// Include GLGizmoBase.hpp before I18N.hpp as it includes some libigl code, which overrides our localization "L" macro. #include "GLGizmoFlatten.hpp" #include "slic3r/GUI/GLCanvas3D.hpp" #include "slic3r/GUI/Gizmos/GLGizmosCommon.hpp" #include "libslic3r/Model.hpp" #include #include namespace Slic3r { namespace GUI { GLGizmoFlatten::GLGizmoFlatten(GLCanvas3D& parent, const std::string& icon_filename, unsigned int sprite_id) : GLGizmoBase(parent, icon_filename, sprite_id) , m_normal(Vec3d::Zero()) , m_starting_center(Vec3d::Zero()) { } bool GLGizmoFlatten::on_init() { m_shortcut_key = WXK_CONTROL_F; return true; } void GLGizmoFlatten::on_set_state() { } CommonGizmosDataID GLGizmoFlatten::on_get_requirements() const { return CommonGizmosDataID::SelectionInfo; } std::string GLGizmoFlatten::on_get_name() const { return _u8L("Place on face"); } bool GLGizmoFlatten::on_is_activable() const { // This is assumed in GLCanvas3D::do_rotate, do not change this // without updating that function too. return m_parent.get_selection().is_single_full_instance(); } void GLGizmoFlatten::on_start_dragging() { if (m_hover_id != -1) { assert(m_planes_valid); m_normal = m_planes[m_hover_id].normal; m_starting_center = m_parent.get_selection().get_bounding_box().center(); } } void GLGizmoFlatten::on_render() { const Selection& selection = m_parent.get_selection(); glsafe(::glClear(GL_DEPTH_BUFFER_BIT)); glsafe(::glEnable(GL_DEPTH_TEST)); glsafe(::glEnable(GL_BLEND)); if (selection.is_single_full_instance()) { const Transform3d& m = selection.get_volume(*selection.get_volume_idxs().begin())->get_instance_transformation().get_matrix(); glsafe(::glPushMatrix()); glsafe(::glTranslatef(0.f, 0.f, selection.get_volume(*selection.get_volume_idxs().begin())->get_sla_shift_z())); glsafe(::glMultMatrixd(m.data())); if (this->is_plane_update_necessary()) update_planes(); for (int i = 0; i < (int)m_planes.size(); ++i) { if (i == m_hover_id) glsafe(::glColor4f(0.9f, 0.9f, 0.9f, 0.75f)); else glsafe(::glColor4f(0.9f, 0.9f, 0.9f, 0.5f)); if (m_planes[i].vbo.has_VBOs()) m_planes[i].vbo.render(); } glsafe(::glPopMatrix()); } glsafe(::glEnable(GL_CULL_FACE)); glsafe(::glDisable(GL_BLEND)); } void GLGizmoFlatten::on_render_for_picking() { const Selection& selection = m_parent.get_selection(); glsafe(::glDisable(GL_DEPTH_TEST)); glsafe(::glDisable(GL_BLEND)); if (selection.is_single_full_instance() && !wxGetKeyState(WXK_CONTROL)) { const Transform3d& m = selection.get_volume(*selection.get_volume_idxs().begin())->get_instance_transformation().get_matrix(); glsafe(::glPushMatrix()); glsafe(::glTranslatef(0.f, 0.f, selection.get_volume(*selection.get_volume_idxs().begin())->get_sla_shift_z())); glsafe(::glMultMatrixd(m.data())); if (this->is_plane_update_necessary()) update_planes(); for (int i = 0; i < (int)m_planes.size(); ++i) { glsafe(::glColor4fv(picking_color_component(i).data())); m_planes[i].vbo.render(); } glsafe(::glPopMatrix()); } glsafe(::glEnable(GL_CULL_FACE)); } void GLGizmoFlatten::set_flattening_data(const ModelObject* model_object) { m_starting_center = Vec3d::Zero(); if (model_object != m_old_model_object) { m_planes.clear(); m_planes_valid = false; } } void GLGizmoFlatten::update_planes() { const ModelObject* mo = m_c->selection_info()->model_object(); TriangleMesh ch; for (const ModelVolume* vol : mo->volumes) { if (vol->type() != ModelVolumeType::MODEL_PART) continue; TriangleMesh vol_ch = vol->get_convex_hull(); vol_ch.transform(vol->get_matrix()); ch.merge(vol_ch); } ch = ch.convex_hull_3d(); m_planes.clear(); const Transform3d& inst_matrix = mo->instances.front()->get_matrix(true); // Following constants are used for discarding too small polygons. const float minimal_area = 5.f; // in square mm (world coordinates) const float minimal_side = 1.f; // mm // Now we'll go through all the facets and append Points of facets sharing the same normal. // This part is still performed in mesh coordinate system. const int num_of_facets = ch.facets_count(); const std::vector face_normals = its_face_normals(ch.its); const std::vector face_neighbors = its_face_neighbors(ch.its); std::vector facet_queue(num_of_facets, 0); std::vector facet_visited(num_of_facets, false); int facet_queue_cnt = 0; const stl_normal* normal_ptr = nullptr; while (1) { // Find next unvisited triangle: int facet_idx = 0; for (; facet_idx < num_of_facets; ++ facet_idx) if (!facet_visited[facet_idx]) { facet_queue[facet_queue_cnt ++] = facet_idx; facet_visited[facet_idx] = true; normal_ptr = &face_normals[facet_idx]; m_planes.emplace_back(); break; } if (facet_idx == num_of_facets) break; // Everything was visited already while (facet_queue_cnt > 0) { int facet_idx = facet_queue[-- facet_queue_cnt]; const stl_normal& this_normal = face_normals[facet_idx]; if (std::abs(this_normal(0) - (*normal_ptr)(0)) < 0.001 && std::abs(this_normal(1) - (*normal_ptr)(1)) < 0.001 && std::abs(this_normal(2) - (*normal_ptr)(2)) < 0.001) { const Vec3i face = ch.its.indices[facet_idx]; for (int j=0; j<3; ++j) m_planes.back().vertices.emplace_back(ch.its.vertices[face[j]].cast()); facet_visited[facet_idx] = true; for (int j = 0; j < 3; ++ j) if (int neighbor_idx = face_neighbors[facet_idx][j]; neighbor_idx >= 0 && ! facet_visited[neighbor_idx]) facet_queue[facet_queue_cnt ++] = neighbor_idx; } } m_planes.back().normal = normal_ptr->cast(); Pointf3s& verts = m_planes.back().vertices; // Now we'll transform all the points into world coordinates, so that the areas, angles and distances // make real sense. verts = transform(verts, inst_matrix); // if this is a just a very small triangle, remove it to speed up further calculations (it would be rejected later anyway): if (verts.size() == 3 && ((verts[0] - verts[1]).norm() < minimal_side || (verts[0] - verts[2]).norm() < minimal_side || (verts[1] - verts[2]).norm() < minimal_side)) m_planes.pop_back(); } // Let's prepare transformation of the normal vector from mesh to instance coordinates. Geometry::Transformation t(inst_matrix); Vec3d scaling = t.get_scaling_factor(); t.set_scaling_factor(Vec3d(1./scaling(0), 1./scaling(1), 1./scaling(2))); // Now we'll go through all the polygons, transform the points into xy plane to process them: for (unsigned int polygon_id=0; polygon_id < m_planes.size(); ++polygon_id) { Pointf3s& polygon = m_planes[polygon_id].vertices; const Vec3d& normal = m_planes[polygon_id].normal; // transform the normal according to the instance matrix: Vec3d normal_transformed = t.get_matrix() * normal; // We are going to rotate about z and y to flatten the plane Eigen::Quaterniond q; Transform3d m = Transform3d::Identity(); m.matrix().block(0, 0, 3, 3) = q.setFromTwoVectors(normal_transformed, Vec3d::UnitZ()).toRotationMatrix(); polygon = transform(polygon, m); // Now to remove the inner points. We'll misuse Geometry::convex_hull for that, but since // it works in fixed point representation, we will rescale the polygon to avoid overflows. // And yes, it is a nasty thing to do. Whoever has time is free to refactor. Vec3d bb_size = BoundingBoxf3(polygon).size(); float sf = std::min(1./bb_size(0), 1./bb_size(1)); Transform3d tr = Geometry::assemble_transform(Vec3d::Zero(), Vec3d::Zero(), Vec3d(sf, sf, 1.f)); polygon = transform(polygon, tr); polygon = Slic3r::Geometry::convex_hull(polygon); polygon = transform(polygon, tr.inverse()); // Calculate area of the polygons and discard ones that are too small float& area = m_planes[polygon_id].area; area = 0.f; for (unsigned int i = 0; i < polygon.size(); i++) // Shoelace formula area += polygon[i](0)*polygon[i + 1 < polygon.size() ? i + 1 : 0](1) - polygon[i + 1 < polygon.size() ? i + 1 : 0](0)*polygon[i](1); area = 0.5f * std::abs(area); bool discard = false; if (area < minimal_area) discard = true; else { // We also check the inner angles and discard polygons with angles smaller than the following threshold const double angle_threshold = ::cos(10.0 * (double)PI / 180.0); for (unsigned int i = 0; i < polygon.size(); ++i) { const Vec3d& prec = polygon[(i == 0) ? polygon.size() - 1 : i - 1]; const Vec3d& curr = polygon[i]; const Vec3d& next = polygon[(i == polygon.size() - 1) ? 0 : i + 1]; if ((prec - curr).normalized().dot((next - curr).normalized()) > angle_threshold) { discard = true; break; } } } if (discard) { m_planes.erase(m_planes.begin() + (polygon_id--)); continue; } // We will shrink the polygon a little bit so it does not touch the object edges: Vec3d centroid = std::accumulate(polygon.begin(), polygon.end(), Vec3d(0.0, 0.0, 0.0)); centroid /= (double)polygon.size(); for (auto& vertex : polygon) vertex = 0.9f*vertex + 0.1f*centroid; // Polygon is now simple and convex, we'll round the corners to make them look nicer. // The algorithm takes a vertex, calculates middles of respective sides and moves the vertex // towards their average (controlled by 'aggressivity'). This is repeated k times. // In next iterations, the neighbours are not always taken at the middle (to increase the // rounding effect at the corners, where we need it most). const unsigned int k = 10; // number of iterations const float aggressivity = 0.2f; // agressivity const unsigned int N = polygon.size(); std::vector> neighbours; if (k != 0) { Pointf3s points_out(2*k*N); // vector long enough to store the future vertices for (unsigned int j=0; jvolumes) { m_volumes_matrices.push_back(vol->get_matrix()); m_volumes_types.push_back(vol->type()); } m_first_instance_scale = mo->instances.front()->get_scaling_factor(); m_first_instance_mirror = mo->instances.front()->get_mirror(); m_old_model_object = mo; // And finally create respective VBOs. The polygon is convex with // the vertices in order, so triangulation is trivial. for (auto& plane : m_planes) { plane.vbo.reserve(plane.vertices.size()); for (const auto& vert : plane.vertices) plane.vbo.push_geometry(vert, plane.normal); for (size_t i=1; iselection_info()->model_object(); if (m_state != On || ! mo || mo->instances.empty()) return false; if (! m_planes_valid || mo != m_old_model_object || mo->volumes.size() != m_volumes_matrices.size()) return true; // We want to recalculate when the scale changes - some planes could (dis)appear. if (! mo->instances.front()->get_scaling_factor().isApprox(m_first_instance_scale) || ! mo->instances.front()->get_mirror().isApprox(m_first_instance_mirror)) return true; for (unsigned int i=0; i < mo->volumes.size(); ++i) if (! mo->volumes[i]->get_matrix().isApprox(m_volumes_matrices[i]) || mo->volumes[i]->type() != m_volumes_types[i]) return true; return false; } Vec3d GLGizmoFlatten::get_flattening_normal() const { Vec3d out = m_normal; m_normal = Vec3d::Zero(); m_starting_center = Vec3d::Zero(); return out; } } // namespace GUI } // namespace Slic3r