nature to GoUntil, ReleaseSW produces motion at the
+ // higher of two speeds: the value in MIN_SPEED or 5 steps/s.
+ // The motor continues to run at this speed until a rising edge
+ // is detected on the switch input, then a hard stop is performed
+ // and the ABS_POS register is either COPY-ed into MARK or RESET to
+ // 0, depending on whether RESET or COPY was passed to the function
+ // for act.
+ Xfer(RELEASE_SW | act | dir);
+}
+
+void L6470::goHome(){
+ // GoHome is equivalent to GoTo(0), but requires less time to send.
+ // Note that no direction is provided; motion occurs through shortest
+ // path. If a direction is required, use GoTo_DIR().
+ Xfer(GO_HOME);
+}
+
+void L6470::goMark(){
+ // GoMark is equivalent to GoTo(MARK), but requires less time to send.
+ // Note that no direction is provided; motion occurs through shortest
+ // path. If a direction is required, use GoTo_DIR().
+ Xfer(GO_MARK);
+}
+
+
+void L6470::setMark(long value){
+
+ Xfer(MARK);
+ if (value > 0x3FFFFF) value = 0x3FFFFF;
+ if (value < -0x3FFFFF) value = -0x3FFFFF;
+
+
+ Xfer((byte)(value >> 16));
+ Xfer((byte)(value >> 8));
+ Xfer((byte)(value));
+}
+
+
+void L6470::setMark(){
+ long value = getPos();
+
+ Xfer(MARK);
+ if (value > 0x3FFFFF) value = 0x3FFFFF;
+ if (value < -0x3FFFFF) value = -0x3FFFFF;
+
+
+ Xfer((byte)(value >> 16));
+ Xfer((byte)(value >> 8));
+ Xfer((byte)(value));
+}
+
+void L6470::setAsHome(){
+ // Sets the ABS_POS register to 0, effectively declaring the current
+ // position to be "HOME".
+ Xfer(RESET_POS);
+}
+
+void L6470::resetDev(){
+ // Reset device to power up conditions. Equivalent to toggling the STBY
+ // pin or cycling power.
+ Xfer(RESET_DEVICE);
+}
+
+void L6470::softStop(){
+ // Bring the motor to a halt using the deceleration curve.
+ Xfer(SOFT_STOP);
+}
+
+void L6470::hardStop(){
+ // Stop the motor right away. No deceleration.
+ Xfer(HARD_STOP);
+}
+
+void L6470::softFree(){
+ // Decelerate the motor and disengage
+ Xfer(SOFT_HIZ);
+}
+
+void L6470::free(){
+ // disengage the motor immediately with no deceleration.
+ Xfer(HARD_HIZ);
+}
+
+int L6470::getStatus(){
+ // Fetch and return the 16-bit value in the STATUS register. Resets
+ // any warning flags and exits any error states. Using GetParam()
+ // to read STATUS does not clear these values.
+ int temp = 0;
+ Xfer(GET_STATUS);
+ temp = Xfer(0)<<8;
+ temp |= Xfer(0);
+ return temp;
+}
+
+unsigned long L6470::AccCalc(float stepsPerSecPerSec){
+ // The value in the ACC register is [(steps/s/s)*(tick^2)]/(2^-40) where tick is
+ // 250ns (datasheet value)- 0x08A on boot.
+ // Multiply desired steps/s/s by .137438 to get an appropriate value for this register.
+ // This is a 12-bit value, so we need to make sure the value is at or below 0xFFF.
+ float temp = stepsPerSecPerSec * 0.137438;
+ if( (unsigned long) long(temp) > 0x00000FFF) return 0x00000FFF;
+ else return (unsigned long) long(temp);
+}
+
+
+unsigned long L6470::DecCalc(float stepsPerSecPerSec){
+ // The calculation for DEC is the same as for ACC. Value is 0x08A on boot.
+ // This is a 12-bit value, so we need to make sure the value is at or below 0xFFF.
+ float temp = stepsPerSecPerSec * 0.137438;
+ if( (unsigned long) long(temp) > 0x00000FFF) return 0x00000FFF;
+ else return (unsigned long) long(temp);
+}
+
+unsigned long L6470::MaxSpdCalc(float stepsPerSec){
+ // The value in the MAX_SPD register is [(steps/s)*(tick)]/(2^-18) where tick is
+ // 250ns (datasheet value)- 0x041 on boot.
+ // Multiply desired steps/s by .065536 to get an appropriate value for this register
+ // This is a 10-bit value, so we need to make sure it remains at or below 0x3FF
+ float temp = stepsPerSec * .065536;
+ if( (unsigned long) long(temp) > 0x000003FF) return 0x000003FF;
+ else return (unsigned long) long(temp);
+}
+
+unsigned long L6470::MinSpdCalc(float stepsPerSec){
+ // The value in the MIN_SPD register is [(steps/s)*(tick)]/(2^-24) where tick is
+ // 250ns (datasheet value)- 0x000 on boot.
+ // Multiply desired steps/s by 4.1943 to get an appropriate value for this register
+ // This is a 12-bit value, so we need to make sure the value is at or below 0xFFF.
+ float temp = stepsPerSec * 4.1943;
+ if( (unsigned long) long(temp) > 0x00000FFF) return 0x00000FFF;
+ else return (unsigned long) long(temp);
+}
+
+unsigned long L6470::FSCalc(float stepsPerSec){
+ // The value in the FS_SPD register is ([(steps/s)*(tick)]/(2^-18))-0.5 where tick is
+ // 250ns (datasheet value)- 0x027 on boot.
+ // Multiply desired steps/s by .065536 and subtract .5 to get an appropriate value for this register
+ // This is a 10-bit value, so we need to make sure the value is at or below 0x3FF.
+ float temp = (stepsPerSec * .065536)-.5;
+ if( (unsigned long) long(temp) > 0x000003FF) return 0x000003FF;
+ else return (unsigned long) long(temp);
+}
+
+unsigned long L6470::IntSpdCalc(float stepsPerSec){
+ // The value in the INT_SPD register is [(steps/s)*(tick)]/(2^-24) where tick is
+ // 250ns (datasheet value)- 0x408 on boot.
+ // Multiply desired steps/s by 4.1943 to get an appropriate value for this register
+ // This is a 14-bit value, so we need to make sure the value is at or below 0x3FFF.
+ float temp = stepsPerSec * 4.1943;
+ if( (unsigned long) long(temp) > 0x00003FFF) return 0x00003FFF;
+ else return (unsigned long) long(temp);
+}
+
+unsigned long L6470::SpdCalc(float stepsPerSec){
+ // When issuing RUN command, the 20-bit speed is [(steps/s)*(tick)]/(2^-28) where tick is
+ // 250ns (datasheet value).
+ // Multiply desired steps/s by 67.106 to get an appropriate value for this register
+ // This is a 20-bit value, so we need to make sure the value is at or below 0xFFFFF.
+
+ float temp = stepsPerSec * 67.106;
+ if( (unsigned long) long(temp) > 0x000FFFFF) return 0x000FFFFF;
+ else return (unsigned long)temp;
+}
+
+unsigned long L6470::Param(unsigned long value, byte bit_len){
+ // Generalization of the subsections of the register read/write functionality.
+ // We want the end user to just write the value without worrying about length,
+ // so we pass a bit length parameter from the calling function.
+ unsigned long ret_val=0; // We'll return this to generalize this function
+ // for both read and write of registers.
+ byte byte_len = bit_len/8; // How many BYTES do we have?
+ if (bit_len%8 > 0) byte_len++; // Make sure not to lose any partial byte values.
+ // Let's make sure our value has no spurious bits set, and if the value was too
+ // high, max it out.
+ unsigned long mask = 0xffffffff >> (32-bit_len);
+ if (value > mask) value = mask;
+ // The following three if statements handle the various possible byte length
+ // transfers- it'll be no less than 1 but no more than 3 bytes of data.
+ // L6470::Xfer() sends a byte out through SPI and returns a byte received
+ // over SPI- when calling it, we typecast a shifted version of the masked
+ // value, then we shift the received value back by the same amount and
+ // store it until return time.
+ if (byte_len == 3) {
+ ret_val |= long(Xfer((byte)(value>>16))) << 16;
+ //Serial.println(ret_val, HEX);
+ }
+ if (byte_len >= 2) {
+ ret_val |= long(Xfer((byte)(value>>8))) << 8;
+ //Serial.println(ret_val, HEX);
+ }
+ if (byte_len >= 1) {
+ ret_val |= Xfer((byte)value);
+ //Serial.println(ret_val, HEX);
+ }
+ // Return the received values. Mask off any unnecessary bits, just for
+ // the sake of thoroughness- we don't EXPECT to see anything outside
+ // the bit length range but better to be safe than sorry.
+ return (ret_val & mask);
+}
+
+byte L6470::Xfer(byte data){
+ // This simple function shifts a byte out over SPI and receives a byte over
+ // SPI. Unusually for SPI devices, the dSPIN requires a toggling of the
+ // CS (slaveSelect) pin after each byte sent. That makes this function
+ // a bit more reasonable, because we can include more functionality in it.
+ byte data_out;
+ digitalWrite(_SSPin,LOW);
+ // SPI.transfer() both shifts a byte out on the MOSI pin AND receives a
+ // byte in on the MISO pin.
+ data_out = SPI.transfer(data);
+ digitalWrite(_SSPin,HIGH);
+ return data_out;
+}
+
+
+
+void L6470::SetParam(byte param, unsigned long value){
+ Xfer(SET_PARAM | param);
+ ParamHandler(param, value);
+}
+
+unsigned long L6470::GetParam(byte param){
+ // Realize the "get parameter" function, to read from the various registers in
+ // the dSPIN chip.
+ Xfer(GET_PARAM | param);
+ return ParamHandler(param, 0);
+}
+
+long L6470::convert(unsigned long val){
+ //convert 22bit 2s comp to signed long
+ int MSB = val >> 21;
+
+ val = val << 11;
+ val = val >> 11;
+
+ if(MSB == 1) val = val | 0b11111111111000000000000000000000;
+ return val;
+}
+
+unsigned long L6470::ParamHandler(byte param, unsigned long value){
+ // Much of the functionality between "get parameter" and "set parameter" is
+ // very similar, so we deal with that by putting all of it in one function
+ // here to save memory space and simplify the program.
+ unsigned long ret_val = 0; // This is a temp for the value to return.
+ // This switch structure handles the appropriate action for each register.
+ // This is necessary since not all registers are of the same length, either
+ // bit-wise or byte-wise, so we want to make sure we mask out any spurious
+ // bits and do the right number of transfers. That is handled by the dSPIN_Param()
+ // function, in most cases, but for 1-byte or smaller transfers, we call
+ // Xfer() directly.
+ switch (param)
+ {
+ // ABS_POS is the current absolute offset from home. It is a 22 bit number expressed
+ // in two's complement. At power up, this value is 0. It cannot be written when
+ // the motor is running, but at any other time, it can be updated to change the
+ // interpreted position of the motor.
+ case ABS_POS:
+ ret_val = Param(value, 22);
+ break;
+ // EL_POS is the current electrical position in the step generation cycle. It can
+ // be set when the motor is not in motion. Value is 0 on power up.
+ case EL_POS:
+ ret_val = Param(value, 9);
+ break;
+ // MARK is a second position other than 0 that the motor can be told to go to. As
+ // with ABS_POS, it is 22-bit two's complement. Value is 0 on power up.
+ case MARK:
+ ret_val = Param(value, 22);
+ break;
+ // SPEED contains information about the current speed. It is read-only. It does
+ // NOT provide direction information.
+ case SPEED:
+ ret_val = Param(0, 20);
+ break;
+ // ACC and DEC set the acceleration and deceleration rates. Set ACC to 0xFFF
+ // to get infinite acceleration/decelaeration- there is no way to get infinite
+ // deceleration w/o infinite acceleration (except the HARD STOP command).
+ // Cannot be written while motor is running. Both default to 0x08A on power up.
+ // AccCalc() and DecCalc() functions exist to convert steps/s/s values into
+ // 12-bit values for these two registers.
+ case ACC:
+ ret_val = Param(value, 12);
+ break;
+ case DEC:
+ ret_val = Param(value, 12);
+ break;
+ // MAX_SPEED is just what it says- any command which attempts to set the speed
+ // of the motor above this value will simply cause the motor to turn at this
+ // speed. Value is 0x041 on power up.
+ // MaxSpdCalc() function exists to convert steps/s value into a 10-bit value
+ // for this register.
+ case MAX_SPEED:
+ ret_val = Param(value, 10);
+ break;
+ // MIN_SPEED controls two things- the activation of the low-speed optimization
+ // feature and the lowest speed the motor will be allowed to operate at. LSPD_OPT
+ // is the 13th bit, and when it is set, the minimum allowed speed is automatically
+ // set to zero. This value is 0 on startup.
+ // MinSpdCalc() function exists to convert steps/s value into a 12-bit value for this
+ // register. SetLowSpeedOpt() function exists to enable/disable the optimization feature.
+ case MIN_SPEED:
+ ret_val = Param(value, 12);
+ break;
+ // FS_SPD register contains a threshold value above which microstepping is disabled
+ // and the dSPIN operates in full-step mode. Defaults to 0x027 on power up.
+ // FSCalc() function exists to convert steps/s value into 10-bit integer for this
+ // register.
+ case FS_SPD:
+ ret_val = Param(value, 10);
+ break;
+ // KVAL is the maximum voltage of the PWM outputs. These 8-bit values are ratiometric
+ // representations: 255 for full output voltage, 128 for half, etc. Default is 0x29.
+ // The implications of different KVAL settings is too complex to dig into here, but
+ // it will usually work to max the value for RUN, ACC, and DEC. Maxing the value for
+ // HOLD may result in excessive power dissipation when the motor is not running.
+ case KVAL_HOLD:
+ ret_val = Xfer((byte)value);
+ break;
+ case KVAL_RUN:
+ ret_val = Xfer((byte)value);
+ break;
+ case KVAL_ACC:
+ ret_val = Xfer((byte)value);
+ break;
+ case KVAL_DEC:
+ ret_val = Xfer((byte)value);
+ break;
+ // INT_SPD, ST_SLP, FN_SLP_ACC and FN_SLP_DEC are all related to the back EMF
+ // compensation functionality. Please see the datasheet for details of this
+ // function- it is too complex to discuss here. Default values seem to work
+ // well enough.
+ case INT_SPD:
+ ret_val = Param(value, 14);
+ break;
+ case ST_SLP:
+ ret_val = Xfer((byte)value);
+ break;
+ case FN_SLP_ACC:
+ ret_val = Xfer((byte)value);
+ break;
+ case FN_SLP_DEC:
+ ret_val = Xfer((byte)value);
+ break;
+ // K_THERM is motor winding thermal drift compensation. Please see the datasheet
+ // for full details on operation- the default value should be okay for most users.
+ case K_THERM:
+ ret_val = Xfer((byte)value & 0x0F);
+ break;
+ // ADC_OUT is a read-only register containing the result of the ADC measurements.
+ // This is less useful than it sounds; see the datasheet for more information.
+ case ADC_OUT:
+ ret_val = Xfer(0);
+ break;
+ // Set the overcurrent threshold. Ranges from 375mA to 6A in steps of 375mA.
+ // A set of defined constants is provided for the user's convenience. Default
+ // value is 3.375A- 0x08. This is a 4-bit value.
+ case OCD_TH:
+ ret_val = Xfer((byte)value & 0x0F);
+ break;
+ // Stall current threshold. Defaults to 0x40, or 2.03A. Value is from 31.25mA to
+ // 4A in 31.25mA steps. This is a 7-bit value.
+ case STALL_TH:
+ ret_val = Xfer((byte)value & 0x7F);
+ break;
+ // STEP_MODE controls the microstepping settings, as well as the generation of an
+ // output signal from the dSPIN. Bits 2:0 control the number of microsteps per
+ // step the part will generate. Bit 7 controls whether the BUSY/SYNC pin outputs
+ // a BUSY signal or a step synchronization signal. Bits 6:4 control the frequency
+ // of the output signal relative to the full-step frequency; see datasheet for
+ // that relationship as it is too complex to reproduce here.
+ // Most likely, only the microsteps per step value will be needed; there is a set
+ // of constants provided for ease of use of these values.
+ case STEP_MODE:
+ ret_val = Xfer((byte)value);
+ break;
+ // ALARM_EN controls which alarms will cause the FLAG pin to fall. A set of constants
+ // is provided to make this easy to interpret. By default, ALL alarms will trigger the
+ // FLAG pin.
+ case ALARM_EN:
+ ret_val = Xfer((byte)value);
+ break;
+ // CONFIG contains some assorted configuration bits and fields. A fairly comprehensive
+ // set of reasonably self-explanatory constants is provided, but users should refer
+ // to the datasheet before modifying the contents of this register to be certain they
+ // understand the implications of their modifications. Value on boot is 0x2E88; this
+ // can be a useful way to verify proper start up and operation of the dSPIN chip.
+ case CONFIG:
+ ret_val = Param(value, 16);
+ break;
+ // STATUS contains read-only information about the current condition of the chip. A
+ // comprehensive set of constants for masking and testing this register is provided, but
+ // users should refer to the datasheet to ensure that they fully understand each one of
+ // the bits in the register.
+ case STATUS: // STATUS is a read-only register
+ ret_val = Param(0, 16);
+ break;
+ default:
+ ret_val = Xfer((byte)(value));
+ break;
+ }
+ return ret_val;
+}