#include #include #include "SLABasePool.hpp" #include "ExPolygon.hpp" #include "TriangleMesh.hpp" #include "ClipperUtils.hpp" #include "boost/log/trivial.hpp" //#include "SVG.hpp" namespace Slic3r { namespace sla { namespace { using coord_t = Point::coord_type; /// get the scaled clipper units for a millimeter value inline coord_t mm(double v) { return coord_t(v/SCALING_FACTOR); } /// Get x and y coordinates (because we are eigenizing...) inline coord_t x(const Point& p) { return p(0); } inline coord_t y(const Point& p) { return p(1); } inline coord_t& x(Point& p) { return p(0); } inline coord_t& y(Point& p) { return p(1); } inline coordf_t x(const Vec3d& p) { return p(0); } inline coordf_t y(const Vec3d& p) { return p(1); } inline coordf_t z(const Vec3d& p) { return p(2); } inline coordf_t& x(Vec3d& p) { return p(0); } inline coordf_t& y(Vec3d& p) { return p(1); } inline coordf_t& z(Vec3d& p) { return p(2); } inline coord_t& x(Vec3crd& p) { return p(0); } inline coord_t& y(Vec3crd& p) { return p(1); } inline coord_t& z(Vec3crd& p) { return p(2); } inline coord_t x(const Vec3crd& p) { return p(0); } inline coord_t y(const Vec3crd& p) { return p(1); } inline coord_t z(const Vec3crd& p) { return p(2); } inline void triangulate(const ExPolygon& expoly, Polygons& triangles) { expoly.triangulate_p2t(&triangles); } inline Polygons triangulate(const ExPolygon& expoly) { Polygons tri; triangulate(expoly, tri); return tri; } using Indices = std::vector; /// Intermediate struct for a 3D mesh struct Contour3D { Pointf3s points; Indices indices; void merge(const Contour3D& ctr) { auto s3 = coord_t(points.size()); auto s = coord_t(indices.size()); points.insert(points.end(), ctr.points.begin(), ctr.points.end()); indices.insert(indices.end(), ctr.indices.begin(), ctr.indices.end()); for(auto n = s; n < indices.size(); n++) { auto& idx = indices[n]; x(idx) += s3; y(idx) += s3; z(idx) += s3; } } }; /// Convert the triangulation output to an intermediate mesh. inline Contour3D convert(const Polygons& triangles, coord_t z, bool dir) { Pointf3s points; points.reserve(3*triangles.size()); Indices indices; indices.reserve(points.size()); for(auto& tr : triangles) { auto c = coord_t(points.size()), b = c++, a = c++; if(dir) indices.emplace_back(a, b, c); else indices.emplace_back(c, b, a); for(auto& p : tr.points) { points.emplace_back(unscale(x(p), y(p), z)); } } return {points, indices}; } /// Only a debug function to generate top and bottom plates from a 2D shape. /// It is not used in the algorithm directly. inline Contour3D roofs(const ExPolygon& poly, coord_t z_distance) { Polygons triangles = triangulate(poly); auto lower = convert(triangles, 0, false); auto upper = convert(triangles, z_distance, true); lower.merge(upper); return lower; } inline Contour3D walls(const ExPolygon& floor_plate, const ExPolygon& ceiling, double floor_z_mm, double ceiling_z_mm) { using std::transform; using std::back_inserter; ExPolygon poly; poly.contour.points = floor_plate.contour.points; poly.holes.emplace_back(ceiling.contour); auto& h = poly.holes.front(); std::reverse(h.points.begin(), h.points.end()); Polygons tri = triangulate(poly); Contour3D ret; ret.points.reserve(tri.size() * 3); double fz = floor_z_mm; double cz = ceiling_z_mm; auto& rp = ret.points; auto& rpi = ret.indices; ret.indices.reserve(tri.size() * 3); coord_t idx = 0; auto hlines = h.lines(); auto is_upper = [&hlines](const Point& p) { return std::any_of(hlines.begin(), hlines.end(), [&p](const Line& l) { return l.distance_to(p) < mm(0.01); }); }; std::for_each(tri.begin(), tri.end(), [&rp, &rpi, &poly, &idx, is_upper, fz, cz](const Polygon& pp) { for(auto& p : pp.points) if(is_upper(p)) rp.emplace_back(unscale(x(p), y(p), mm(cz))); else rp.emplace_back(unscale(x(p), y(p), mm(fz))); coord_t a = idx++, b = idx++, c = idx++; if(fz > cz) rpi.emplace_back(c, b, a); else rpi.emplace_back(a, b, c); }); return ret; } /// Mesh from an existing contour. inline TriangleMesh mesh(const Contour3D& ctour) { return {ctour.points, ctour.indices}; } /// Mesh from an evaporating 3D contour inline TriangleMesh mesh(Contour3D&& ctour) { return {std::move(ctour.points), std::move(ctour.indices)}; } /// Offsetting with clipper and smoothing the edges into a curvature. inline void offset(ExPolygon& sh, coord_t distance) { using ClipperLib::ClipperOffset; using ClipperLib::jtRound; using ClipperLib::etClosedPolygon; using ClipperLib::Paths; using ClipperLib::Path; auto&& ctour = Slic3rMultiPoint_to_ClipperPath(sh.contour); auto&& holes = Slic3rMultiPoints_to_ClipperPaths(sh.holes); // If the input is not at least a triangle, we can not do this algorithm if(ctour.size() < 3 || std::any_of(holes.begin(), holes.end(), [](const Path& p) { return p.size() < 3; }) ) { BOOST_LOG_TRIVIAL(error) << "Invalid geometry for offsetting!"; return; } ClipperOffset offs; offs.ArcTolerance = 0.01*mm(1); Paths result; offs.AddPath(ctour, jtRound, etClosedPolygon); offs.AddPaths(holes, jtRound, etClosedPolygon); offs.Execute(result, static_cast(distance)); // Offsetting reverts the orientation and also removes the last vertex // so boost will not have a closed polygon. bool found_the_contour = false; sh.holes.clear(); for(auto& r : result) { if(ClipperLib::Orientation(r)) { // We don't like if the offsetting generates more than one contour // but throwing would be an overkill. Instead, we should warn the // caller about the inability to create correct geometries if(!found_the_contour) { auto rr = ClipperPath_to_Slic3rPolygon(r); sh.contour.points.swap(rr.points); found_the_contour = true; } else { BOOST_LOG_TRIVIAL(warning) << "Warning: offsetting result is invalid!"; } } else { // TODO If there are multiple contours we can't be sure which hole // belongs to the first contour. (But in this case the situation is // bad enough to let it go...) sh.holes.emplace_back(ClipperPath_to_Slic3rPolygon(r)); } } } template inline Contour3D round_edges(const ExPolygon& base_plate, double radius_mm, double degrees, double ceilheight_mm, bool dir, ExP&& last_offset = ExP(), D&& last_height = D()) { auto ob = base_plate; auto ob_prev = ob; double wh = ceilheight_mm, wh_prev = wh; Contour3D curvedwalls; const size_t steps = 6; // steps for 180 degrees degrees = std::fmod(degrees, 180); const int portion = int(steps*degrees / 90); const double ystep_mm = radius_mm/steps; coord_t s = dir? 1 : -1; double xxprev = 0; for(int i = 0; i < portion; i++) { ob = base_plate; // The offset is given by the equation: x = sqrt(r^2 - y^2) // which can be derived from the circle equation. y is the current // height for which the offset is calculated and x is the offset itself // r is the radius of the circle that is used to smooth the edges double r2 = radius_mm * radius_mm; double y2 = steps*ystep_mm - i*ystep_mm; y2 *= y2; double xx = sqrt(r2 - y2); offset(ob, s*mm(xx)); wh = ceilheight_mm - i*ystep_mm; Contour3D pwalls; if(xxprev < xx) pwalls = walls(ob, ob_prev, wh, wh_prev); else pwalls = walls(ob_prev, ob, wh_prev, wh); curvedwalls.merge(pwalls); ob_prev = ob; wh_prev = wh; xxprev = xx; } last_offset = std::move(ob); last_height = wh; return curvedwalls; } /// Generating the concave part of the 3D pool with the bottom plate and the /// side walls. inline Contour3D inner_bed(const ExPolygon& poly, double depth_mm, double begin_h_mm = 0) { Polygons triangles = triangulate(poly); coord_t depth = mm(depth_mm); coord_t begin_h = mm(begin_h_mm); auto bottom = convert(triangles, -depth + begin_h, false); auto lines = poly.lines(); // Generate outer walls auto fp = [](const Point& p, Point::coord_type z) { return unscale(x(p), y(p), z); }; for(auto& l : lines) { auto s = coord_t(bottom.points.size()); bottom.points.emplace_back(fp(l.a, -depth + begin_h)); bottom.points.emplace_back(fp(l.b, -depth + begin_h)); bottom.points.emplace_back(fp(l.a, begin_h)); bottom.points.emplace_back(fp(l.b, begin_h)); bottom.indices.emplace_back(s + 3, s + 1, s); bottom.indices.emplace_back(s + 2, s + 3, s); } return bottom; } /// Unification of polygons (with clipper) preserving holes as well. inline ExPolygons unify(const ExPolygons& shapes) { using ClipperLib::ptSubject; ExPolygons retv; bool closed = true; bool valid = true; ClipperLib::Clipper clipper; for(auto& path : shapes) { auto clipperpath = Slic3rMultiPoint_to_ClipperPath(path.contour); if(!clipperpath.empty()) valid &= clipper.AddPath(clipperpath, ptSubject, closed); auto clipperholes = Slic3rMultiPoints_to_ClipperPaths(path.holes); for(auto& hole : clipperholes) { if(!hole.empty()) valid &= clipper.AddPath(hole, ptSubject, closed); } } if(!valid) BOOST_LOG_TRIVIAL(warning) << "Unification of invalid shapes!"; ClipperLib::PolyTree result; clipper.Execute(ClipperLib::ctUnion, result, ClipperLib::pftNonZero); retv.reserve(static_cast(result.Total())); // Now we will recursively traverse the polygon tree and serialize it // into an ExPolygon with holes. The polygon tree has the clipper-ish // PolyTree structure which alternates its nodes as contours and holes // A "declaration" of function for traversing leafs which are holes std::function processHole; // Process polygon which calls processHoles which than calls processPoly // again until no leafs are left. auto processPoly = [&retv, &processHole](ClipperLib::PolyNode *pptr) { ExPolygon poly; poly.contour.points = ClipperPath_to_Slic3rPolygon(pptr->Contour); for(auto h : pptr->Childs) { processHole(h, poly); } retv.push_back(poly); }; // Body of the processHole function processHole = [&processPoly](ClipperLib::PolyNode *pptr, ExPolygon& poly) { poly.holes.emplace_back(); poly.holes.back().points = ClipperPath_to_Slic3rPolygon(pptr->Contour); for(auto c : pptr->Childs) processPoly(c); }; // Wrapper for traversing. auto traverse = [&processPoly] (ClipperLib::PolyNode *node) { for(auto ch : node->Childs) { processPoly(ch); } }; // Here is the actual traverse traverse(&result); return retv; } inline Point centroid(Points& pp) { Point c; switch(pp.size()) { case 0: break; case 1: c = pp.front(); break; case 2: c = (pp[0] + pp[1]) / 2; break; default: { Polygon p; p.points.swap(pp); c = p.centroid(); pp.swap(p.points); break; } } return c; } inline Point centroid(const ExPolygon& poly) { return poly.contour.centroid(); } /// A fake concave hull that is constructed by connecting separate shapes /// with explicit bridges. Bridges are generated from each shape's centroid /// to the center of the "scene" which is the centroid calculated from the shape /// centroids (a star is created...) inline ExPolygons concave_hull(const ExPolygons& polys, double max_dist_mm = 50) { if(polys.empty()) return ExPolygons(); ExPolygons punion = unify(polys); // could be redundant if(punion.size() == 1) return punion; // We get the centroids of all the islands in the 2D slice Points centroids; centroids.reserve(punion.size()); std::transform(punion.begin(), punion.end(), std::back_inserter(centroids), [](const ExPolygon& poly) { return centroid(poly); }); // Centroid of the centroids of islands. This is where the additional // connector sticks are routed. Point cc = centroid(centroids); punion.reserve(punion.size() + centroids.size()); std::transform(centroids.begin(), centroids.end(), std::back_inserter(punion), [cc, max_dist_mm](const Point& c) { double dx = x(c) - x(cc), dy = y(c) - y(cc); double l = std::sqrt(dx * dx + dy * dy); double nx = dx / l, ny = dy / l; double max_dist = mm(max_dist_mm); if(l > max_dist) return ExPolygon(); ExPolygon r; auto& ctour = r.contour.points; ctour.reserve(3); ctour.emplace_back(cc); Point d(coord_t(mm(1)*nx), coord_t(mm(1)*ny)); ctour.emplace_back(c + Point( -y(d), x(d) )); ctour.emplace_back(c + Point( y(d), -x(d) )); offset(r, mm(1)); return r; }); punion = unify(punion); return punion; } } void ground_layer(const TriangleMesh &mesh, ExPolygons &output, float h) { TriangleMesh m = mesh; TriangleMeshSlicer slicer(&m); std::vector tmp; slicer.slice({h}, &tmp, [](){}); output = tmp.front(); } void create_base_pool(const ExPolygons &ground_layer, TriangleMesh& out, double min_wall_thickness_mm, double min_wall_height_mm, double max_merge_distance_mm) { auto concavehs = concave_hull(ground_layer, max_merge_distance_mm); for(ExPolygon& concaveh : concavehs) { if(concaveh.contour.points.empty()) return; concaveh.holes.clear(); BoundingBox bb(concaveh); coord_t w = x(bb.max) - x(bb.min); coord_t h = y(bb.max) - y(bb.min); auto wall_thickness = coord_t((w+h)*0.01); const coord_t WALL_THICKNESS = mm(min_wall_thickness_mm) + wall_thickness; const coord_t WALL_DISTANCE = coord_t(0.3*WALL_THICKNESS); const coord_t HEIGHT = mm(min_wall_height_mm); auto outer_base = concaveh; offset(outer_base, WALL_THICKNESS+WALL_DISTANCE); auto inner_base = outer_base; offset(inner_base, -WALL_THICKNESS); inner_base.holes.clear(); outer_base.holes.clear(); ExPolygon top_poly; top_poly.contour = outer_base.contour; top_poly.holes.emplace_back(inner_base.contour); auto& tph = top_poly.holes.back().points; std::reverse(tph.begin(), tph.end()); Contour3D pool; ExPolygon ob = outer_base; double wh = 0; auto curvedwalls = round_edges(ob, 1, // radius 1 mm 170, // 170 degrees 0, // z position of the input plane true, ob, wh); pool.merge(curvedwalls); ExPolygon ob_contr = ob; ob_contr.holes.clear(); auto pwalls = walls(ob_contr, inner_base, wh, -min_wall_height_mm); pool.merge(pwalls); Polygons top_triangles, bottom_triangles; triangulate(top_poly, top_triangles); triangulate(inner_base, bottom_triangles); auto top_plate = convert(top_triangles, 0, false); auto bottom_plate = convert(bottom_triangles, -HEIGHT, true); ob = inner_base; wh = 0; curvedwalls = round_edges(ob, 1, // radius 1 mm 90, // 170 degrees 0, // z position of the input plane false, ob, wh); pool.merge(curvedwalls); auto innerbed = inner_bed(ob, min_wall_height_mm/2 + wh, wh); pool.merge(top_plate); pool.merge(bottom_plate); pool.merge(innerbed); out.merge(mesh(pool)); } } } }