#include #include #include #include #include #include #include "../ClipperUtils.hpp" #include "../ExPolygon.hpp" #include "../Geometry.hpp" #include "../Surface.hpp" #include "../Int128.hpp" #include "FillRectilinear3.hpp" #define SLIC3R_DEBUG // Make assert active if SLIC3R_DEBUG #ifdef SLIC3R_DEBUG #undef NDEBUG #define DEBUG #define _DEBUG #include "SVG.hpp" #endif #include namespace Slic3r { namespace FillRectilinear3_Internal { // A container maintaining the source expolygon with its inner offsetted polygon. // The source expolygon is offsetted twice: // 1) A tiny offset is used to get a contour, to which the open hatching lines will be extended. // 2) A larger offset is used to get a contor, along which the individual hatching lines will be connected. struct ExPolygonWithOffset { public: ExPolygonWithOffset( const ExPolygon &expolygon, float aoffset1, float aoffset2) { // Copy and rotate the source polygons. polygons_src = expolygon; double mitterLimit = 3.; // for the infill pattern, don't cut the corners. // default miterLimt = 3 //double mitterLimit = 10.; assert(aoffset1 < 0); assert(aoffset2 < 0); assert(aoffset2 < aoffset1); // bool sticks_removed = remove_sticks(polygons_src); // if (sticks_removed) printf("Sticks removed!\n"); polygons_outer = offset(polygons_src, aoffset1, ClipperLib::jtMiter, mitterLimit); polygons_inner = offset(polygons_outer, aoffset2 - aoffset1, ClipperLib::jtMiter, mitterLimit); // Filter out contours with zero area or small area, contours with 2 points only. const double min_area_threshold = 0.01 * aoffset2 * aoffset2; remove_small(polygons_outer, min_area_threshold); remove_small(polygons_inner, min_area_threshold); remove_sticks(polygons_outer); remove_sticks(polygons_inner); n_contours_outer = polygons_outer.size(); n_contours_inner = polygons_inner.size(); n_contours = n_contours_outer + n_contours_inner; polygons_ccw.assign(n_contours, false); for (size_t i = 0; i < n_contours; ++ i) { contour(i).remove_duplicate_points(); assert(! contour(i).has_duplicate_points()); polygons_ccw[i] = Slic3r::Geometry::is_ccw(contour(i)); } } // Any contour with offset1 bool is_contour_outer(size_t idx) const { return idx < n_contours_outer; } // Any contour with offset2 bool is_contour_inner(size_t idx) const { return idx >= n_contours_outer; } const Polygon& contour(size_t idx) const { return is_contour_outer(idx) ? polygons_outer[idx] : polygons_inner[idx - n_contours_outer]; } Polygon& contour(size_t idx) { return is_contour_outer(idx) ? polygons_outer[idx] : polygons_inner[idx - n_contours_outer]; } bool is_contour_ccw(size_t idx) const { return polygons_ccw[idx] != 0; } BoundingBox bounding_box_src() const { return get_extents(polygons_src); } BoundingBox bounding_box_outer() const { return get_extents(polygons_outer); } BoundingBox bounding_box_inner() const { return get_extents(polygons_inner); } #ifdef SLIC3R_DEBUG void export_to_svg(Slic3r::SVG &svg) const { svg.draw_outline(polygons_src, "black"); svg.draw_outline(polygons_outer, "green"); svg.draw_outline(polygons_inner, "brown"); } #endif /* SLIC3R_DEBUG */ ExPolygon polygons_src; Polygons polygons_outer; Polygons polygons_inner; size_t n_contours_outer; size_t n_contours_inner; size_t n_contours; protected: // For each polygon of polygons_inner, remember its orientation. std::vector polygons_ccw; }; class SegmentedIntersectionLine; // Intersection point of a vertical line with a polygon segment. class SegmentIntersection { public: SegmentIntersection() : line(nullptr), expoly_with_offset(nullptr), iContour(0), iSegment(0), type(UNKNOWN), consumed_vertical_up(false), consumed_perimeter_right(false) {} // Parent object owning this intersection point. const SegmentedIntersectionLine *line; // Container with the source expolygon and its shrank copies, to be intersected by the line. const ExPolygonWithOffset *expoly_with_offset; // Index of a contour in ExPolygonWithOffset, with which this vertical line intersects. size_t iContour; // Index of a segment in iContour, with which this vertical line intersects. size_t iSegment; // Kind of intersection. With the original contour, or with the inner offestted contour? // A vertical segment will be at least intersected by OUTER_LOW, OUTER_HIGH, // but it could be intersected with OUTER_LOW, INNER_LOW, INNER_HIGH, OUTER_HIGH, // and there may be more than one pair of INNER_LOW, INNER_HIGH between OUTER_LOW, OUTER_HIGH. enum SegmentIntersectionType { OUTER_LOW = 0, OUTER_HIGH = 1, INNER_LOW = 2, INNER_HIGH = 3, UNKNOWN = -1 }; SegmentIntersectionType type; // For the INNER_LOW type, this point may be connected to another INNER_LOW point following a perimeter contour. // For the INNER_HIGH type, this point may be connected to another INNER_HIGH point following a perimeter contour. // If INNER_LOW is connected to INNER_HIGH or vice versa, // one has to make sure the vertical infill line does not overlap with the connecting perimeter line. bool is_inner() const { return type == INNER_LOW || type == INNER_HIGH; } bool is_outer() const { return type == OUTER_LOW || type == OUTER_HIGH; } bool is_low () const { return type == INNER_LOW || type == OUTER_LOW; } bool is_high () const { return type == INNER_HIGH || type == OUTER_HIGH; } // Calculate a position of this intersection point. The position does not need to be necessary exact. Point pos() const; // Returns 0, if this and other segments intersect at the hatching line. // Returns -1, if this intersection is below the other intersection on the hatching line. // Returns +1 otherwise. int ordering_along_line(const SegmentIntersection &other) const; // Compare two y intersection points given by rational numbers. bool operator< (const SegmentIntersection &other) const; // { return this->ordering_along_line(other) == -1; } bool operator==(const SegmentIntersection &other) const { return this->ordering_along_line(other) == 0; } //FIXME legacy code, suporting the old graph traversal algorithm. Please remove. // Was this segment along the y axis consumed? // Up means up along the vertical segment. bool consumed_vertical_up; // Was a segment of the inner perimeter contour consumed? // Right means right from the vertical segment. bool consumed_perimeter_right; }; // A single hathing line intersecting the ExPolygonWithOffset. class SegmentedIntersectionLine { public: // Index of this vertical intersection line. size_t idx; // Position of the line along the X axis of the oriented bounding box. // coord_t x; // Position of this vertical intersection line, rotated to the world coordinate system. Point pos; // Direction of this vertical intersection line, rotated to the world coordinate system. The direction is not normalized to maintain a sufficient accuracy! Vector dir; // List of intersection points with polygons, sorted increasingly by the y axis. // The SegmentIntersection keeps a pointer to this object to access the start and direction of this line. std::vector intersections; }; // Return an intersection point of the parent SegmentedIntersectionLine with the segment of a parent ExPolygonWithOffset. // The intersected segment of the ExPolygonWithOffset is addressed with (iContour, iSegment). // When calling this method, the SegmentedIntersectionLine must not be parallel with the segment. Point SegmentIntersection::pos() const { // Get the two rays to be intersected. const Polygon &poly = this->expoly_with_offset->contour(this->iContour); // 30 bits + 1 signum bit. const Point &seg_start = poly.points[(this->iSegment == 0) ? poly.points.size() - 1 : this->iSegment - 1]; const Point &seg_end = poly.points[this->iSegment]; // Point, vector of the segment. const Vec2d p1(seg_start.cast()); const Vec2d v1((seg_end - seg_start).cast()); // Point, vector of this hatching line. const Vec2d p2(line->pos.cast()); const Vec2d v2(line->dir.cast()); // Intersect the two rays. double denom = v1(0) * v2(1) - v2(0) * v1(1); Point out; if (denom == 0.) { // Lines are collinear. As the pos() method is not supposed to be called on collinear vectors, // the source vectors are not quite collinear. Return the center of the contour segment. out = seg_start + seg_end; out(0) >>= 1; out(1) >>= 1; } else { // Find the intersection point. double t = (v2(0) * (p1(1) - p2(1)) - v2(1) * (p1(0) - p2(0))) / denom; if (t < 0.) out = seg_start; else if (t > 1.) out = seg_end; else { out(0) = coord_t(floor(p1(0) + t * v1(0) + 0.5)); out(1) = coord_t(floor(p1(1) + t * v1(1) + 0.5)); } } return out; } static inline int signum(int64_t v) { return (v > 0) - (v < 0); } // Returns 0, if this and other segments intersect at the hatching line. // Returns -1, if this intersection is below the other intersection on the hatching line. // Returns +1 otherwise. int SegmentIntersection::ordering_along_line(const SegmentIntersection &other) const { assert(this->line == other.line); assert(this->expoly_with_offset == other.expoly_with_offset); if (this->iContour == other.iContour && this->iSegment == other.iSegment) return true; // Segment of this const Polygon &poly_a = this->expoly_with_offset->contour(this->iContour); // 30 bits + 1 signum bit. const Point &seg_start_a = poly_a.points[(this->iSegment == 0) ? poly_a.points.size() - 1 : this->iSegment - 1]; const Point &seg_end_a = poly_a.points[this->iSegment]; // Segment of other const Polygon &poly_b = this->expoly_with_offset->contour(other.iContour); // 30 bits + 1 signum bit. const Point &seg_start_b = poly_b.points[(other.iSegment == 0) ? poly_b.points.size() - 1 : other.iSegment - 1]; const Point &seg_end_b = poly_b.points[other.iSegment]; if (this->iContour == other.iContour) { if ((this->iSegment + 1) % poly_a.points.size() == other.iSegment) { // other.iSegment succeeds this->iSegment assert(seg_end_a == seg_start_b); // Avoid calling the 128bit x 128bit multiplication below if this->line intersects the common point. if (cross2(Vec2i64(this->line->dir.cast()), (seg_end_b - this->line->pos).cast()) == 0) return 0; } else if ((other.iSegment + 1) % poly_a.points.size() == this->iSegment) { // this->iSegment succeeds other.iSegment assert(seg_start_a == seg_end_b); // Avoid calling the 128bit x 128bit multiplication below if this->line intersects the common point. if (cross2(Vec2i64(this->line->dir.cast()), (seg_start_a - this->line->pos).cast()) == 0) return 0; } else { // General case. } } // First test, whether both points of one segment are completely in one half-plane of the other line. const Vec2i64 vec_b = (seg_end_b - seg_start_b).cast(); int side_start = signum(cross2(vec_b, (seg_start_a - seg_start_b).cast())); int side_end = signum(cross2(vec_b, (seg_end_a - seg_start_b).cast())); int side = side_start * side_end; if (side > 0) // This segment is completely inside one half-plane of the other line, therefore the ordering is trivial. return signum(cross2(vec_b, this->line->dir.cast())) * side_start; const Vec2i64 vec_a = (seg_end_a - seg_start_a).cast(); int side_start2 = signum(cross2(vec_a, (seg_start_b - seg_start_a).cast())); int side_end2 = signum(cross2(vec_a, (seg_end_b - seg_start_a).cast())); int side2 = side_start2 * side_end2; //if (side == 0 && side2 == 0) // The segments share one of their end points. if (side2 > 0) // This segment is completely inside one half-plane of the other line, therefore the ordering is trivial. return signum(cross2(this->line->dir.cast(), vec_a)) * side_start2; // The two segments intersect and they are not sucessive segments of the same contour. // Ordering of the points depends on the position of the segment intersection (left / right from this->line), // therefore a simple test over the input segment end points is not sufficient. // Find the parameters of intersection of the two segmetns with this->line. int64_t denom1 = cross2(this->line->dir.cast(), vec_a); int64_t denom2 = cross2(this->line->dir.cast(), vec_b); Vec2i64 vx_a = (seg_start_a - this->line->pos).cast(); Vec2i64 vx_b = (seg_start_b - this->line->pos).cast(); int64_t t1_times_denom1 = vx_a(0) * vec_a(1) - vx_a(1) * vec_a(0); int64_t t2_times_denom2 = vx_b(0) * vec_b(1) - vx_b(1) * vec_b(0); assert(denom1 != 0); assert(denom2 != 0); return Int128::compare_rationals_filtered(t1_times_denom1, denom1, t2_times_denom2, denom2); } // Compare two y intersection points given by rational numbers. bool SegmentIntersection::operator<(const SegmentIntersection &other) const { #ifdef _DEBUG Point p1 = this->pos(); Point p2 = other.pos(); int64_t d = this->line->dir.cast().dot((p2 - p1).cast()); #endif /* _DEBUG */ int ordering = this->ordering_along_line(other); #ifdef _DEBUG if (ordering == -1) assert(d >= - int64_t(SCALED_EPSILON)); else if (ordering == 1) assert(d <= int64_t(SCALED_EPSILON)); #endif /* _DEBUG */ return ordering == -1; } // When doing a rectilinear / grid / triangle / stars / cubic infill, // the following class holds the hatching lines of each of the hatching directions. class InfillHatchingSingleDirection { public: // Hatching angle, CCW from the X axis. double angle; // Starting point of the 1st hatching line. Point start_point; // Direction vector, its size is not normalized to maintain a sufficient accuracy! Vector direction; // Spacing of the hatching lines, perpendicular to the direction vector. coord_t line_spacing; // Infill segments oriented at angle. std::vector segs; }; // For the rectilinear, grid, triangles, stars and cubic pattern fill one InfillHatchingSingleDirection structure // for each infill direction. The segments stored in InfillHatchingSingleDirection will then form a graph of candidate // paths to be extruded. static bool prepare_infill_hatching_segments( // Input geometry to be hatch, containing two concentric contours for each input contour. const ExPolygonWithOffset &poly_with_offset, // fill density, dont_adjust const FillParams ¶ms, // angle, pattern_shift, spacing FillRectilinear3::FillDirParams &fill_dir_params, // Reference point of the pattern, to which the infill lines will be alligned, and the base angle. const std::pair &rotate_vector, // Resulting straight segments of the infill graph. InfillHatchingSingleDirection &out) { out.angle = rotate_vector.first + fill_dir_params.angle; out.direction = Point(coord_t(scale_(1000)), coord_t(0)); // Hatch along the Y axis of the rotated coordinate system. out.direction.rotate(out.angle + 0.5 * M_PI); out.segs.clear(); assert(params.density > 0.0001f && params.density <= 1.f); coord_t line_spacing = coord_t(scale_(fill_dir_params.spacing) / params.density); // Bounding box around the source contour, aligned with out.angle. BoundingBox bounding_box = get_extents_rotated(poly_with_offset.polygons_src.contour, - out.angle); // Define the flow spacing according to requested density. if (params.full_infill() && ! params.dont_adjust) { // Full infill, adjust the line spacing to fit an integer number of lines. out.line_spacing = Fill::_adjust_solid_spacing(bounding_box.size()(0), line_spacing); // Report back the adjusted line spacing. fill_dir_params.spacing = unscale(line_spacing); } else { // Extend bounding box so that our pattern will be aligned with the other layers. // Transform the reference point to the rotated coordinate system. Point refpt = rotate_vector.second.rotated(- out.angle); // _align_to_grid will not work correctly with positive pattern_shift. coord_t pattern_shift_scaled = coord_t(scale_(fill_dir_params.pattern_shift)) % line_spacing; refpt(0) -= (pattern_shift_scaled >= 0) ? pattern_shift_scaled : (line_spacing + pattern_shift_scaled); bounding_box.merge(Fill::_align_to_grid( bounding_box.min, Point(line_spacing, line_spacing), refpt)); } // Intersect a set of euqally spaced vertical lines wiht expolygon. // n_vlines = ceil(bbox_width / line_spacing) size_t n_vlines = (bounding_box.max(0) - bounding_box.min(0) + line_spacing - 1) / line_spacing; coord_t x0 = bounding_box.min(0); if (params.full_infill()) x0 += coord_t((line_spacing + SCALED_EPSILON) / 2); out.line_spacing = line_spacing; out.start_point = Point(x0, bounding_box.min(1)); out.start_point.rotate(out.angle); #ifdef SLIC3R_DEBUG static int iRun = 0; BoundingBox bbox_svg = poly_with_offset.bounding_box_outer(); ::Slic3r::SVG svg(debug_out_path("FillRectilinear2-%d.svg", iRun), bbox_svg); // , scale_(1.)); poly_with_offset.export_to_svg(svg); { ::Slic3r::SVG svg(debug_out_path("FillRectilinear2-initial-%d.svg", iRun), bbox_svg); // , scale_(1.)); poly_with_offset.export_to_svg(svg); } iRun ++; #endif /* SLIC3R_DEBUG */ // For each contour // Allocate storage for the segments. out.segs.assign(n_vlines, SegmentedIntersectionLine()); double cos_a = cos(out.angle); double sin_a = sin(out.angle); for (size_t i = 0; i < n_vlines; ++ i) { auto &seg = out.segs[i]; seg.idx = i; // seg(0) = x0 + coord_t(i) * line_spacing; coord_t x = x0 + coord_t(i) * line_spacing; seg.pos(0) = coord_t(floor(cos_a * x - sin_a * bounding_box.min(1) + 0.5)); seg.pos(1) = coord_t(floor(cos_a * bounding_box.min(1) + sin_a * x + 0.5)); seg.dir = out.direction; } for (size_t iContour = 0; iContour < poly_with_offset.n_contours; ++ iContour) { const Points &contour = poly_with_offset.contour(iContour).points; if (contour.size() < 2) continue; // For each segment for (size_t iSegment = 0; iSegment < contour.size(); ++ iSegment) { size_t iPrev = ((iSegment == 0) ? contour.size() : iSegment) - 1; const Point *pl = &contour[iPrev]; const Point *pr = &contour[iSegment]; // Orient the segment to the direction vector. const Point v = *pr - *pl; int orientation = Int128::sign_determinant_2x2_filtered(v(0), v(1), out.direction(0), out.direction(1)); if (orientation == 0) // Ignore strictly vertical segments. continue; if (orientation < 0) // Always orient the input segment consistently towards the hatching direction. std::swap(pl, pr); // Which of the equally spaced vertical lines is intersected by this segment? coord_t l = (coord_t)floor(cos_a * (*pl)(0) + sin_a * (*pl)(1) - SCALED_EPSILON); coord_t r = (coord_t)ceil (cos_a * (*pr)(0) + sin_a * (*pr)(1) + SCALED_EPSILON); assert(l < r - SCALED_EPSILON); // il, ir are the left / right indices of vertical lines intersecting a segment int il = std::max(0, (l - x0 + line_spacing) / line_spacing); int ir = std::min(int(out.segs.size()) - 1, (r - x0) / line_spacing); // The previous tests were done with floating point arithmetics over an epsilon-extended interval. // Now do the same tests with exact arithmetics over the exact interval. while (il <= ir && int128::orient(out.segs[il].pos, out.segs[il].pos + out.direction, *pl) < 0) ++ il; while (il <= ir && int128::orient(out.segs[ir].pos, out.segs[ir].pos + out.direction, *pr) > 0) -- ir; // Here it is ensured, that // 1) out.seg is not parallel to (pl, pr) // 2) all lines from il to ir intersect . assert(il >= 0 && ir < int(out.segs.size())); for (int i = il; i <= ir; ++ i) { // assert(out.segs[i](0) == i * line_spacing + x0); // assert(l <= out.segs[i](0)); // assert(r >= out.segs[i](0)); SegmentIntersection is; is.line = &out.segs[i]; is.expoly_with_offset = &poly_with_offset; is.iContour = iContour; is.iSegment = iSegment; // Test whether the calculated intersection point falls into the bounding box of the input segment. // +-1 to take rounding into account. assert(int128::orient(out.segs[i].pos, out.segs[i].pos + out.direction, *pl) >= 0); assert(int128::orient(out.segs[i].pos, out.segs[i].pos + out.direction, *pr) <= 0); assert(is.pos()(0) + 1 >= std::min((*pl)(0), (*pr)(0))); assert(is.pos()(1) + 1 >= std::min((*pl)(1), (*pr)(1))); assert(is.pos()(0) <= std::max((*pl)(0), (*pr)(0)) + 1); assert(is.pos()(1) <= std::max((*pl)(1), (*pr)(1)) + 1); out.segs[i].intersections.push_back(is); } } } // Sort the intersections along their segments, specify the intersection types. for (size_t i_seg = 0; i_seg < out.segs.size(); ++ i_seg) { SegmentedIntersectionLine &sil = out.segs[i_seg]; // Sort the intersection points using exact rational arithmetic. std::sort(sil.intersections.begin(), sil.intersections.end()); #ifdef _DEBUG // Verify that the intersections are sorted along the haching direction. for (size_t i = 1; i < sil.intersections.size(); ++ i) { Point p1 = sil.intersections[i - 1].pos(); Point p2 = sil.intersections[i].pos(); int64_t d = sil.dir.cast().dot((p2 - p1).cast()); assert(d >= - int64_t(SCALED_EPSILON)); } #endif /* _DEBUG */ // Assign the intersection types, remove duplicate or overlapping intersection points. // When a loop vertex touches a vertical line, intersection point is generated for both segments. // If such two segments are oriented equally, then one of them is removed. // Otherwise the vertex is tangential to the vertical line and both segments are removed. // The same rule applies, if the loop is pinched into a single point and this point touches the vertical line: // The loop has a zero vertical size at the vertical line, therefore the intersection point is removed. size_t j = 0; for (size_t i = 0; i < sil.intersections.size(); ++ i) { // What is the orientation of the segment at the intersection point? size_t iContour = sil.intersections[i].iContour; const Points &contour = poly_with_offset.contour(iContour).points; size_t iSegment = sil.intersections[i].iSegment; size_t iPrev = ((iSegment == 0) ? contour.size() : iSegment) - 1; int dir = int128::cross(contour[iSegment] - contour[iPrev], sil.dir); bool low = dir > 0; sil.intersections[i].type = poly_with_offset.is_contour_outer(iContour) ? (low ? SegmentIntersection::OUTER_LOW : SegmentIntersection::OUTER_HIGH) : (low ? SegmentIntersection::INNER_LOW : SegmentIntersection::INNER_HIGH); if (j > 0 && sil.intersections[i].iContour == sil.intersections[j-1].iContour) { // Two successive intersection points on a vertical line with the same contour. This may be a special case. if (sil.intersections[i] == sil.intersections[j-1]) { // Two successive segments meet exactly at the vertical line. #ifdef SLIC3R_DEBUG // Verify that the segments of sil.intersections[i] and sil.intersections[j-1] are adjoint. size_t iSegment2 = sil.intersections[j-1].iSegment; size_t iPrev2 = ((iSegment2 == 0) ? contour.size() : iSegment2) - 1; assert(iSegment == iPrev2 || iSegment2 == iPrev); #endif /* SLIC3R_DEBUG */ if (sil.intersections[i].type == sil.intersections[j-1].type) { // Two successive segments of the same direction (both to the right or both to the left) // meet exactly at the vertical line. // Remove the second intersection point. } else { // This is a loop returning to the same point. // It may as well be a vertex of a loop touching this vertical line. // Remove both the lines. -- j; } } else if (sil.intersections[i].type == sil.intersections[j-1].type) { // Two non successive segments of the same direction (both to the right or both to the left) // meet exactly at the vertical line. That means there is a Z shaped path, where the center segment // of the Z shaped path is aligned with this vertical line. // Remove one of the intersection points while maximizing the vertical segment length. if (low) { // Remove the second intersection point, keep the first intersection point. } else { // Remove the first intersection point, keep the second intersection point. sil.intersections[j-1] = sil.intersections[i]; } } else { // Vertical line intersects a contour segment at a general position (not at one of its end points). // or the contour just touches this vertical line with a vertical segment or a sequence of vertical segments. // Keep both intersection points. if (j < i) sil.intersections[j] = sil.intersections[i]; ++ j; } } else { // Vertical line intersects a contour segment at a general position (not at one of its end points). if (j < i) sil.intersections[j] = sil.intersections[i]; ++ j; } } // Shrink the list of intersections, if any of the intersection was removed during the classification. if (j < sil.intersections.size()) sil.intersections.erase(sil.intersections.begin() + j, sil.intersections.end()); } // Verify the segments. If something is wrong, give up. #define ASSERT_OR_RETURN(CONDITION) do { assert(CONDITION); if (! (CONDITION)) return false; } while (0) #ifdef _MSC_VER #pragma warning(push) #pragma warning(disable: 4127) #endif for (size_t i_seg = 0; i_seg < out.segs.size(); ++ i_seg) { SegmentedIntersectionLine &sil = out.segs[i_seg]; // The intersection points have to be even. ASSERT_OR_RETURN((sil.intersections.size() & 1) == 0); for (size_t i = 0; i < sil.intersections.size();) { // An intersection segment crossing the bigger contour may cross the inner offsetted contour even number of times. ASSERT_OR_RETURN(sil.intersections[i].type == SegmentIntersection::OUTER_LOW); size_t j = i + 1; ASSERT_OR_RETURN(j < sil.intersections.size()); ASSERT_OR_RETURN(sil.intersections[j].type == SegmentIntersection::INNER_LOW || sil.intersections[j].type == SegmentIntersection::OUTER_HIGH); for (; j < sil.intersections.size() && sil.intersections[j].is_inner(); ++ j) ; ASSERT_OR_RETURN(j < sil.intersections.size()); ASSERT_OR_RETURN((j & 1) == 1); ASSERT_OR_RETURN(sil.intersections[j].type == SegmentIntersection::OUTER_HIGH); ASSERT_OR_RETURN(i + 1 == j || sil.intersections[j - 1].type == SegmentIntersection::INNER_HIGH); i = j + 1; } } #undef ASSERT_OR_RETURN #ifdef _MSC_VER #pragma warning(push) #endif /* _MSC_VER */ #ifdef SLIC3R_DEBUG // Paint the segments and finalize the SVG file. for (size_t i_seg = 0; i_seg < out.segs.size(); ++ i_seg) { SegmentedIntersectionLine &sil = out.segs[i_seg]; for (size_t i = 0; i < sil.intersections.size();) { size_t j = i + 1; for (; j < sil.intersections.size() && sil.intersections[j].is_inner(); ++ j) ; if (i + 1 == j) { svg.draw(Line(sil.intersections[i ].pos(), sil.intersections[j ].pos()), "blue"); } else { svg.draw(Line(sil.intersections[i ].pos(), sil.intersections[i+1].pos()), "green"); svg.draw(Line(sil.intersections[i+1].pos(), sil.intersections[j-1].pos()), (j - i + 1 > 4) ? "yellow" : "magenta"); svg.draw(Line(sil.intersections[j-1].pos(), sil.intersections[j ].pos()), "green"); } i = j + 1; } } svg.Close(); #endif /* SLIC3R_DEBUG */ return true; } /****************************************************************** Legacy code, to be replaced by a graph algorithm ******************************************************************/ // Having a segment of a closed polygon, calculate its Euclidian length. // The segment indices seg1 and seg2 signify an end point of an edge in the forward direction of the loop, // therefore the point p1 lies on poly.points[seg1-1], poly.points[seg1] etc. static inline coordf_t segment_length(const Polygon &poly, size_t seg1, const Point &p1, size_t seg2, const Point &p2) { #ifdef SLIC3R_DEBUG // Verify that p1 lies on seg1. This is difficult to verify precisely, // but at least verify, that p1 lies in the bounding box of seg1. for (size_t i = 0; i < 2; ++ i) { size_t seg = (i == 0) ? seg1 : seg2; Point px = (i == 0) ? p1 : p2; Point pa = poly.points[((seg == 0) ? poly.points.size() : seg) - 1]; Point pb = poly.points[seg]; if (pa(0) > pb(0)) std::swap(pa(0), pb(0)); if (pa(1) > pb(1)) std::swap(pa(1), pb(1)); assert(px(0) >= pa(0) && px(0) <= pb(0)); assert(px(1) >= pa(1) && px(1) <= pb(1)); } #endif /* SLIC3R_DEBUG */ const Point *pPrev = &p1; const Point *pThis = NULL; coordf_t len = 0; if (seg1 <= seg2) { for (size_t i = seg1; i < seg2; ++ i, pPrev = pThis) len += (*pPrev - *(pThis = &poly.points[i])).cast().norm(); } else { for (size_t i = seg1; i < poly.points.size(); ++ i, pPrev = pThis) len += (*pPrev - *(pThis = &poly.points[i])).cast().norm(); for (size_t i = 0; i < seg2; ++ i, pPrev = pThis) len += (*pPrev - *(pThis = &poly.points[i])).cast().norm(); } len += (*pPrev - p2).cast().norm(); return len; } // Append a segment of a closed polygon to a polyline. // The segment indices seg1 and seg2 signify an end point of an edge in the forward direction of the loop. // Only insert intermediate points between seg1 and seg2. static inline void polygon_segment_append(Points &out, const Polygon &polygon, size_t seg1, size_t seg2) { if (seg1 == seg2) { // Nothing to append from this segment. } else if (seg1 < seg2) { // Do not append a point pointed to by seg2. out.insert(out.end(), polygon.points.begin() + seg1, polygon.points.begin() + seg2); } else { out.reserve(out.size() + seg2 + polygon.points.size() - seg1); out.insert(out.end(), polygon.points.begin() + seg1, polygon.points.end()); // Do not append a point pointed to by seg2. out.insert(out.end(), polygon.points.begin(), polygon.points.begin() + seg2); } } // Append a segment of a closed polygon to a polyline. // The segment indices seg1 and seg2 signify an end point of an edge in the forward direction of the loop, // but this time the segment is traversed backward. // Only insert intermediate points between seg1 and seg2. static inline void polygon_segment_append_reversed(Points &out, const Polygon &polygon, size_t seg1, size_t seg2) { if (seg1 >= seg2) { out.reserve(seg1 - seg2); for (size_t i = seg1; i > seg2; -- i) out.push_back(polygon.points[i - 1]); } else { // it could be, that seg1 == seg2. In that case, append the complete loop. out.reserve(out.size() + seg2 + polygon.points.size() - seg1); for (size_t i = seg1; i > 0; -- i) out.push_back(polygon.points[i - 1]); for (size_t i = polygon.points.size(); i > seg2; -- i) out.push_back(polygon.points[i - 1]); } } static inline int distance_of_segmens(const Polygon &poly, size_t seg1, size_t seg2, bool forward) { int d = int(seg2) - int(seg1); if (! forward) d = - d; if (d < 0) d += int(poly.points.size()); return d; } // For a vertical line, an inner contour and an intersection point, // find an intersection point on the previous resp. next vertical line. // The intersection point is connected with the prev resp. next intersection point with iInnerContour. // Return -1 if there is no such point on the previous resp. next vertical line. static inline int intersection_on_prev_next_vertical_line( const ExPolygonWithOffset &poly_with_offset, const std::vector &segs, size_t iVerticalLine, size_t iInnerContour, size_t iIntersection, bool dir_is_next) { size_t iVerticalLineOther = iVerticalLine; if (dir_is_next) { if (++ iVerticalLineOther == segs.size()) // No successive vertical line. return -1; } else if (iVerticalLineOther -- == 0) { // No preceding vertical line. return -1; } const SegmentedIntersectionLine &il = segs[iVerticalLine]; const SegmentIntersection &itsct = il.intersections[iIntersection]; const SegmentedIntersectionLine &il2 = segs[iVerticalLineOther]; const Polygon &poly = poly_with_offset.contour(iInnerContour); // const bool ccw = poly_with_offset.is_contour_ccw(iInnerContour); const bool forward = itsct.is_low() == dir_is_next; // Resulting index of an intersection point on il2. int out = -1; // Find an intersection point on iVerticalLineOther, intersecting iInnerContour // at the same orientation as iIntersection, and being closest to iIntersection // in the number of contour segments, when following the direction of the contour. int dmin = std::numeric_limits::max(); for (size_t i = 0; i < il2.intersections.size(); ++ i) { const SegmentIntersection &itsct2 = il2.intersections[i]; if (itsct.iContour == itsct2.iContour && itsct.type == itsct2.type) { /* if (itsct.is_low()) { assert(itsct.type == SegmentIntersection::INNER_LOW); assert(iIntersection > 0); assert(il.intersections[iIntersection-1].type == SegmentIntersection::OUTER_LOW); assert(i > 0); if (il2.intersections[i-1].is_inner()) // Take only the lowest inner intersection point. continue; assert(il2.intersections[i-1].type == SegmentIntersection::OUTER_LOW); } else { assert(itsct.type == SegmentIntersection::INNER_HIGH); assert(iIntersection+1 < il.intersections.size()); assert(il.intersections[iIntersection+1].type == SegmentIntersection::OUTER_HIGH); assert(i+1 < il2.intersections.size()); if (il2.intersections[i+1].is_inner()) // Take only the highest inner intersection point. continue; assert(il2.intersections[i+1].type == SegmentIntersection::OUTER_HIGH); } */ // The intersection points lie on the same contour and have the same orientation. // Find the intersection point with a shortest path in the direction of the contour. int d = distance_of_segmens(poly, itsct.iSegment, itsct2.iSegment, forward); if (d < dmin) { out = i; dmin = d; } } } //FIXME this routine is not asymptotic optimal, it will be slow if there are many intersection points along the line. return out; } static inline int intersection_on_prev_vertical_line( const ExPolygonWithOffset &poly_with_offset, const std::vector &segs, size_t iVerticalLine, size_t iInnerContour, size_t iIntersection) { return intersection_on_prev_next_vertical_line(poly_with_offset, segs, iVerticalLine, iInnerContour, iIntersection, false); } static inline int intersection_on_next_vertical_line( const ExPolygonWithOffset &poly_with_offset, const std::vector &segs, size_t iVerticalLine, size_t iInnerContour, size_t iIntersection) { return intersection_on_prev_next_vertical_line(poly_with_offset, segs, iVerticalLine, iInnerContour, iIntersection, true); } enum IntersectionTypeOtherVLine { // There is no connection point on the other vertical line. INTERSECTION_TYPE_OTHER_VLINE_UNDEFINED = -1, // Connection point on the other vertical segment was found // and it could be followed. INTERSECTION_TYPE_OTHER_VLINE_OK = 0, // The connection segment connects to a middle of a vertical segment. // Cannot follow. INTERSECTION_TYPE_OTHER_VLINE_INNER, // Cannot extend the contor to this intersection point as either the connection segment // or the succeeding vertical segment were already consumed. INTERSECTION_TYPE_OTHER_VLINE_CONSUMED, // Not the first intersection along the contor. This intersection point // has been preceded by an intersection point along the vertical line. INTERSECTION_TYPE_OTHER_VLINE_NOT_FIRST, }; // Find an intersection on a previous line, but return -1, if the connecting segment of a perimeter was already extruded. static inline IntersectionTypeOtherVLine intersection_type_on_prev_next_vertical_line( const std::vector &segs, size_t iVerticalLine, size_t iIntersection, size_t iIntersectionOther, bool dir_is_next) { // This routine will propose a connecting line even if the connecting perimeter segment intersects // iVertical line multiple times before reaching iIntersectionOther. if (iIntersectionOther == -1) return INTERSECTION_TYPE_OTHER_VLINE_UNDEFINED; assert(dir_is_next ? (iVerticalLine + 1 < segs.size()) : (iVerticalLine > 0)); const SegmentedIntersectionLine &il_this = segs[iVerticalLine]; const SegmentIntersection &itsct_this = il_this.intersections[iIntersection]; const SegmentedIntersectionLine &il_other = segs[dir_is_next ? (iVerticalLine+1) : (iVerticalLine-1)]; const SegmentIntersection &itsct_other = il_other.intersections[iIntersectionOther]; assert(itsct_other.is_inner()); assert(iIntersectionOther > 0); assert(iIntersectionOther + 1 < il_other.intersections.size()); // Is iIntersectionOther at the boundary of a vertical segment? const SegmentIntersection &itsct_other2 = il_other.intersections[itsct_other.is_low() ? iIntersectionOther - 1 : iIntersectionOther + 1]; if (itsct_other2.is_inner()) // Cannot follow a perimeter segment into the middle of another vertical segment. // Only perimeter segments connecting to the end of a vertical segment are followed. return INTERSECTION_TYPE_OTHER_VLINE_INNER; assert(itsct_other.is_low() == itsct_other2.is_low()); if (dir_is_next ? itsct_this.consumed_perimeter_right : itsct_other.consumed_perimeter_right) // This perimeter segment was already consumed. return INTERSECTION_TYPE_OTHER_VLINE_CONSUMED; if (itsct_other.is_low() ? itsct_other.consumed_vertical_up : il_other.intersections[iIntersectionOther-1].consumed_vertical_up) // This vertical segment was already consumed. return INTERSECTION_TYPE_OTHER_VLINE_CONSUMED; return INTERSECTION_TYPE_OTHER_VLINE_OK; } static inline IntersectionTypeOtherVLine intersection_type_on_prev_vertical_line( const std::vector &segs, size_t iVerticalLine, size_t iIntersection, size_t iIntersectionPrev) { return intersection_type_on_prev_next_vertical_line(segs, iVerticalLine, iIntersection, iIntersectionPrev, false); } static inline IntersectionTypeOtherVLine intersection_type_on_next_vertical_line( const std::vector &segs, size_t iVerticalLine, size_t iIntersection, size_t iIntersectionNext) { return intersection_type_on_prev_next_vertical_line(segs, iVerticalLine, iIntersection, iIntersectionNext, true); } // Measure an Euclidian length of a perimeter segment when going from iIntersection to iIntersection2. static inline coordf_t measure_perimeter_prev_next_segment_length( const ExPolygonWithOffset &poly_with_offset, const std::vector &segs, size_t iVerticalLine, size_t iInnerContour, size_t iIntersection, size_t iIntersection2, bool dir_is_next) { size_t iVerticalLineOther = iVerticalLine; if (dir_is_next) { if (++ iVerticalLineOther == segs.size()) // No successive vertical line. return coordf_t(-1); } else if (iVerticalLineOther -- == 0) { // No preceding vertical line. return coordf_t(-1); } const SegmentedIntersectionLine &il = segs[iVerticalLine]; const SegmentIntersection &itsct = il.intersections[iIntersection]; const SegmentedIntersectionLine &il2 = segs[iVerticalLineOther]; const SegmentIntersection &itsct2 = il2.intersections[iIntersection2]; const Polygon &poly = poly_with_offset.contour(iInnerContour); // const bool ccw = poly_with_offset.is_contour_ccw(iInnerContour); assert(itsct.type == itsct2.type); assert(itsct.iContour == itsct2.iContour); assert(itsct.is_inner()); const bool forward = itsct.is_low() == dir_is_next; Point p1 = itsct.pos(); Point p2 = itsct2.pos(); return forward ? segment_length(poly, itsct .iSegment, p1, itsct2.iSegment, p2) : segment_length(poly, itsct2.iSegment, p2, itsct .iSegment, p1); } static inline coordf_t measure_perimeter_prev_segment_length( const ExPolygonWithOffset &poly_with_offset, const std::vector &segs, size_t iVerticalLine, size_t iInnerContour, size_t iIntersection, size_t iIntersection2) { return measure_perimeter_prev_next_segment_length(poly_with_offset, segs, iVerticalLine, iInnerContour, iIntersection, iIntersection2, false); } static inline coordf_t measure_perimeter_next_segment_length( const ExPolygonWithOffset &poly_with_offset, const std::vector &segs, size_t iVerticalLine, size_t iInnerContour, size_t iIntersection, size_t iIntersection2) { return measure_perimeter_prev_next_segment_length(poly_with_offset, segs, iVerticalLine, iInnerContour, iIntersection, iIntersection2, true); } // Append the points of a perimeter segment when going from iIntersection to iIntersection2. // The first point (the point of iIntersection) will not be inserted, // the last point will be inserted. static inline void emit_perimeter_prev_next_segment( const ExPolygonWithOffset &poly_with_offset, const std::vector &segs, size_t iVerticalLine, size_t iInnerContour, size_t iIntersection, size_t iIntersection2, Polyline &out, bool dir_is_next) { size_t iVerticalLineOther = iVerticalLine; if (dir_is_next) { ++ iVerticalLineOther; assert(iVerticalLineOther < segs.size()); } else { assert(iVerticalLineOther > 0); -- iVerticalLineOther; } const SegmentedIntersectionLine &il = segs[iVerticalLine]; const SegmentIntersection &itsct = il.intersections[iIntersection]; const SegmentedIntersectionLine &il2 = segs[iVerticalLineOther]; const SegmentIntersection &itsct2 = il2.intersections[iIntersection2]; const Polygon &poly = poly_with_offset.contour(iInnerContour); // const bool ccw = poly_with_offset.is_contour_ccw(iInnerContour); assert(itsct.type == itsct2.type); assert(itsct.iContour == itsct2.iContour); assert(itsct.is_inner()); const bool forward = itsct.is_low() == dir_is_next; // Do not append the first point. // out.points.push_back(Point(il.pos, itsct.pos)); if (forward) polygon_segment_append(out.points, poly, itsct.iSegment, itsct2.iSegment); else polygon_segment_append_reversed(out.points, poly, itsct.iSegment, itsct2.iSegment); // Append the last point. out.points.push_back(itsct2.pos()); } static inline coordf_t measure_perimeter_segment_on_vertical_line_length( const ExPolygonWithOffset &poly_with_offset, const std::vector &segs, size_t iVerticalLine, size_t iInnerContour, size_t iIntersection, size_t iIntersection2, bool forward) { const SegmentedIntersectionLine &il = segs[iVerticalLine]; const SegmentIntersection &itsct = il.intersections[iIntersection]; const SegmentIntersection &itsct2 = il.intersections[iIntersection2]; const Polygon &poly = poly_with_offset.contour(iInnerContour); assert(itsct.is_inner()); assert(itsct2.is_inner()); assert(itsct.type != itsct2.type); assert(itsct.iContour == iInnerContour); assert(itsct.iContour == itsct2.iContour); return forward ? segment_length(poly, itsct .iSegment, itsct.pos(), itsct2.iSegment, itsct2.pos()) : segment_length(poly, itsct2.iSegment, itsct2.pos(), itsct .iSegment, itsct.pos()); } // Append the points of a perimeter segment when going from iIntersection to iIntersection2. // The first point (the point of iIntersection) will not be inserted, // the last point will be inserted. static inline void emit_perimeter_segment_on_vertical_line( const ExPolygonWithOffset &poly_with_offset, const std::vector &segs, size_t iVerticalLine, size_t iInnerContour, size_t iIntersection, size_t iIntersection2, Polyline &out, bool forward) { const SegmentedIntersectionLine &il = segs[iVerticalLine]; const SegmentIntersection &itsct = il.intersections[iIntersection]; const SegmentIntersection &itsct2 = il.intersections[iIntersection2]; const Polygon &poly = poly_with_offset.contour(iInnerContour); assert(itsct.is_inner()); assert(itsct2.is_inner()); assert(itsct.type != itsct2.type); assert(itsct.iContour == iInnerContour); assert(itsct.iContour == itsct2.iContour); // Do not append the first point. // out.points.push_back(Point(il.pos, itsct.pos)); if (forward) polygon_segment_append(out.points, poly, itsct.iSegment, itsct2.iSegment); else polygon_segment_append_reversed(out.points, poly, itsct.iSegment, itsct2.iSegment); // Append the last point. out.points.push_back(itsct2.pos()); } //TBD: For precise infill, measure the area of a slab spanned by an infill line. /* static inline float measure_outer_contour_slab( const ExPolygonWithOffset &poly_with_offset, const std::vector &segs, size_t i_vline, size_t iIntersection) { const SegmentedIntersectionLine &il = segs[i_vline]; const SegmentIntersection &itsct = il.intersections[i_vline]; const SegmentIntersection &itsct2 = il.intersections[iIntersection2]; const Polygon &poly = poly_with_offset.contour((itsct.iContour); assert(itsct.is_outer()); assert(itsct2.is_outer()); assert(itsct.type != itsct2.type); assert(itsct.iContour == itsct2.iContour); if (! itsct.is_outer() || ! itsct2.is_outer() || itsct.type == itsct2.type || itsct.iContour != itsct2.iContour) // Error, return zero area. return 0.f; // Find possible connection points on the previous / next vertical line. int iPrev = intersection_on_prev_vertical_line(poly_with_offset, segs, i_vline, itsct.iContour, i_intersection); int iNext = intersection_on_next_vertical_line(poly_with_offset, segs, i_vline, itsct.iContour, i_intersection); // Find possible connection points on the same vertical line. int iAbove = iBelow = -1; // Does the perimeter intersect the current vertical line above intrsctn? for (size_t i = i_intersection + 1; i + 1 < seg.intersections.size(); ++ i) if (seg.intersections[i].iContour == itsct.iContour) { iAbove = i; break; } // Does the perimeter intersect the current vertical line below intrsctn? for (int i = int(i_intersection) - 1; i > 0; -- i) if (seg.intersections[i].iContour == itsct.iContour) { iBelow = i; break; } if (iSegAbove != -1 && seg.intersections[iAbove].type == SegmentIntersection::OUTER_HIGH) { // Invalidate iPrev resp. iNext, if the perimeter crosses the current vertical line earlier than iPrev resp. iNext. // The perimeter contour orientation. const Polygon &poly = poly_with_offset.contour(itsct.iContour); { int d_horiz = (iPrev == -1) ? std::numeric_limits::max() : distance_of_segmens(poly, segs[i_vline-1].intersections[iPrev].iSegment, itsct.iSegment, true); int d_down = (iBelow == -1) ? std::numeric_limits::max() : distance_of_segmens(poly, iSegBelow, itsct.iSegment, true); int d_up = (iAbove == -1) ? std::numeric_limits::max() : distance_of_segmens(poly, iSegAbove, itsct.iSegment, true); if (intrsctn_type_prev == INTERSECTION_TYPE_OTHER_VLINE_OK && d_horiz > std::min(d_down, d_up)) // The vertical crossing comes eralier than the prev crossing. // Disable the perimeter going back. intrsctn_type_prev = INTERSECTION_TYPE_OTHER_VLINE_NOT_FIRST; if (d_up > std::min(d_horiz, d_down)) // The horizontal crossing comes earlier than the vertical crossing. vert_seg_dir_valid_mask &= ~DIR_BACKWARD; } { int d_horiz = (iNext == -1) ? std::numeric_limits::max() : distance_of_segmens(poly, itsct.iSegment, segs[i_vline+1].intersections[iNext].iSegment, true); int d_down = (iSegBelow == -1) ? std::numeric_limits::max() : distance_of_segmens(poly, itsct.iSegment, iSegBelow, true); int d_up = (iSegAbove == -1) ? std::numeric_limits::max() : distance_of_segmens(poly, itsct.iSegment, iSegAbove, true); if (d_up > std::min(d_horiz, d_down)) // The horizontal crossing comes earlier than the vertical crossing. vert_seg_dir_valid_mask &= ~DIR_FORWARD; } } } */ enum DirectionMask { DIR_FORWARD = 1, DIR_BACKWARD = 2 }; // For the rectilinear, grid, triangles, stars and cubic pattern fill one InfillHatchingSingleDirection structure // for each infill direction. The segments stored in InfillHatchingSingleDirection will then form a graph of candidate // paths to be extruded. static bool fill_hatching_segments_legacy( // Input geometry to be hatch, containing two concentric contours for each input contour. const ExPolygonWithOffset &poly_with_offset, // fill density, dont_adjust const FillParams ¶ms, const coord_t link_max_length, // Resulting straight segments of the infill graph. InfillHatchingSingleDirection &hatching, Polylines &polylines_out) { // At the end, only the new polylines will be rotated back. size_t n_polylines_out_initial = polylines_out.size(); std::vector &segs = hatching.segs; // For each outer only chords, measure their maximum distance to the bow of the outer contour. // Mark an outer only chord as consumed, if the distance is low. for (size_t i_vline = 0; i_vline < segs.size(); ++ i_vline) { SegmentedIntersectionLine &seg = segs[i_vline]; for (size_t i_intersection = 0; i_intersection + 1 < seg.intersections.size(); ++ i_intersection) { if (seg.intersections[i_intersection].type == SegmentIntersection::OUTER_LOW && seg.intersections[i_intersection+1].type == SegmentIntersection::OUTER_HIGH) { bool consumed = false; // if (params.full_infill()) { // measure_outer_contour_slab(poly_with_offset, segs, i_vline, i_ntersection); // } else consumed = true; seg.intersections[i_intersection].consumed_vertical_up = consumed; } } } // Now construct a graph. // Find the first point. // Naively one would expect to achieve best results by chaining the paths by the shortest distance, // but that procedure does not create the longest continuous paths. // A simple "sweep left to right" procedure achieves better results. size_t i_vline = 0; size_t i_intersection = size_t(-1); // Follow the line, connect the lines into a graph. // Until no new line could be added to the output path: Point pointLast; Polyline *polyline_current = NULL; if (! polylines_out.empty()) pointLast = polylines_out.back().points.back(); for (;;) { if (i_intersection == size_t(-1)) { // The path has been interrupted. Find a next starting point, closest to the previous extruder position. coordf_t dist2min = std::numeric_limits().max(); for (size_t i_vline2 = 0; i_vline2 < segs.size(); ++ i_vline2) { const SegmentedIntersectionLine &seg = segs[i_vline2]; if (! seg.intersections.empty()) { assert(seg.intersections.size() > 1); // Even number of intersections with the loops. assert((seg.intersections.size() & 1) == 0); assert(seg.intersections.front().type == SegmentIntersection::OUTER_LOW); for (size_t i = 0; i < seg.intersections.size(); ++ i) { const SegmentIntersection &intrsctn = seg.intersections[i]; if (intrsctn.is_outer()) { assert(intrsctn.is_low() || i > 0); bool consumed = intrsctn.is_low() ? intrsctn.consumed_vertical_up : seg.intersections[i-1].consumed_vertical_up; if (! consumed) { coordf_t dist2 = (intrsctn.pos() - pointLast).cast().norm(); if (dist2 < dist2min) { dist2min = dist2; i_vline = i_vline2; i_intersection = i; //FIXME We are taking the first left point always. Verify, that the caller chains the paths // by a shortest distance, while reversing the paths if needed. //if (polylines_out.empty()) // Initial state, take the first line, which is the first from the left. goto found; } } } } } } if (i_intersection == size_t(-1)) // We are finished. break; found: // Start a new path. polylines_out.push_back(Polyline()); polyline_current = &polylines_out.back(); // Emit the first point of a path. pointLast = segs[i_vline].intersections[i_intersection].pos(); polyline_current->points.push_back(pointLast); } // From the initial point (i_vline, i_intersection), follow a path. SegmentedIntersectionLine &seg = segs[i_vline]; SegmentIntersection *intrsctn = &seg.intersections[i_intersection]; bool going_up = intrsctn->is_low(); bool try_connect = false; if (going_up) { assert(! intrsctn->consumed_vertical_up); assert(i_intersection + 1 < seg.intersections.size()); // Step back to the beginning of the vertical segment to mark it as consumed. if (intrsctn->is_inner()) { assert(i_intersection > 0); -- intrsctn; -- i_intersection; } // Consume the complete vertical segment up to the outer contour. do { intrsctn->consumed_vertical_up = true; ++ intrsctn; ++ i_intersection; assert(i_intersection < seg.intersections.size()); } while (intrsctn->type != SegmentIntersection::OUTER_HIGH); if ((intrsctn - 1)->is_inner()) { // Step back. -- intrsctn; -- i_intersection; assert(intrsctn->type == SegmentIntersection::INNER_HIGH); try_connect = true; } } else { // Going down. assert(intrsctn->is_high()); assert(i_intersection > 0); assert(! (intrsctn - 1)->consumed_vertical_up); // Consume the complete vertical segment up to the outer contour. if (intrsctn->is_inner()) intrsctn->consumed_vertical_up = true; do { assert(i_intersection > 0); -- intrsctn; -- i_intersection; intrsctn->consumed_vertical_up = true; } while (intrsctn->type != SegmentIntersection::OUTER_LOW); if ((intrsctn + 1)->is_inner()) { // Step back. ++ intrsctn; ++ i_intersection; assert(intrsctn->type == SegmentIntersection::INNER_LOW); try_connect = true; } } if (try_connect) { // Decide, whether to finish the segment, or whether to follow the perimeter. // 1) Find possible connection points on the previous / next vertical line. int iPrev = intersection_on_prev_vertical_line(poly_with_offset, segs, i_vline, intrsctn->iContour, i_intersection); int iNext = intersection_on_next_vertical_line(poly_with_offset, segs, i_vline, intrsctn->iContour, i_intersection); IntersectionTypeOtherVLine intrsctn_type_prev = intersection_type_on_prev_vertical_line(segs, i_vline, i_intersection, iPrev); IntersectionTypeOtherVLine intrsctn_type_next = intersection_type_on_next_vertical_line(segs, i_vline, i_intersection, iNext); // 2) Find possible connection points on the same vertical line. int iAbove = -1; int iBelow = -1; int iSegAbove = -1; int iSegBelow = -1; { SegmentIntersection::SegmentIntersectionType type_crossing = (intrsctn->type == SegmentIntersection::INNER_LOW) ? SegmentIntersection::INNER_HIGH : SegmentIntersection::INNER_LOW; // Does the perimeter intersect the current vertical line above intrsctn? for (size_t i = i_intersection + 1; i + 1 < seg.intersections.size(); ++ i) // if (seg.intersections[i].iContour == intrsctn->iContour && seg.intersections[i].type == type_crossing) { if (seg.intersections[i].iContour == intrsctn->iContour) { iAbove = i; iSegAbove = seg.intersections[i].iSegment; break; } // Does the perimeter intersect the current vertical line below intrsctn? for (size_t i = i_intersection - 1; i > 0; -- i) // if (seg.intersections[i].iContour == intrsctn->iContour && seg.intersections[i].type == type_crossing) { if (seg.intersections[i].iContour == intrsctn->iContour) { iBelow = i; iSegBelow = seg.intersections[i].iSegment; break; } } // 3) Sort the intersection points, clear iPrev / iNext / iSegBelow / iSegAbove, // if it is preceded by any other intersection point along the contour. unsigned int vert_seg_dir_valid_mask = (going_up ? (iSegAbove != -1 && seg.intersections[iAbove].type == SegmentIntersection::INNER_LOW) : (iSegBelow != -1 && seg.intersections[iBelow].type == SegmentIntersection::INNER_HIGH)) ? (DIR_FORWARD | DIR_BACKWARD) : 0; { // Invalidate iPrev resp. iNext, if the perimeter crosses the current vertical line earlier than iPrev resp. iNext. // The perimeter contour orientation. const bool forward = intrsctn->is_low(); // == poly_with_offset.is_contour_ccw(intrsctn->iContour); const Polygon &poly = poly_with_offset.contour(intrsctn->iContour); { int d_horiz = (iPrev == -1) ? std::numeric_limits::max() : distance_of_segmens(poly, segs[i_vline-1].intersections[iPrev].iSegment, intrsctn->iSegment, forward); int d_down = (iSegBelow == -1) ? std::numeric_limits::max() : distance_of_segmens(poly, iSegBelow, intrsctn->iSegment, forward); int d_up = (iSegAbove == -1) ? std::numeric_limits::max() : distance_of_segmens(poly, iSegAbove, intrsctn->iSegment, forward); if (intrsctn_type_prev == INTERSECTION_TYPE_OTHER_VLINE_OK && d_horiz > std::min(d_down, d_up)) // The vertical crossing comes eralier than the prev crossing. // Disable the perimeter going back. intrsctn_type_prev = INTERSECTION_TYPE_OTHER_VLINE_NOT_FIRST; if (going_up ? (d_up > std::min(d_horiz, d_down)) : (d_down > std::min(d_horiz, d_up))) // The horizontal crossing comes earlier than the vertical crossing. vert_seg_dir_valid_mask &= ~(forward ? DIR_BACKWARD : DIR_FORWARD); } { int d_horiz = (iNext == -1) ? std::numeric_limits::max() : distance_of_segmens(poly, intrsctn->iSegment, segs[i_vline+1].intersections[iNext].iSegment, forward); int d_down = (iSegBelow == -1) ? std::numeric_limits::max() : distance_of_segmens(poly, intrsctn->iSegment, iSegBelow, forward); int d_up = (iSegAbove == -1) ? std::numeric_limits::max() : distance_of_segmens(poly, intrsctn->iSegment, iSegAbove, forward); if (intrsctn_type_next == INTERSECTION_TYPE_OTHER_VLINE_OK && d_horiz > std::min(d_down, d_up)) // The vertical crossing comes eralier than the prev crossing. // Disable the perimeter going forward. intrsctn_type_next = INTERSECTION_TYPE_OTHER_VLINE_NOT_FIRST; if (going_up ? (d_up > std::min(d_horiz, d_down)) : (d_down > std::min(d_horiz, d_up))) // The horizontal crossing comes earlier than the vertical crossing. vert_seg_dir_valid_mask &= ~(forward ? DIR_FORWARD : DIR_BACKWARD); } } // 4) Try to connect to a previous or next vertical line, making a zig-zag pattern. if (intrsctn_type_prev == INTERSECTION_TYPE_OTHER_VLINE_OK || intrsctn_type_next == INTERSECTION_TYPE_OTHER_VLINE_OK) { coordf_t distPrev = (intrsctn_type_prev != INTERSECTION_TYPE_OTHER_VLINE_OK) ? std::numeric_limits::max() : measure_perimeter_prev_segment_length(poly_with_offset, segs, i_vline, intrsctn->iContour, i_intersection, iPrev); coordf_t distNext = (intrsctn_type_next != INTERSECTION_TYPE_OTHER_VLINE_OK) ? std::numeric_limits::max() : measure_perimeter_next_segment_length(poly_with_offset, segs, i_vline, intrsctn->iContour, i_intersection, iNext); // Take the shorter path. //FIXME this may not be always the best strategy to take the shortest connection line now. bool take_next = (intrsctn_type_prev == INTERSECTION_TYPE_OTHER_VLINE_OK && intrsctn_type_next == INTERSECTION_TYPE_OTHER_VLINE_OK) ? (distNext < distPrev) : intrsctn_type_next == INTERSECTION_TYPE_OTHER_VLINE_OK; assert(intrsctn->is_inner()); bool skip = params.dont_connect || (link_max_length > 0 && (take_next ? distNext : distPrev) > link_max_length); if (skip) { // Just skip the connecting contour and start a new path. goto dont_connect; polyline_current->points.push_back(intrsctn->pos()); polylines_out.push_back(Polyline()); polyline_current = &polylines_out.back(); const SegmentedIntersectionLine &il2 = segs[take_next ? (i_vline + 1) : (i_vline - 1)]; polyline_current->points.push_back(il2.intersections[take_next ? iNext : iPrev].pos()); } else { polyline_current->points.push_back(intrsctn->pos()); emit_perimeter_prev_next_segment(poly_with_offset, segs, i_vline, intrsctn->iContour, i_intersection, take_next ? iNext : iPrev, *polyline_current, take_next); } // Mark both the left and right connecting segment as consumed, because one cannot go to this intersection point as it has been consumed. if (iPrev != -1) segs[i_vline-1].intersections[iPrev].consumed_perimeter_right = true; if (iNext != -1) intrsctn->consumed_perimeter_right = true; //FIXME consume the left / right connecting segments at the other end of this line? Currently it is not critical because a perimeter segment is not followed if the vertical segment at the other side has already been consumed. // Advance to the neighbor line. if (take_next) { ++ i_vline; i_intersection = iNext; } else { -- i_vline; i_intersection = iPrev; } continue; } // 5) Try to connect to a previous or next point on the same vertical line. if (vert_seg_dir_valid_mask) { bool valid = true; // Verify, that there is no intersection with the inner contour up to the end of the contour segment. // Verify, that the successive segment has not been consumed yet. if (going_up) { if (seg.intersections[iAbove].consumed_vertical_up) { valid = false; } else { for (int i = (int)i_intersection + 1; i < iAbove && valid; ++i) if (seg.intersections[i].is_inner()) valid = false; } } else { if (seg.intersections[iBelow-1].consumed_vertical_up) { valid = false; } else { for (int i = iBelow + 1; i < (int)i_intersection && valid; ++i) if (seg.intersections[i].is_inner()) valid = false; } } if (valid) { const Polygon &poly = poly_with_offset.contour(intrsctn->iContour); int iNext = going_up ? iAbove : iBelow; int iSegNext = going_up ? iSegAbove : iSegBelow; bool dir_forward = (vert_seg_dir_valid_mask == (DIR_FORWARD | DIR_BACKWARD)) ? // Take the shorter length between the current and the next intersection point. (distance_of_segmens(poly, intrsctn->iSegment, iSegNext, true) < distance_of_segmens(poly, intrsctn->iSegment, iSegNext, false)) : (vert_seg_dir_valid_mask == DIR_FORWARD); // Skip this perimeter line? bool skip = params.dont_connect; if (! skip && link_max_length > 0) { coordf_t link_length = measure_perimeter_segment_on_vertical_line_length( poly_with_offset, segs, i_vline, intrsctn->iContour, i_intersection, iNext, dir_forward); skip = link_length > link_max_length; } polyline_current->points.push_back(intrsctn->pos()); if (skip) { // Just skip the connecting contour and start a new path. polylines_out.push_back(Polyline()); polyline_current = &polylines_out.back(); polyline_current->points.push_back(seg.intersections[iNext].pos()); } else { // Consume the connecting contour and the next segment. emit_perimeter_segment_on_vertical_line(poly_with_offset, segs, i_vline, intrsctn->iContour, i_intersection, iNext, *polyline_current, dir_forward); } // Mark both the left and right connecting segment as consumed, because one cannot go to this intersection point as it has been consumed. // If there are any outer intersection points skipped (bypassed) by the contour, // mark them as processed. if (going_up) { for (int i = (int)i_intersection; i < iAbove; ++ i) seg.intersections[i].consumed_vertical_up = true; } else { for (int i = iBelow; i < (int)i_intersection; ++ i) seg.intersections[i].consumed_vertical_up = true; } // seg.intersections[going_up ? i_intersection : i_intersection - 1].consumed_vertical_up = true; intrsctn->consumed_perimeter_right = true; i_intersection = iNext; if (going_up) ++ intrsctn; else -- intrsctn; intrsctn->consumed_perimeter_right = true; continue; } } dont_connect: // No way to continue the current polyline. Take the rest of the line up to the outer contour. // This will finish the polyline, starting another polyline at a new point. if (going_up) ++ intrsctn; else -- intrsctn; } // Finish the current vertical line, // reset the current vertical line to pick a new starting point in the next round. assert(intrsctn->is_outer()); assert(intrsctn->is_high() == going_up); pointLast = intrsctn->pos(); polyline_current->points.push_back(pointLast); // Handle duplicate points and zero length segments. polyline_current->remove_duplicate_points(); assert(! polyline_current->has_duplicate_points()); // Handle nearly zero length edges. if (polyline_current->points.size() <= 1 || (polyline_current->points.size() == 2 && std::abs(polyline_current->points.front()(0) - polyline_current->points.back()(0)) < SCALED_EPSILON && std::abs(polyline_current->points.front()(1) - polyline_current->points.back()(1)) < SCALED_EPSILON)) polylines_out.pop_back(); intrsctn = NULL; i_intersection = -1; polyline_current = NULL; } #ifdef SLIC3R_DEBUG { static int iRun = 0; BoundingBox bbox_svg = poly_with_offset.bounding_box_outer(); { ::Slic3r::SVG svg(debug_out_path("FillRectilinear2-final-%03d.svg", iRun), bbox_svg); // , scale_(1.)); poly_with_offset.export_to_svg(svg); for (size_t i = n_polylines_out_initial; i < polylines_out.size(); ++ i) svg.draw(polylines_out[i].lines(), "black"); } // Paint a picture per polyline. This makes it easier to discover the order of the polylines and their overlap. for (size_t i_polyline = n_polylines_out_initial; i_polyline < polylines_out.size(); ++ i_polyline) { ::Slic3r::SVG svg(debug_out_path("FillRectilinear2-final-%03d-%03d.svg", iRun, i_polyline), bbox_svg); // , scale_(1.)); svg.draw(polylines_out[i_polyline].lines(), "black"); } } #endif /* SLIC3R_DEBUG */ // paths must be rotated back for (Polylines::iterator it = polylines_out.begin() + n_polylines_out_initial; it != polylines_out.end(); ++ it) { // No need to translate, the absolute position is irrelevant. // it->translate(- rotate_vector.second(0), - rotate_vector.second(1)); assert(! it->has_duplicate_points()); //it->rotate(rotate_vector.first); //FIXME rather simplify the paths to avoid very short edges? //assert(! it->has_duplicate_points()); it->remove_duplicate_points(); } #ifdef SLIC3R_DEBUG // Verify, that there are no duplicate points in the sequence. for (Polyline &polyline : polylines_out) assert(! polyline.has_duplicate_points()); #endif /* SLIC3R_DEBUG */ return true; } }; // namespace FillRectilinear3_Internal bool FillRectilinear3::fill_surface_by_lines(const Surface *surface, const FillParams ¶ms, std::vector &fill_dir_params, Polylines &polylines_out) { assert(params.density > 0.0001f && params.density <= 1.f); const float INFILL_OVERLAP_OVER_SPACING = 0.45f; assert(INFILL_OVERLAP_OVER_SPACING > 0 && INFILL_OVERLAP_OVER_SPACING < 0.5f); // On the polygons of poly_with_offset, the infill lines will be connected. FillRectilinear3_Internal::ExPolygonWithOffset poly_with_offset( surface->expolygon, float(scale_(- (0.5 - INFILL_OVERLAP_OVER_SPACING) * this->spacing)), float(scale_(- 0.5 * this->spacing))); if (poly_with_offset.n_contours_inner == 0) { // Not a single infill line fits. //FIXME maybe one shall trigger the gap fill here? return true; } // Rotate polygons so that we can work with vertical lines here std::pair rotate_vector = this->_infill_direction(surface); std::vector hatching(fill_dir_params.size(), FillRectilinear3_Internal::InfillHatchingSingleDirection()); for (size_t i = 0; i < hatching.size(); ++ i) if (! FillRectilinear3_Internal::prepare_infill_hatching_segments(poly_with_offset, params, fill_dir_params[i], rotate_vector, hatching[i])) return false; for (size_t i = 0; i < hatching.size(); ++ i) if (! FillRectilinear3_Internal::fill_hatching_segments_legacy( poly_with_offset, params, this->link_max_length, hatching[i], polylines_out)) return false; return true; } Polylines FillRectilinear3::fill_surface(const Surface *surface, const FillParams ¶ms) { Polylines polylines_out; std::vector fill_dir_params; fill_dir_params.emplace_back(FillDirParams(this->spacing, 0.f)); if (! fill_surface_by_lines(surface, params, fill_dir_params, polylines_out)) printf("FillRectilinear3::fill_surface() failed to fill a region.\n"); if (params.full_infill() && ! params.dont_adjust) // Return back the adjusted spacing. this->spacing = fill_dir_params.front().spacing; return polylines_out; } Polylines FillGrid3::fill_surface(const Surface *surface, const FillParams ¶ms) { // Each linear fill covers half of the target coverage. FillParams params2 = params; params2.density *= 0.5f; Polylines polylines_out; std::vector fill_dir_params; fill_dir_params.emplace_back(FillDirParams(this->spacing, 0.f)); fill_dir_params.emplace_back(FillDirParams(this->spacing, float(M_PI / 2.))); if (! fill_surface_by_lines(surface, params2, fill_dir_params, polylines_out)) printf("FillGrid3::fill_surface() failed to fill a region.\n"); return polylines_out; } Polylines FillTriangles3::fill_surface(const Surface *surface, const FillParams ¶ms) { // Each linear fill covers 1/3 of the target coverage. FillParams params2 = params; params2.density *= 0.333333333f; Polylines polylines_out; std::vector fill_dir_params; fill_dir_params.emplace_back(FillDirParams(this->spacing, 0.)); fill_dir_params.emplace_back(FillDirParams(this->spacing, M_PI / 3.)); fill_dir_params.emplace_back(FillDirParams(this->spacing, 2. * M_PI / 3.)); if (! fill_surface_by_lines(surface, params2, fill_dir_params, polylines_out)) printf("FillTriangles3::fill_surface() failed to fill a region.\n"); return polylines_out; } Polylines FillStars3::fill_surface(const Surface *surface, const FillParams ¶ms) { // Each linear fill covers 1/3 of the target coverage. FillParams params2 = params; params2.density *= 0.333333333f; Polylines polylines_out; std::vector fill_dir_params; fill_dir_params.emplace_back(FillDirParams(this->spacing, 0.)); fill_dir_params.emplace_back(FillDirParams(this->spacing, M_PI / 3.)); fill_dir_params.emplace_back(FillDirParams(this->spacing, 2. * M_PI / 3., 0.5 * this->spacing / params2.density)); if (! fill_surface_by_lines(surface, params2, fill_dir_params, polylines_out)) printf("FillStars3::fill_surface() failed to fill a region.\n"); return polylines_out; } Polylines FillCubic3::fill_surface(const Surface *surface, const FillParams ¶ms) { // Each linear fill covers 1/3 of the target coverage. FillParams params2 = params; params2.density *= 0.333333333f; Polylines polylines_out; std::vector fill_dir_params; coordf_t dx = sqrt(0.5) * z; fill_dir_params.emplace_back(FillDirParams(this->spacing, 0., dx)); fill_dir_params.emplace_back(FillDirParams(this->spacing, M_PI / 3., -dx)); fill_dir_params.emplace_back(FillDirParams(this->spacing, 2. * M_PI / 3., dx)); if (! fill_surface_by_lines(surface, params2, fill_dir_params, polylines_out)) printf("FillCubic3::fill_surface() failed to fill a region.\n"); return polylines_out; } } // namespace Slic3r