#include "libslic3r/libslic3r.h" #include "Camera.hpp" #include "3DScene.hpp" #include "GUI_App.hpp" #include "AppConfig.hpp" #include static const float GIMBALL_LOCK_THETA_MAX = 180.0f; // phi / theta angles to orient the camera. static const float VIEW_DEFAULT[2] = { 45.0f, 45.0f }; static const float VIEW_LEFT[2] = { 90.0f, 90.0f }; static const float VIEW_RIGHT[2] = { -90.0f, 90.0f }; static const float VIEW_TOP[2] = { 0.0f, 0.0f }; static const float VIEW_BOTTOM[2] = { 0.0f, 180.0f }; static const float VIEW_FRONT[2] = { 0.0f, 90.0f }; static const float VIEW_REAR[2] = { 180.0f, 90.0f }; namespace Slic3r { namespace GUI { const double Camera::DefaultDistance = 1000.0; double Camera::FrustrumMinZSize = 50.0; double Camera::FrustrumZMargin = 10.0; double Camera::FovMinDeg = 0.5; double Camera::FovMaxDeg = 75.0; Camera::Camera() : phi(45.0f) , requires_zoom_to_bed(false) , inverted_phi(false) , m_type(Perspective) , m_target(Vec3d::Zero()) , m_theta(45.0f) , m_zoom(1.0) , m_distance(DefaultDistance) , m_gui_scale(1.0) , m_view_matrix(Transform3d::Identity()) , m_projection_matrix(Transform3d::Identity()) { } std::string Camera::get_type_as_string() const { switch (m_type) { case Unknown: return "unknown"; case Perspective: return "perspective"; default: case Ortho: return "orthographic"; }; } void Camera::set_type(EType type) { if (m_type != type) { m_type = type; wxGetApp().app_config->set("use_perspective_camera", (m_type == Perspective) ? "1" : "0"); wxGetApp().app_config->save(); } } void Camera::set_type(const std::string& type) { if (type == "1") set_type(Perspective); else set_type(Ortho); } void Camera::select_next_type() { unsigned char next = (unsigned char)m_type + 1; if (next == (unsigned char)Num_types) next = 1; set_type((EType)next); } void Camera::set_target(const Vec3d& target) { m_target = target; m_target(0) = clamp(m_scene_box.min(0), m_scene_box.max(0), m_target(0)); m_target(1) = clamp(m_scene_box.min(1), m_scene_box.max(1), m_target(1)); m_target(2) = clamp(m_scene_box.min(2), m_scene_box.max(2), m_target(2)); } void Camera::set_theta(float theta, bool apply_limit) { if (apply_limit) m_theta = clamp(0.0f, GIMBALL_LOCK_THETA_MAX, theta); else { m_theta = fmod(theta, 360.0f); if (m_theta < 0.0f) m_theta += 360.0f; } } void Camera::set_zoom(double zoom, const BoundingBoxf3& max_box, int canvas_w, int canvas_h) { zoom = std::max(std::min(zoom, 4.0), -4.0) / 10.0; zoom = m_zoom / (1.0 - zoom); // Don't allow to zoom too far outside the scene. double zoom_min = calc_zoom_to_bounding_box_factor(max_box, canvas_w, canvas_h); if (zoom_min > 0.0) zoom = std::max(zoom, zoom_min * 0.7); // Don't allow to zoom too close to the scene. zoom = std::min(zoom, 100.0); m_zoom = zoom; } bool Camera::select_view(const std::string& direction) { const float* dir_vec = nullptr; if (direction == "iso") dir_vec = VIEW_DEFAULT; else if (direction == "left") dir_vec = VIEW_LEFT; else if (direction == "right") dir_vec = VIEW_RIGHT; else if (direction == "top") dir_vec = VIEW_TOP; else if (direction == "bottom") dir_vec = VIEW_BOTTOM; else if (direction == "front") dir_vec = VIEW_FRONT; else if (direction == "rear") dir_vec = VIEW_REAR; if (dir_vec != nullptr) { phi = dir_vec[0]; set_theta(dir_vec[1], false); return true; } else return false; } double Camera::get_fov() const { switch (m_type) { case Perspective: return 2.0 * Geometry::rad2deg(std::atan(1.0 / m_projection_matrix.matrix()(1, 1))); default: case Ortho: return 0.0; }; } void Camera::apply_viewport(int x, int y, unsigned int w, unsigned int h) const { glsafe(::glViewport(0, 0, w, h)); glsafe(::glGetIntegerv(GL_VIEWPORT, m_viewport.data())); } void Camera::apply_view_matrix() const { double theta_rad = Geometry::deg2rad(-(double)m_theta); double phi_rad = Geometry::deg2rad((double)phi); double sin_theta = ::sin(theta_rad); Vec3d camera_pos = m_target + m_distance * Vec3d(sin_theta * ::sin(phi_rad), sin_theta * ::cos(phi_rad), ::cos(theta_rad)); glsafe(::glMatrixMode(GL_MODELVIEW)); glsafe(::glLoadIdentity()); glsafe(::glRotatef(-m_theta, 1.0f, 0.0f, 0.0f)); // pitch glsafe(::glRotatef(phi, 0.0f, 0.0f, 1.0f)); // yaw glsafe(::glTranslated(-camera_pos(0), -camera_pos(1), -camera_pos(2))); glsafe(::glGetDoublev(GL_MODELVIEW_MATRIX, m_view_matrix.data())); } void Camera::apply_projection(const BoundingBoxf3& box) const { m_distance = DefaultDistance; double w = 0.0; double h = 0.0; while (true) { m_frustrum_zs = calc_tight_frustrum_zs_around(box); w = (double)m_viewport[2]; h = (double)m_viewport[3]; double two_zoom = 2.0 * m_zoom; if (two_zoom != 0.0) { double inv_two_zoom = 1.0 / two_zoom; w *= inv_two_zoom; h *= inv_two_zoom; } switch (m_type) { default: case Ortho: { m_gui_scale = 1.0; break; } case Perspective: { // scale near plane to keep w and h constant on the plane at z = m_distance double scale = m_frustrum_zs.first / m_distance; w *= scale; h *= scale; m_gui_scale = scale; break; } } if (m_type == Perspective) { double fov_rad = 2.0 * std::atan(h / m_frustrum_zs.first); double fov_deg = Geometry::rad2deg(fov_rad); // adjust camera distance to keep fov in a limited range if (fov_deg > FovMaxDeg + 0.001) { double new_near_z = h / ::tan(0.5 * Geometry::deg2rad(FovMaxDeg)); m_distance += (new_near_z - m_frustrum_zs.first); apply_view_matrix(); } else if (fov_deg < FovMinDeg - 0.001) { double new_near_z = h / ::tan(0.5 * Geometry::deg2rad(FovMinDeg)); m_distance += (new_near_z - m_frustrum_zs.first); apply_view_matrix(); } else break; } else break; } glsafe(::glMatrixMode(GL_PROJECTION)); glsafe(::glLoadIdentity()); switch (m_type) { default: case Ortho: { glsafe(::glOrtho(-w, w, -h, h, m_frustrum_zs.first, m_frustrum_zs.second)); break; } case Perspective: { glsafe(::glFrustum(-w, w, -h, h, m_frustrum_zs.first, m_frustrum_zs.second)); break; } } glsafe(::glGetDoublev(GL_PROJECTION_MATRIX, m_projection_matrix.data())); glsafe(::glMatrixMode(GL_MODELVIEW)); } void Camera::zoom_to_box(const BoundingBoxf3& box, int canvas_w, int canvas_h) { // Calculate the zoom factor needed to adjust the view around the given box. double zoom = calc_zoom_to_bounding_box_factor(box, canvas_w, canvas_h); if (zoom > 0.0) { m_zoom = zoom; // center view around box center m_target = box.center(); } } #if ENABLE_CAMERA_STATISTICS void Camera::debug_render() const { ImGuiWrapper& imgui = *wxGetApp().imgui(); imgui.set_next_window_bg_alpha(0.5f); imgui.begin(std::string("Camera statistics"), ImGuiWindowFlags_AlwaysAutoResize | ImGuiWindowFlags_NoResize | ImGuiWindowFlags_NoCollapse); std::string type = get_type_as_string(); Vec3f position = get_position().cast(); Vec3f target = m_target.cast(); float distance = (float)get_distance(); Vec3f forward = get_dir_forward().cast(); Vec3f right = get_dir_right().cast(); Vec3f up = get_dir_up().cast(); float nearZ = (float)m_frustrum_zs.first; float farZ = (float)m_frustrum_zs.second; float deltaZ = farZ - nearZ; float zoom = (float)m_zoom; float fov = (float)get_fov(); float gui_scale = (float)get_gui_scale(); ImGui::InputText("Type", const_cast(type.data()), type.length(), ImGuiInputTextFlags_ReadOnly); ImGui::Separator(); ImGui::InputFloat3("Position", position.data(), "%.6f", ImGuiInputTextFlags_ReadOnly); ImGui::InputFloat3("Target", target.data(), "%.6f", ImGuiInputTextFlags_ReadOnly); ImGui::InputFloat("Distance", &distance, 0.0f, 0.0f, "%.6f", ImGuiInputTextFlags_ReadOnly); ImGui::Separator(); ImGui::InputFloat3("Forward", forward.data(), "%.6f", ImGuiInputTextFlags_ReadOnly); ImGui::InputFloat3("Right", right.data(), "%.6f", ImGuiInputTextFlags_ReadOnly); ImGui::InputFloat3("Up", up.data(), "%.6f", ImGuiInputTextFlags_ReadOnly); ImGui::Separator(); ImGui::InputFloat("Near Z", &nearZ, 0.0f, 0.0f, "%.6f", ImGuiInputTextFlags_ReadOnly); ImGui::InputFloat("Far Z", &farZ, 0.0f, 0.0f, "%.6f", ImGuiInputTextFlags_ReadOnly); ImGui::InputFloat("Delta Z", &deltaZ, 0.0f, 0.0f, "%.6f", ImGuiInputTextFlags_ReadOnly); ImGui::Separator(); ImGui::InputFloat("Zoom", &zoom, 0.0f, 0.0f, "%.6f", ImGuiInputTextFlags_ReadOnly); ImGui::InputFloat("Fov", &fov, 0.0f, 0.0f, "%.6f", ImGuiInputTextFlags_ReadOnly); ImGui::Separator(); ImGui::InputFloat("GUI scale", &gui_scale, 0.0f, 0.0f, "%.6f", ImGuiInputTextFlags_ReadOnly); imgui.end(); } #endif // ENABLE_CAMERA_STATISTICS std::pair Camera::calc_tight_frustrum_zs_around(const BoundingBoxf3& box) const { std::pair ret = std::make_pair(DBL_MAX, -DBL_MAX); Vec3d bb_min = box.min; Vec3d bb_max = box.max; // box vertices in world space std::vector vertices; vertices.reserve(8); vertices.push_back(bb_min); vertices.emplace_back(bb_max(0), bb_min(1), bb_min(2)); vertices.emplace_back(bb_max(0), bb_max(1), bb_min(2)); vertices.emplace_back(bb_min(0), bb_max(1), bb_min(2)); vertices.emplace_back(bb_min(0), bb_min(1), bb_max(2)); vertices.emplace_back(bb_max(0), bb_min(1), bb_max(2)); vertices.push_back(bb_max); vertices.emplace_back(bb_min(0), bb_max(1), bb_max(2)); // set the Z range in eye coordinates (negative Zs are in front of the camera) for (const Vec3d& v : vertices) { double z = -(m_view_matrix * v)(2); ret.first = std::min(ret.first, z); ret.second = std::max(ret.second, z); } // apply margin ret.first -= FrustrumZMargin; ret.second += FrustrumZMargin; // ensure min size if (ret.second - ret.first < FrustrumMinZSize) { double mid_z = 0.5 * (ret.first + ret.second); double half_size = 0.5 * FrustrumMinZSize; ret.first = mid_z - half_size; ret.second = mid_z + half_size; } return ret; } double Camera::calc_zoom_to_bounding_box_factor(const BoundingBoxf3& box, int canvas_w, int canvas_h) const { double max_bb_size = box.max_size(); if (max_bb_size == 0.0) return -1.0; // project the box vertices on a plane perpendicular to the camera forward axis // then calculates the vertices coordinate on this plane along the camera xy axes // ensure that the view matrix is updated apply_view_matrix(); Vec3d right = get_dir_right(); Vec3d up = get_dir_up(); Vec3d forward = get_dir_forward(); Vec3d bb_min = box.min; Vec3d bb_max = box.max; Vec3d bb_center = box.center(); // box vertices in world space std::vector vertices; vertices.reserve(8); vertices.push_back(bb_min); vertices.emplace_back(bb_max(0), bb_min(1), bb_min(2)); vertices.emplace_back(bb_max(0), bb_max(1), bb_min(2)); vertices.emplace_back(bb_min(0), bb_max(1), bb_min(2)); vertices.emplace_back(bb_min(0), bb_min(1), bb_max(2)); vertices.emplace_back(bb_max(0), bb_min(1), bb_max(2)); vertices.push_back(bb_max); vertices.emplace_back(bb_min(0), bb_max(1), bb_max(2)); double max_x = 0.0; double max_y = 0.0; // margin factor to give some empty space around the box double margin_factor = 1.25; for (const Vec3d& v : vertices) { // project vertex on the plane perpendicular to camera forward axis Vec3d pos(v(0) - bb_center(0), v(1) - bb_center(1), v(2) - bb_center(2)); Vec3d proj_on_plane = pos - pos.dot(forward) * forward; // calculates vertex coordinate along camera xy axes double x_on_plane = proj_on_plane.dot(right); double y_on_plane = proj_on_plane.dot(up); max_x = std::max(max_x, std::abs(x_on_plane)); max_y = std::max(max_y, std::abs(y_on_plane)); } if ((max_x == 0.0) || (max_y == 0.0)) return -1.0f; max_x *= margin_factor; max_y *= margin_factor; return std::min((double)canvas_w / (2.0 * max_x), (double)canvas_h / (2.0 * max_y)); } } // GUI } // Slic3r