#ifndef slic3r_3DScene_hpp_ #define slic3r_3DScene_hpp_ #include "libslic3r/libslic3r.h" #include "libslic3r/Point.hpp" #include "libslic3r/Line.hpp" #include "libslic3r/TriangleMesh.hpp" #include "libslic3r/Utils.hpp" #include "libslic3r/Geometry.hpp" #include #define HAS_GLSAFE #ifdef HAS_GLSAFE extern void glAssertRecentCallImpl(const char *file_name, unsigned int line, const char *function_name); inline void glAssertRecentCall() { glAssertRecentCallImpl(__FILE__, __LINE__, __FUNCTION__); } #define glsafe(cmd) do { cmd; glAssertRecentCallImpl(__FILE__, __LINE__, __FUNCTION__); } while (false) #define glcheck() do { glAssertRecentCallImpl(__FILE__, __LINE__, __FUNCTION__); } while (false) #else // HAS_GLSAFE inline void glAssertRecentCall() { } #define glsafe(cmd) cmd #define glcheck() #endif // HAS_GLSAFE namespace Slic3r { class SLAPrintObject; enum SLAPrintObjectStep : unsigned int; class DynamicPrintConfig; class ExtrusionPath; class ExtrusionMultiPath; class ExtrusionLoop; class ExtrusionEntity; class ExtrusionEntityCollection; class ModelObject; class ModelVolume; enum ModelInstanceEPrintVolumeState : unsigned char; // A container for interleaved arrays of 3D vertices and normals, // possibly indexed by triangles and / or quads. class GLIndexedVertexArray { public: GLIndexedVertexArray() : vertices_and_normals_interleaved_VBO_id(0), triangle_indices_VBO_id(0), quad_indices_VBO_id(0) {} GLIndexedVertexArray(const GLIndexedVertexArray &rhs) : vertices_and_normals_interleaved(rhs.vertices_and_normals_interleaved), triangle_indices(rhs.triangle_indices), quad_indices(rhs.quad_indices), vertices_and_normals_interleaved_VBO_id(0), triangle_indices_VBO_id(0), quad_indices_VBO_id(0) { assert(! rhs.has_VBOs()); } GLIndexedVertexArray(GLIndexedVertexArray &&rhs) : vertices_and_normals_interleaved(std::move(rhs.vertices_and_normals_interleaved)), triangle_indices(std::move(rhs.triangle_indices)), quad_indices(std::move(rhs.quad_indices)), vertices_and_normals_interleaved_VBO_id(0), triangle_indices_VBO_id(0), quad_indices_VBO_id(0) { assert(! rhs.has_VBOs()); } ~GLIndexedVertexArray() { release_geometry(); } GLIndexedVertexArray& operator=(const GLIndexedVertexArray &rhs) { assert(vertices_and_normals_interleaved_VBO_id == 0); assert(triangle_indices_VBO_id == 0); assert(quad_indices_VBO_id == 0); assert(rhs.vertices_and_normals_interleaved_VBO_id == 0); assert(rhs.triangle_indices_VBO_id == 0); assert(rhs.quad_indices_VBO_id == 0); this->vertices_and_normals_interleaved = rhs.vertices_and_normals_interleaved; this->triangle_indices = rhs.triangle_indices; this->quad_indices = rhs.quad_indices; this->m_bounding_box = rhs.m_bounding_box; this->vertices_and_normals_interleaved_size = rhs.vertices_and_normals_interleaved_size; this->triangle_indices_size = rhs.triangle_indices_size; this->quad_indices_size = rhs.quad_indices_size; return *this; } GLIndexedVertexArray& operator=(GLIndexedVertexArray &&rhs) { assert(vertices_and_normals_interleaved_VBO_id == 0); assert(triangle_indices_VBO_id == 0); assert(quad_indices_VBO_id == 0); assert(rhs.vertices_and_normals_interleaved_VBO_id == 0); assert(rhs.triangle_indices_VBO_id == 0); assert(rhs.quad_indices_VBO_id == 0); this->vertices_and_normals_interleaved = std::move(rhs.vertices_and_normals_interleaved); this->triangle_indices = std::move(rhs.triangle_indices); this->quad_indices = std::move(rhs.quad_indices); this->m_bounding_box = std::move(rhs.m_bounding_box); this->vertices_and_normals_interleaved_size = rhs.vertices_and_normals_interleaved_size; this->triangle_indices_size = rhs.triangle_indices_size; this->quad_indices_size = rhs.quad_indices_size; return *this; } // Vertices and their normals, interleaved to be used by void glInterleavedArrays(GL_N3F_V3F, 0, x) std::vector vertices_and_normals_interleaved; std::vector triangle_indices; std::vector quad_indices; // When the geometry data is loaded into the graphics card as Vertex Buffer Objects, // the above mentioned std::vectors are cleared and the following variables keep their original length. size_t vertices_and_normals_interleaved_size{ 0 }; size_t triangle_indices_size{ 0 }; size_t quad_indices_size{ 0 }; // IDs of the Vertex Array Objects, into which the geometry has been loaded. // Zero if the VBOs are not sent to GPU yet. unsigned int vertices_and_normals_interleaved_VBO_id{ 0 }; unsigned int triangle_indices_VBO_id{ 0 }; unsigned int quad_indices_VBO_id{ 0 }; #if ENABLE_SMOOTH_NORMALS void load_mesh_full_shading(const TriangleMesh& mesh, bool smooth_normals = false); void load_mesh(const TriangleMesh& mesh, bool smooth_normals = false) { this->load_mesh_full_shading(mesh, smooth_normals); } #else void load_mesh_full_shading(const TriangleMesh& mesh); void load_mesh(const TriangleMesh& mesh) { this->load_mesh_full_shading(mesh); } #endif // ENABLE_SMOOTH_NORMALS inline bool has_VBOs() const { return vertices_and_normals_interleaved_VBO_id != 0; } inline void reserve(size_t sz) { this->vertices_and_normals_interleaved.reserve(sz * 6); this->triangle_indices.reserve(sz * 3); this->quad_indices.reserve(sz * 4); } inline void push_geometry(float x, float y, float z, float nx, float ny, float nz) { assert(this->vertices_and_normals_interleaved_VBO_id == 0); if (this->vertices_and_normals_interleaved_VBO_id != 0) return; if (this->vertices_and_normals_interleaved.size() + 6 > this->vertices_and_normals_interleaved.capacity()) this->vertices_and_normals_interleaved.reserve(next_highest_power_of_2(this->vertices_and_normals_interleaved.size() + 6)); this->vertices_and_normals_interleaved.emplace_back(nx); this->vertices_and_normals_interleaved.emplace_back(ny); this->vertices_and_normals_interleaved.emplace_back(nz); this->vertices_and_normals_interleaved.emplace_back(x); this->vertices_and_normals_interleaved.emplace_back(y); this->vertices_and_normals_interleaved.emplace_back(z); this->vertices_and_normals_interleaved_size = this->vertices_and_normals_interleaved.size(); m_bounding_box.merge(Vec3f(x, y, z).cast()); }; inline void push_geometry(double x, double y, double z, double nx, double ny, double nz) { push_geometry(float(x), float(y), float(z), float(nx), float(ny), float(nz)); } inline void push_geometry(const Vec3d& p, const Vec3d& n) { push_geometry(p(0), p(1), p(2), n(0), n(1), n(2)); } inline void push_triangle(int idx1, int idx2, int idx3) { assert(this->vertices_and_normals_interleaved_VBO_id == 0); if (this->vertices_and_normals_interleaved_VBO_id != 0) return; if (this->triangle_indices.size() + 3 > this->vertices_and_normals_interleaved.capacity()) this->triangle_indices.reserve(next_highest_power_of_2(this->triangle_indices.size() + 3)); this->triangle_indices.emplace_back(idx1); this->triangle_indices.emplace_back(idx2); this->triangle_indices.emplace_back(idx3); this->triangle_indices_size = this->triangle_indices.size(); }; inline void push_quad(int idx1, int idx2, int idx3, int idx4) { assert(this->vertices_and_normals_interleaved_VBO_id == 0); if (this->vertices_and_normals_interleaved_VBO_id != 0) return; if (this->quad_indices.size() + 4 > this->vertices_and_normals_interleaved.capacity()) this->quad_indices.reserve(next_highest_power_of_2(this->quad_indices.size() + 4)); this->quad_indices.emplace_back(idx1); this->quad_indices.emplace_back(idx2); this->quad_indices.emplace_back(idx3); this->quad_indices.emplace_back(idx4); this->quad_indices_size = this->quad_indices.size(); }; // Finalize the initialization of the geometry & indices, // upload the geometry and indices to OpenGL VBO objects // and shrink the allocated data, possibly relasing it if it has been loaded into the VBOs. void finalize_geometry(bool opengl_initialized); // Release the geometry data, release OpenGL VBOs. void release_geometry(); void render() const; void render(const std::pair& tverts_range, const std::pair& qverts_range) const; // Is there any geometry data stored? bool empty() const { return vertices_and_normals_interleaved_size == 0; } void clear() { this->vertices_and_normals_interleaved.clear(); this->triangle_indices.clear(); this->quad_indices.clear(); this->m_bounding_box.reset(); vertices_and_normals_interleaved_size = 0; triangle_indices_size = 0; quad_indices_size = 0; } // Shrink the internal storage to tighly fit the data stored. void shrink_to_fit() { this->vertices_and_normals_interleaved.shrink_to_fit(); this->triangle_indices.shrink_to_fit(); this->quad_indices.shrink_to_fit(); } const BoundingBoxf3& bounding_box() const { return m_bounding_box; } // Return an estimate of the memory consumed by this class. size_t cpu_memory_used() const { return sizeof(*this) + vertices_and_normals_interleaved.capacity() * sizeof(float) + triangle_indices.capacity() * sizeof(int) + quad_indices.capacity() * sizeof(int); } // Return an estimate of the memory held by GPU vertex buffers. size_t gpu_memory_used() const { size_t memsize = 0; if (this->vertices_and_normals_interleaved_VBO_id != 0) memsize += this->vertices_and_normals_interleaved_size * 4; if (this->triangle_indices_VBO_id != 0) memsize += this->triangle_indices_size * 4; if (this->quad_indices_VBO_id != 0) memsize += this->quad_indices_size * 4; return memsize; } size_t total_memory_used() const { return this->cpu_memory_used() + this->gpu_memory_used(); } private: BoundingBoxf3 m_bounding_box; }; class GLVolume { public: static const float SELECTED_COLOR[4]; static const float HOVER_SELECT_COLOR[4]; static const float HOVER_DESELECT_COLOR[4]; static const float OUTSIDE_COLOR[4]; static const float SELECTED_OUTSIDE_COLOR[4]; static const float DISABLED_COLOR[4]; static const float MODEL_COLOR[4][4]; static const float SLA_SUPPORT_COLOR[4]; static const float SLA_PAD_COLOR[4]; static const float NEUTRAL_COLOR[4]; enum EHoverState : unsigned char { HS_None, HS_Select, HS_Deselect }; GLVolume(float r = 1.f, float g = 1.f, float b = 1.f, float a = 1.f); GLVolume(const float *rgba) : GLVolume(rgba[0], rgba[1], rgba[2], rgba[3]) {} private: Geometry::Transformation m_instance_transformation; Geometry::Transformation m_volume_transformation; // Shift in z required by sla supports+pad double m_sla_shift_z; // Bounding box of this volume, in unscaled coordinates. BoundingBoxf3 m_transformed_bounding_box; // Whether or not is needed to recalculate the transformed bounding box. bool m_transformed_bounding_box_dirty; // Convex hull of the volume, if any. std::shared_ptr m_convex_hull; // Bounding box of this volume, in unscaled coordinates. BoundingBoxf3 m_transformed_convex_hull_bounding_box; // Whether or not is needed to recalculate the transformed convex hull bounding box. bool m_transformed_convex_hull_bounding_box_dirty; public: // Color of the triangles / quads held by this volume. float color[4]; // Color used to render this volume. float render_color[4]; struct CompositeID { CompositeID(int object_id, int volume_id, int instance_id) : object_id(object_id), volume_id(volume_id), instance_id(instance_id) {} CompositeID() : object_id(-1), volume_id(-1), instance_id(-1) {} // Object ID, which is equal to the index of the respective ModelObject in Model.objects array. int object_id; // Volume ID, which is equal to the index of the respective ModelVolume in ModelObject.volumes array. // If negative, it is an index of a geometry produced by the PrintObject for the respective ModelObject, // and which has no associated ModelVolume in ModelObject.volumes. For example, SLA supports. // Volume with a negative volume_id cannot be picked independently, it will pick the associated instance. int volume_id; // Instance ID, which is equal to the index of the respective ModelInstance in ModelObject.instances array. int instance_id; bool operator==(const CompositeID &rhs) const { return object_id == rhs.object_id && volume_id == rhs.volume_id && instance_id == rhs.instance_id; } bool operator!=(const CompositeID &rhs) const { return ! (*this == rhs); } bool operator< (const CompositeID &rhs) const { return object_id < rhs.object_id || (object_id == rhs.object_id && (volume_id < rhs.volume_id || (volume_id == rhs.volume_id && instance_id < rhs.instance_id))); } }; CompositeID composite_id; // Fingerprint of the source geometry. For ModelVolumes, it is the ModelVolume::ID and ModelInstanceID, // for generated volumes it is the timestamp generated by PrintState::invalidate() or PrintState::set_done(), // and the associated ModelInstanceID. // Valid geometry_id should always be positive. std::pair geometry_id; // An ID containing the extruder ID (used to select color). int extruder_id; // Various boolean flags. struct { // Is this object selected? bool selected : 1; // Is this object disabled from selection? bool disabled : 1; // Is this object printable? bool printable : 1; // Whether or not this volume is active for rendering bool is_active : 1; // Whether or not to use this volume when applying zoom_to_volumes() bool zoom_to_volumes : 1; // Wheter or not this volume is enabled for outside print volume detection in shader. bool shader_outside_printer_detection_enabled : 1; // Wheter or not this volume is outside print volume. bool is_outside : 1; // Wheter or not this volume has been generated from a modifier bool is_modifier : 1; // Wheter or not this volume has been generated from the wipe tower bool is_wipe_tower : 1; // Wheter or not this volume has been generated from an extrusion path bool is_extrusion_path : 1; // Wheter or not to always render this volume using its own alpha bool force_transparent : 1; // Whether or not always use the volume's own color (not using SELECTED/HOVER/DISABLED/OUTSIDE) bool force_native_color : 1; // Whether or not render this volume in neutral bool force_neutral_color : 1; }; // Is mouse or rectangle selection over this object to select/deselect it ? EHoverState hover; // Interleaved triangles & normals with indexed triangles & quads. GLIndexedVertexArray indexed_vertex_array; // Ranges of triangle and quad indices to be rendered. std::pair tverts_range; std::pair qverts_range; // If the qverts or tverts contain thick extrusions, then offsets keeps pointers of the starts // of the extrusions per layer. std::vector print_zs; // Offset into qverts & tverts, or offsets into indices stored into an OpenGL name_index_buffer. std::vector offsets; // Bounding box of this volume, in unscaled coordinates. const BoundingBoxf3& bounding_box() const { return this->indexed_vertex_array.bounding_box(); } void set_render_color(float r, float g, float b, float a); void set_render_color(const float* rgba, unsigned int size); // Sets render color in dependence of current state void set_render_color(); // set color according to model volume void set_color_from_model_volume(const ModelVolume *model_volume); const Geometry::Transformation& get_instance_transformation() const { return m_instance_transformation; } void set_instance_transformation(const Geometry::Transformation& transformation) { m_instance_transformation = transformation; set_bounding_boxes_as_dirty(); } const Vec3d& get_instance_offset() const { return m_instance_transformation.get_offset(); } double get_instance_offset(Axis axis) const { return m_instance_transformation.get_offset(axis); } void set_instance_offset(const Vec3d& offset) { m_instance_transformation.set_offset(offset); set_bounding_boxes_as_dirty(); } void set_instance_offset(Axis axis, double offset) { m_instance_transformation.set_offset(axis, offset); set_bounding_boxes_as_dirty(); } const Vec3d& get_instance_rotation() const { return m_instance_transformation.get_rotation(); } double get_instance_rotation(Axis axis) const { return m_instance_transformation.get_rotation(axis); } void set_instance_rotation(const Vec3d& rotation) { m_instance_transformation.set_rotation(rotation); set_bounding_boxes_as_dirty(); } void set_instance_rotation(Axis axis, double rotation) { m_instance_transformation.set_rotation(axis, rotation); set_bounding_boxes_as_dirty(); } Vec3d get_instance_scaling_factor() const { return m_instance_transformation.get_scaling_factor(); } double get_instance_scaling_factor(Axis axis) const { return m_instance_transformation.get_scaling_factor(axis); } void set_instance_scaling_factor(const Vec3d& scaling_factor) { m_instance_transformation.set_scaling_factor(scaling_factor); set_bounding_boxes_as_dirty(); } void set_instance_scaling_factor(Axis axis, double scaling_factor) { m_instance_transformation.set_scaling_factor(axis, scaling_factor); set_bounding_boxes_as_dirty(); } const Vec3d& get_instance_mirror() const { return m_instance_transformation.get_mirror(); } double get_instance_mirror(Axis axis) const { return m_instance_transformation.get_mirror(axis); } void set_instance_mirror(const Vec3d& mirror) { m_instance_transformation.set_mirror(mirror); set_bounding_boxes_as_dirty(); } void set_instance_mirror(Axis axis, double mirror) { m_instance_transformation.set_mirror(axis, mirror); set_bounding_boxes_as_dirty(); } const Geometry::Transformation& get_volume_transformation() const { return m_volume_transformation; } void set_volume_transformation(const Geometry::Transformation& transformation) { m_volume_transformation = transformation; set_bounding_boxes_as_dirty(); } const Vec3d& get_volume_offset() const { return m_volume_transformation.get_offset(); } double get_volume_offset(Axis axis) const { return m_volume_transformation.get_offset(axis); } void set_volume_offset(const Vec3d& offset) { m_volume_transformation.set_offset(offset); set_bounding_boxes_as_dirty(); } void set_volume_offset(Axis axis, double offset) { m_volume_transformation.set_offset(axis, offset); set_bounding_boxes_as_dirty(); } const Vec3d& get_volume_rotation() const { return m_volume_transformation.get_rotation(); } double get_volume_rotation(Axis axis) const { return m_volume_transformation.get_rotation(axis); } void set_volume_rotation(const Vec3d& rotation) { m_volume_transformation.set_rotation(rotation); set_bounding_boxes_as_dirty(); } void set_volume_rotation(Axis axis, double rotation) { m_volume_transformation.set_rotation(axis, rotation); set_bounding_boxes_as_dirty(); } const Vec3d& get_volume_scaling_factor() const { return m_volume_transformation.get_scaling_factor(); } double get_volume_scaling_factor(Axis axis) const { return m_volume_transformation.get_scaling_factor(axis); } void set_volume_scaling_factor(const Vec3d& scaling_factor) { m_volume_transformation.set_scaling_factor(scaling_factor); set_bounding_boxes_as_dirty(); } void set_volume_scaling_factor(Axis axis, double scaling_factor) { m_volume_transformation.set_scaling_factor(axis, scaling_factor); set_bounding_boxes_as_dirty(); } const Vec3d& get_volume_mirror() const { return m_volume_transformation.get_mirror(); } double get_volume_mirror(Axis axis) const { return m_volume_transformation.get_mirror(axis); } void set_volume_mirror(const Vec3d& mirror) { m_volume_transformation.set_mirror(mirror); set_bounding_boxes_as_dirty(); } void set_volume_mirror(Axis axis, double mirror) { m_volume_transformation.set_mirror(axis, mirror); set_bounding_boxes_as_dirty(); } double get_sla_shift_z() const { return m_sla_shift_z; } void set_sla_shift_z(double z) { m_sla_shift_z = z; } void set_convex_hull(std::shared_ptr convex_hull) { m_convex_hull = std::move(convex_hull); } void set_convex_hull(const TriangleMesh &convex_hull) { m_convex_hull = std::make_shared(convex_hull); } void set_convex_hull(TriangleMesh &&convex_hull) { m_convex_hull = std::make_shared(std::move(convex_hull)); } int object_idx() const { return this->composite_id.object_id; } int volume_idx() const { return this->composite_id.volume_id; } int instance_idx() const { return this->composite_id.instance_id; } Transform3d world_matrix() const; bool is_left_handed() const; const BoundingBoxf3& transformed_bounding_box() const; // non-caching variant BoundingBoxf3 transformed_convex_hull_bounding_box(const Transform3d &trafo) const; // caching variant const BoundingBoxf3& transformed_convex_hull_bounding_box() const; // convex hull const TriangleMesh* convex_hull() const { return m_convex_hull.get(); } bool empty() const { return this->indexed_vertex_array.empty(); } void set_range(double low, double high); void render() const; void finalize_geometry(bool opengl_initialized) { this->indexed_vertex_array.finalize_geometry(opengl_initialized); } void release_geometry() { this->indexed_vertex_array.release_geometry(); } void set_bounding_boxes_as_dirty() { m_transformed_bounding_box_dirty = true; m_transformed_convex_hull_bounding_box_dirty = true; } bool is_sla_support() const; bool is_sla_pad() const; #if ENABLE_ALLOW_NEGATIVE_Z bool is_sinking() const; bool is_below_printbed() const; #endif // ENABLE_ALLOW_NEGATIVE_Z // Return an estimate of the memory consumed by this class. size_t cpu_memory_used() const { //FIXME what to do wih m_convex_hull? return sizeof(*this) - sizeof(this->indexed_vertex_array) + this->indexed_vertex_array.cpu_memory_used() + this->print_zs.capacity() * sizeof(coordf_t) + this->offsets.capacity() * sizeof(size_t); } // Return an estimate of the memory held by GPU vertex buffers. size_t gpu_memory_used() const { return this->indexed_vertex_array.gpu_memory_used(); } size_t total_memory_used() const { return this->cpu_memory_used() + this->gpu_memory_used(); } }; typedef std::vector GLVolumePtrs; typedef std::pair> GLVolumeWithIdAndZ; typedef std::vector GLVolumeWithIdAndZList; class GLVolumeCollection { public: enum ERenderType : unsigned char { Opaque, Transparent, All }; private: // min and max vertex of the print box volume float m_print_box_min[3]; float m_print_box_max[3]; // z range for clipping in shaders float m_z_range[2]; // plane coeffs for clipping in shaders float m_clipping_plane[4]; struct Slope { // toggle for slope rendering bool active{ false }; float normal_z; }; Slope m_slope; public: GLVolumePtrs volumes; GLVolumeCollection() { set_default_slope_normal_z(); } ~GLVolumeCollection() { clear(); } std::vector load_object( const ModelObject *model_object, int obj_idx, const std::vector &instance_idxs, const std::string &color_by, bool opengl_initialized); int load_object_volume( const ModelObject *model_object, int obj_idx, int volume_idx, int instance_idx, const std::string &color_by, bool opengl_initialized); // Load SLA auxiliary GLVolumes (for support trees or pad). void load_object_auxiliary( const SLAPrintObject *print_object, int obj_idx, // pairs of const std::vector>& instances, SLAPrintObjectStep milestone, // Timestamp of the last change of the milestone size_t timestamp, bool opengl_initialized); int load_wipe_tower_preview( int obj_idx, float pos_x, float pos_y, float width, float depth, float height, float rotation_angle, bool size_unknown, float brim_width, bool opengl_initialized); GLVolume* new_toolpath_volume(const float *rgba, size_t reserve_vbo_floats = 0); GLVolume* new_nontoolpath_volume(const float *rgba, size_t reserve_vbo_floats = 0); // Render the volumes by OpenGL. void render(ERenderType type, bool disable_cullface, const Transform3d& view_matrix, std::function filter_func = std::function()) const; // Finalize the initialization of the geometry & indices, // upload the geometry and indices to OpenGL VBO objects // and shrink the allocated data, possibly relasing it if it has been loaded into the VBOs. void finalize_geometry(bool opengl_initialized) { for (auto* v : volumes) v->finalize_geometry(opengl_initialized); } // Release the geometry data assigned to the volumes. // If OpenGL VBOs were allocated, an OpenGL context has to be active to release them. void release_geometry() { for (auto *v : volumes) v->release_geometry(); } // Clear the geometry void clear() { for (auto *v : volumes) delete v; volumes.clear(); } bool empty() const { return volumes.empty(); } void set_range(double low, double high) { for (GLVolume *vol : this->volumes) vol->set_range(low, high); } void set_print_box(float min_x, float min_y, float min_z, float max_x, float max_y, float max_z) { m_print_box_min[0] = min_x; m_print_box_min[1] = min_y; m_print_box_min[2] = min_z; m_print_box_max[0] = max_x; m_print_box_max[1] = max_y; m_print_box_max[2] = max_z; } void set_z_range(float min_z, float max_z) { m_z_range[0] = min_z; m_z_range[1] = max_z; } void set_clipping_plane(const double* coeffs) { m_clipping_plane[0] = coeffs[0]; m_clipping_plane[1] = coeffs[1]; m_clipping_plane[2] = coeffs[2]; m_clipping_plane[3] = coeffs[3]; } bool is_slope_active() const { return m_slope.active; } void set_slope_active(bool active) { m_slope.active = active; } float get_slope_normal_z() const { return m_slope.normal_z; } void set_slope_normal_z(float normal_z) { m_slope.normal_z = normal_z; } void set_default_slope_normal_z() { m_slope.normal_z = -::cos(Geometry::deg2rad(90.0f - 45.0f)); } // returns true if all the volumes are completely contained in the print volume // returns the containment state in the given out_state, if non-null bool check_outside_state(const DynamicPrintConfig* config, ModelInstanceEPrintVolumeState* out_state) const; bool check_outside_state(const DynamicPrintConfig* config, bool& partlyOut, bool& fullyOut) const; void reset_outside_state(); void update_colors_by_extruder(const DynamicPrintConfig* config); // Returns a vector containing the sorted list of all the print_zs of the volumes contained in this collection std::vector get_current_print_zs(bool active_only) const; // Return an estimate of the memory consumed by this class. size_t cpu_memory_used() const; // Return an estimate of the memory held by GPU vertex buffers. size_t gpu_memory_used() const; size_t total_memory_used() const { return this->cpu_memory_used() + this->gpu_memory_used(); } // Return CPU, GPU and total memory log line. std::string log_memory_info() const; private: GLVolumeCollection(const GLVolumeCollection &other); GLVolumeCollection& operator=(const GLVolumeCollection &); }; GLVolumeWithIdAndZList volumes_to_render(const GLVolumePtrs& volumes, GLVolumeCollection::ERenderType type, const Transform3d& view_matrix, std::function filter_func = nullptr); struct _3DScene { static void thick_lines_to_verts(const Lines& lines, const std::vector& widths, const std::vector& heights, bool closed, double top_z, GLVolume& volume); static void thick_lines_to_verts(const Lines3& lines, const std::vector& widths, const std::vector& heights, bool closed, GLVolume& volume); static void extrusionentity_to_verts(const Polyline &polyline, float width, float height, float print_z, GLVolume& volume); static void extrusionentity_to_verts(const ExtrusionPath& extrusion_path, float print_z, GLVolume& volume); static void extrusionentity_to_verts(const ExtrusionPath& extrusion_path, float print_z, const Point& copy, GLVolume& volume); static void extrusionentity_to_verts(const ExtrusionLoop& extrusion_loop, float print_z, const Point& copy, GLVolume& volume); static void extrusionentity_to_verts(const ExtrusionMultiPath& extrusion_multi_path, float print_z, const Point& copy, GLVolume& volume); static void extrusionentity_to_verts(const ExtrusionEntityCollection& extrusion_entity_collection, float print_z, const Point& copy, GLVolume& volume); static void extrusionentity_to_verts(const ExtrusionEntity* extrusion_entity, float print_z, const Point& copy, GLVolume& volume); static void polyline3_to_verts(const Polyline3& polyline, double width, double height, GLVolume& volume); static void point3_to_verts(const Vec3crd& point, double width, double height, GLVolume& volume); }; static constexpr float BedEpsilon = 3.f * float(EPSILON); } #endif