#include "Flow.hpp" #include namespace Slic3r { Flow Flow::new_from_config_width(FlowRole role, const ConfigOptionFloatOrPercent &width, float nozzle_diameter, float height, float bridge_flow_ratio) { // we need layer height unless it's a bridge if (height <= 0 && bridge_flow_ratio == 0) CONFESS("Invalid flow height supplied to new_from_config_width()"); float w; if (!width.percent && width.value == 0) { w = Flow::_width(role, nozzle_diameter, height, bridge_flow_ratio); } else { w = width.get_abs_value(height); } Flow flow(w, Flow::_spacing(w, nozzle_diameter, height, bridge_flow_ratio), nozzle_diameter); if (bridge_flow_ratio > 0) flow.bridge = true; return flow; } Flow Flow::new_from_spacing(float spacing, float nozzle_diameter, float height, bool bridge) { // we need layer height unless it's a bridge if (height <= 0 && !bridge) CONFESS("Invalid flow height supplied to new_from_spacing()"); float w = Flow::_width_from_spacing(spacing, nozzle_diameter, height, bridge); Flow flow(w, spacing, nozzle_diameter); flow.bridge = bridge; return flow; } double Flow::mm3_per_mm(float h) { if (this->bridge) { return (this->width * this->width) * PI/4.0; } else if (this->width >= (this->nozzle_diameter + h)) { // rectangle with semicircles at the ends return this->width * h + (h*h) / 4.0 * (PI-4.0); } else { // rectangle with shrunk semicircles at the ends return this->nozzle_diameter * h * (1 - PI/4.0) + h * this->width * PI/4.0; } } float Flow::_width(FlowRole role, float nozzle_diameter, float height, float bridge_flow_ratio) { if (bridge_flow_ratio > 0) { return sqrt(bridge_flow_ratio * (nozzle_diameter*nozzle_diameter)); } // here we calculate a sane default by matching the flow speed (at the nozzle) and the feed rate float volume = (nozzle_diameter*nozzle_diameter) * PI/4.0; float shape_threshold = nozzle_diameter * height + (height*height) * PI/4.0; float width; if (volume >= shape_threshold) { // rectangle with semicircles at the ends width = ((nozzle_diameter*nozzle_diameter) * PI + (height*height) * (4.0 - PI)) / (4.0 * height); } else { // rectangle with squished semicircles at the ends width = nozzle_diameter * (nozzle_diameter/height - 4.0/PI + 1); } float min = nozzle_diameter * 1.05; float max = -1; if (role == frPerimeter || role == frSupportMaterial) { min = max = nozzle_diameter; } else if (role != frInfill) { // do not limit width for sparse infill so that we use full native flow for it max = nozzle_diameter * 1.7; } if (max != -1 && width > max) width = max; if (width < min) width = min; return width; } float Flow::_width_from_spacing(float spacing, float nozzle_diameter, float height, bool bridge) { if (bridge) { return spacing - BRIDGE_EXTRA_SPACING; } float w_threshold = height + nozzle_diameter; float s_threshold = w_threshold - OVERLAP_FACTOR * (w_threshold - (w_threshold - height * (1 - PI/4.0))); if (spacing >= s_threshold) { // rectangle with semicircles at the ends return spacing + OVERLAP_FACTOR * height * (1 - PI/4.0); } else { // rectangle with shrunk semicircles at the ends return (spacing + nozzle_diameter * OVERLAP_FACTOR * (PI/4.0 - 1)) / (1 + OVERLAP_FACTOR * (PI/4.0 - 1)); } } float Flow::_spacing(float width, float nozzle_diameter, float height, float bridge_flow_ratio) { if (bridge_flow_ratio > 0) { return width + BRIDGE_EXTRA_SPACING; } float min_flow_spacing; if (width >= (nozzle_diameter + height)) { // rectangle with semicircles at the ends min_flow_spacing = width - height * (1 - PI/4.0); } else { // rectangle with shrunk semicircles at the ends min_flow_spacing = nozzle_diameter * (1 - PI/4.0) + width * PI/4.0; } return width - OVERLAP_FACTOR * (width - min_flow_spacing); } }