/* ADMesh -- process triangulated solid meshes * Copyright (C) 1995, 1996 Anthony D. Martin * Copyright (C) 2013, 2014 several contributors, see AUTHORS * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * You should have received a copy of the GNU General Public License along * with this program; if not, write to the Free Software Foundation, Inc., * 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA. * * Questions, comments, suggestions, etc to * https://github.com/admesh/admesh/issues */ #include #include #include #include #include "stl.h" static void stl_reverse_vector(float v[]) { v[0] *= -1; v[1] *= -1; v[2] *= -1; } static int stl_check_normal_vector(stl_file *stl, int facet_num, int normal_fix_flag); static void stl_reverse_facet(stl_file *stl, int facet_num) { stl_vertex tmp_vertex; /* int tmp_neighbor;*/ int neighbor[3]; int vnot[3]; stl->stats.facets_reversed += 1; neighbor[0] = stl->neighbors_start[facet_num].neighbor[0]; neighbor[1] = stl->neighbors_start[facet_num].neighbor[1]; neighbor[2] = stl->neighbors_start[facet_num].neighbor[2]; vnot[0] = stl->neighbors_start[facet_num].which_vertex_not[0]; vnot[1] = stl->neighbors_start[facet_num].which_vertex_not[1]; vnot[2] = stl->neighbors_start[facet_num].which_vertex_not[2]; /* reverse the facet */ tmp_vertex = stl->facet_start[facet_num].vertex[0]; stl->facet_start[facet_num].vertex[0] = stl->facet_start[facet_num].vertex[1]; stl->facet_start[facet_num].vertex[1] = tmp_vertex; /* fix the vnots of the neighboring facets */ if(neighbor[0] != -1) stl->neighbors_start[neighbor[0]].which_vertex_not[(vnot[0] + 1) % 3] = (stl->neighbors_start[neighbor[0]]. which_vertex_not[(vnot[0] + 1) % 3] + 3) % 6; if(neighbor[1] != -1) stl->neighbors_start[neighbor[1]].which_vertex_not[(vnot[1] + 1) % 3] = (stl->neighbors_start[neighbor[1]]. which_vertex_not[(vnot[1] + 1) % 3] + 4) % 6; if(neighbor[2] != -1) stl->neighbors_start[neighbor[2]].which_vertex_not[(vnot[2] + 1) % 3] = (stl->neighbors_start[neighbor[2]]. which_vertex_not[(vnot[2] + 1) % 3] + 2) % 6; /* swap the neighbors of the facet that is being reversed */ stl->neighbors_start[facet_num].neighbor[1] = neighbor[2]; stl->neighbors_start[facet_num].neighbor[2] = neighbor[1]; /* swap the vnots of the facet that is being reversed */ stl->neighbors_start[facet_num].which_vertex_not[1] = vnot[2]; stl->neighbors_start[facet_num].which_vertex_not[2] = vnot[1]; /* reverse the values of the vnots of the facet that is being reversed */ stl->neighbors_start[facet_num].which_vertex_not[0] = (stl->neighbors_start[facet_num].which_vertex_not[0] + 3) % 6; stl->neighbors_start[facet_num].which_vertex_not[1] = (stl->neighbors_start[facet_num].which_vertex_not[1] + 3) % 6; stl->neighbors_start[facet_num].which_vertex_not[2] = (stl->neighbors_start[facet_num].which_vertex_not[2] + 3) % 6; } void stl_fix_normal_directions(stl_file *stl) { char *norm_sw; /* int edge_num;*/ /* int vnot;*/ int checked = 0; int facet_num; /* int next_facet;*/ int i; int j; struct stl_normal { int facet_num; struct stl_normal *next; }; struct stl_normal *head; struct stl_normal *tail; struct stl_normal *newn; struct stl_normal *temp; int* reversed_ids; int reversed_count = 0; int id; int force_exit = 0; if (stl->error) return; /* Initialize linked list. */ head = (struct stl_normal*)malloc(sizeof(struct stl_normal)); if(head == NULL) perror("stl_fix_normal_directions"); tail = (struct stl_normal*)malloc(sizeof(struct stl_normal)); if(tail == NULL) perror("stl_fix_normal_directions"); head->next = tail; tail->next = tail; /* Initialize list that keeps track of already fixed facets. */ norm_sw = (char*)calloc(stl->stats.number_of_facets, sizeof(char)); if(norm_sw == NULL) perror("stl_fix_normal_directions"); /* Initialize list that keeps track of reversed facets. */ reversed_ids = (int*)calloc(stl->stats.number_of_facets, sizeof(int)); if (reversed_ids == NULL) perror("stl_fix_normal_directions reversed_ids"); facet_num = 0; /* If normal vector is not within tolerance and backwards: Arbitrarily starts at face 0. If this one is wrong, we're screwed. Thankfully, the chances of it being wrong randomly are low if most of the triangles are right: */ if (stl_check_normal_vector(stl, 0, 0) == 2) { stl_reverse_facet(stl, 0); reversed_ids[reversed_count++] = 0; } /* Say that we've fixed this facet: */ norm_sw[facet_num] = 1; checked++; for(;;) { /* Add neighbors_to_list. Add unconnected neighbors to the list:a */ for(j = 0; j < 3; j++) { /* Reverse the neighboring facets if necessary. */ if(stl->neighbors_start[facet_num].which_vertex_not[j] > 2) { /* If the facet has a neighbor that is -1, it means that edge isn't shared by another facet */ if(stl->neighbors_start[facet_num].neighbor[j] != -1) { if (norm_sw[stl->neighbors_start[facet_num].neighbor[j]] == 1) { /* trying to modify a facet already marked as fixed, revert all changes made until now and exit (fixes: #716, #574, #413, #269, #262, #259, #230, #228, #206) */ for (id = reversed_count - 1; id >= 0; --id) { stl_reverse_facet(stl, reversed_ids[id]); } force_exit = 1; break; } else { stl_reverse_facet(stl, stl->neighbors_start[facet_num].neighbor[j]); reversed_ids[reversed_count++] = stl->neighbors_start[facet_num].neighbor[j]; } } } /* If this edge of the facet is connected: */ if(stl->neighbors_start[facet_num].neighbor[j] != -1) { /* If we haven't fixed this facet yet, add it to the list: */ if(norm_sw[stl->neighbors_start[facet_num].neighbor[j]] != 1) { /* Add node to beginning of list. */ newn = (struct stl_normal*)malloc(sizeof(struct stl_normal)); if(newn == NULL) perror("stl_fix_normal_directions"); newn->facet_num = stl->neighbors_start[facet_num].neighbor[j]; newn->next = head->next; head->next = newn; } } } /* an error occourred, quit the for loop and exit */ if (force_exit) break; /* Get next facet to fix from top of list. */ if(head->next != tail) { facet_num = head->next->facet_num; if(norm_sw[facet_num] != 1) { /* If facet is in list mutiple times */ norm_sw[facet_num] = 1; /* Record this one as being fixed. */ checked++; } temp = head->next; /* Delete this facet from the list. */ head->next = head->next->next; free(temp); } else { /* if we ran out of facets to fix: */ /* All of the facets in this part have been fixed. */ stl->stats.number_of_parts += 1; if(checked >= stl->stats.number_of_facets) { /* All of the facets have been checked. Bail out. */ break; } else { /* There is another part here. Find it and continue. */ for(i = 0; i < stl->stats.number_of_facets; i++) { if(norm_sw[i] == 0) { /* This is the first facet of the next part. */ facet_num = i; if(stl_check_normal_vector(stl, i, 0) == 2) { stl_reverse_facet(stl, i); reversed_ids[reversed_count++] = i; } norm_sw[facet_num] = 1; checked++; break; } } } } } free(head); free(tail); free(reversed_ids); free(norm_sw); } static int stl_check_normal_vector(stl_file *stl, int facet_num, int normal_fix_flag) { /* Returns 0 if the normal is within tolerance */ /* Returns 1 if the normal is not within tolerance, but direction is OK */ /* Returns 2 if the normal is not within tolerance and backwards */ /* Returns 4 if the status is unknown. */ float normal[3]; float test_norm[3]; stl_facet *facet; facet = &stl->facet_start[facet_num]; stl_calculate_normal(normal, facet); stl_normalize_vector(normal); if( (ABS(normal[0] - facet->normal.x) < 0.001) && (ABS(normal[1] - facet->normal.y) < 0.001) && (ABS(normal[2] - facet->normal.z) < 0.001)) { /* It is not really necessary to change the values here */ /* but just for consistency, I will. */ facet->normal.x = normal[0]; facet->normal.y = normal[1]; facet->normal.z = normal[2]; return 0; } test_norm[0] = facet->normal.x; test_norm[1] = facet->normal.y; test_norm[2] = facet->normal.z; stl_normalize_vector(test_norm); if( (ABS(normal[0] - test_norm[0]) < 0.001) && (ABS(normal[1] - test_norm[1]) < 0.001) && (ABS(normal[2] - test_norm[2]) < 0.001)) { if(normal_fix_flag) { facet->normal.x = normal[0]; facet->normal.y = normal[1]; facet->normal.z = normal[2]; stl->stats.normals_fixed += 1; } return 1; } stl_reverse_vector(test_norm); if( (ABS(normal[0] - test_norm[0]) < 0.001) && (ABS(normal[1] - test_norm[1]) < 0.001) && (ABS(normal[2] - test_norm[2]) < 0.001)) { /* Facet is backwards. */ if(normal_fix_flag) { facet->normal.x = normal[0]; facet->normal.y = normal[1]; facet->normal.z = normal[2]; stl->stats.normals_fixed += 1; } return 2; } if(normal_fix_flag) { facet->normal.x = normal[0]; facet->normal.y = normal[1]; facet->normal.z = normal[2]; stl->stats.normals_fixed += 1; } return 4; } void stl_calculate_normal(float normal[], stl_facet *facet) { float v1[3] = { facet->vertex[1].x - facet->vertex[0].x, facet->vertex[1].y - facet->vertex[0].y, facet->vertex[1].z - facet->vertex[0].z }; float v2[3] = { facet->vertex[2].x - facet->vertex[0].x, facet->vertex[2].y - facet->vertex[0].y, facet->vertex[2].z - facet->vertex[0].z }; normal[0] = (float)((double)v1[1] * (double)v2[2]) - ((double)v1[2] * (double)v2[1]); normal[1] = (float)((double)v1[2] * (double)v2[0]) - ((double)v1[0] * (double)v2[2]); normal[2] = (float)((double)v1[0] * (double)v2[1]) - ((double)v1[1] * (double)v2[0]); } void stl_normalize_vector(float v[]) { double length; double factor; float min_normal_length; length = sqrt((double)v[0] * (double)v[0] + (double)v[1] * (double)v[1] + (double)v[2] * (double)v[2]); min_normal_length = 0.000000000001; if(length < min_normal_length) { v[0] = 0.0; v[1] = 0.0; v[2] = 0.0; return; } factor = 1.0 / length; v[0] *= factor; v[1] *= factor; v[2] *= factor; } void stl_fix_normal_values(stl_file *stl) { int i; if (stl->error) return; for(i = 0; i < stl->stats.number_of_facets; i++) { stl_check_normal_vector(stl, i, 1); } } void stl_reverse_all_facets(stl_file *stl) { int i; float normal[3]; if (stl->error) return; for(i = 0; i < stl->stats.number_of_facets; i++) { stl_reverse_facet(stl, i); stl_calculate_normal(normal, &stl->facet_start[i]); stl_normalize_vector(normal); stl->facet_start[i].normal.x = normal[0]; stl->facet_start[i].normal.y = normal[1]; stl->facet_start[i].normal.z = normal[2]; } }