#ifndef _libslic3r_h_ #define _libslic3r_h_ #include "libslic3r_version.h" #define GCODEVIEWER_APP_NAME "PrusaSlicer G-code Viewer" #define GCODEVIEWER_APP_KEY "PrusaSlicerGcodeViewer" #define GCODEVIEWER_BUILD_ID std::string("PrusaSlicer G-code Viewer-") + std::string(SLIC3R_VERSION) + std::string("-UNKNOWN") // this needs to be included early for MSVC (listing it in Build.PL is not enough) #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "Technologies.hpp" #include "Semver.hpp" #if 1 // Saves around 32% RAM after slicing step, 6.7% after G-code export (tested on PrusaSlicer 2.2.0 final). using coord_t = int32_t; #else //FIXME At least FillRectilinear2 and std::boost Voronoi require coord_t to be 32bit. typedef int64_t coord_t; #endif using coordf_t = double; //FIXME This epsilon value is used for many non-related purposes: // For a threshold of a squared Euclidean distance, // for a trheshold in a difference of radians, // for a threshold of a cross product of two non-normalized vectors etc. static constexpr double EPSILON = 1e-4; // Scaling factor for a conversion from coord_t to coordf_t: 10e-6 // This scaling generates a following fixed point representation with for a 32bit integer: // 0..4294mm with 1nm resolution // int32_t fits an interval of (-2147.48mm, +2147.48mm) // with int64_t we don't have to worry anymore about the size of the int. static constexpr double SCALING_FACTOR = 0.000001; // RESOLUTION, SCALED_RESOLUTION: Used as an error threshold for a Douglas-Peucker polyline simplification algorithm. static constexpr double RESOLUTION = 0.0125; #define SCALED_RESOLUTION (RESOLUTION / SCALING_FACTOR) static constexpr double PI = 3.141592653589793238; // When extruding a closed loop, the loop is interrupted and shortened a bit to reduce the seam. static constexpr double LOOP_CLIPPING_LENGTH_OVER_NOZZLE_DIAMETER = 0.15; // Maximum perimeter length for the loop to apply the small perimeter speed. #define SMALL_PERIMETER_LENGTH ((6.5 / SCALING_FACTOR) * 2 * PI) static constexpr double INSET_OVERLAP_TOLERANCE = 0.4; // 3mm ring around the top / bottom / bridging areas. //FIXME This is quite a lot. static constexpr double EXTERNAL_INFILL_MARGIN = 3.; //FIXME Better to use an inline function with an explicit return type. //inline coord_t scale_(coordf_t v) { return coord_t(floor(v / SCALING_FACTOR + 0.5f)); } #define scale_(val) ((val) / SCALING_FACTOR) #define SCALED_EPSILON scale_(EPSILON) #ifndef UNUSED #define UNUSED(x) (void)(x) #endif /* UNUSED */ // Write slices as SVG images into out directory during the 2D processing of the slices. // #define SLIC3R_DEBUG_SLICE_PROCESSING namespace Slic3r { extern Semver SEMVER; template inline T unscale(Q v) { return T(v) * T(SCALING_FACTOR); } enum Axis { X=0, Y, Z, E, F, NUM_AXES, // For the GCodeReader to mark a parsed axis, which is not in "XYZEF", it was parsed correctly. UNKNOWN_AXIS = NUM_AXES, NUM_AXES_WITH_UNKNOWN, }; template inline void append(std::vector& dest, const std::vector& src) { if (dest.empty()) dest = src; else dest.insert(dest.end(), src.begin(), src.end()); } template inline void append(std::vector& dest, std::vector&& src) { if (dest.empty()) dest = std::move(src); else { dest.reserve(dest.size() + src.size()); std::move(std::begin(src), std::end(src), std::back_inserter(dest)); } src.clear(); src.shrink_to_fit(); } // Append the source in reverse. template inline void append_reversed(std::vector& dest, const std::vector& src) { if (dest.empty()) dest = src; else dest.insert(dest.end(), src.rbegin(), src.rend()); } // Append the source in reverse. template inline void append_reversed(std::vector& dest, std::vector&& src) { if (dest.empty()) dest = std::move(src); else { dest.reserve(dest.size() + src.size()); std::move(std::rbegin(src), std::rend(src), std::back_inserter(dest)); } src.clear(); src.shrink_to_fit(); } // Casting an std::vector<> from one type to another type without warnings about a loss of accuracy. template std::vector cast(const std::vector &src) { std::vector dst; dst.reserve(src.size()); for (const T_FROM &a : src) dst.emplace_back((T_TO)a); return dst; } template inline void remove_nulls(std::vector &vec) { vec.erase( std::remove_if(vec.begin(), vec.end(), [](const T *ptr) { return ptr == nullptr; }), vec.end()); } template inline void sort_remove_duplicates(std::vector &vec) { std::sort(vec.begin(), vec.end()); vec.erase(std::unique(vec.begin(), vec.end()), vec.end()); } // Older compilers do not provide a std::make_unique template. Provide a simple one. template inline std::unique_ptr make_unique(Args&&... args) { return std::unique_ptr(new T(std::forward(args)...)); } // Variant of std::lower_bound() with compare predicate, but without the key. // This variant is very useful in case that the T type is large or it does not even have a public constructor. template ForwardIt lower_bound_by_predicate(ForwardIt first, ForwardIt last, LowerThanKeyPredicate lower_than_key) { ForwardIt it; typename std::iterator_traits::difference_type count, step; count = std::distance(first, last); while (count > 0) { it = first; step = count / 2; std::advance(it, step); if (lower_than_key(*it)) { first = ++it; count -= step + 1; } else count = step; } return first; } // from https://en.cppreference.com/w/cpp/algorithm/lower_bound template> ForwardIt binary_find(ForwardIt first, ForwardIt last, const T& value, Compare comp={}) { // Note: BOTH type T and the type after ForwardIt is dereferenced // must be implicitly convertible to BOTH Type1 and Type2, used in Compare. // This is stricter than lower_bound requirement (see above) first = std::lower_bound(first, last, value, comp); return first != last && !comp(value, *first) ? first : last; } // from https://en.cppreference.com/w/cpp/algorithm/lower_bound template ForwardIt binary_find_by_predicate(ForwardIt first, ForwardIt last, LowerThanKeyPredicate lower_thank_key, EqualToKeyPredicate equal_to_key) { // Note: BOTH type T and the type after ForwardIt is dereferenced // must be implicitly convertible to BOTH Type1 and Type2, used in Compare. // This is stricter than lower_bound requirement (see above) first = lower_bound_by_predicate(first, last, lower_thank_key); return first != last && equal_to_key(*first) ? first : last; } template inline bool contains(const ContainerType &c, const ValueType &v) { return std::find(c.begin(), c.end(), v) != c.end(); } template inline bool contains(const std::initializer_list &il, const T &v) { return std::find(il.begin(), il.end(), v) != il.end(); } template inline bool one_of(const ValueType &v, const ContainerType &c) { return contains(c, v); } template inline bool one_of(const T& v, const std::initializer_list& il) { return contains(il, v); } template constexpr inline T sqr(T x) { return x * x; } template constexpr inline T lerp(const T& a, const T& b, Number t) { assert((t >= Number(-EPSILON)) && (t <= Number(1) + Number(EPSILON))); return (Number(1) - t) * a + t * b; } template constexpr inline bool is_approx(Number value, Number test_value) { return std::fabs(double(value) - double(test_value)) < double(EPSILON); } // A meta-predicate which is true for integers wider than or equal to coord_t template struct is_scaled_coord { static const constexpr bool value = std::is_integral::value && std::numeric_limits::digits >= std::numeric_limits::digits; }; // Meta predicates for floating, 'scaled coord' and generic arithmetic types // Can be used to restrict templates to work for only the specified set of types. // parameter T is the type we want to restrict // parameter O (Optional defaults to T) is the type that the whole expression // will be evaluated to. // e.g. template FloatingOnly is_nan(T val); // The whole template will be defined only for floating point types and the // return type will be bool. // For more info how to use, see docs for std::enable_if // template using FloatingOnly = std::enable_if_t::value, O>; template using ScaledCoordOnly = std::enable_if_t::value, O>; template using IntegerOnly = std::enable_if_t::value, O>; template using ArithmeticOnly = std::enable_if_t::value, O>; template using IteratorOnly = std::enable_if_t< !std::is_same_v::value_type, void>, O >; template // Arbitrary allocator can be used IntegerOnly> reserve_vector(I capacity) { std::vector ret; if (capacity > I(0)) ret.reserve(size_t(capacity)); return ret; } // Borrowed from C++20 template using remove_cvref_t = std::remove_cv_t>; // A very simple range concept implementation with iterator-like objects. // This should be replaced by std::ranges::subrange (C++20) template class Range { It from, to; public: // The class is ready for range based for loops. It begin() const { return from; } It end() const { return to; } // The iterator type can be obtained this way. using iterator = It; using value_type = typename std::iterator_traits::value_type; Range() = default; Range(It b, It e) : from(std::move(b)), to(std::move(e)) {} // Some useful container-like methods... inline size_t size() const { return end() - begin(); } inline bool empty() const { return size() == 0; } }; } // namespace Slic3r #endif